Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллического магнитным свойствам

    У Низко- и высокоспиновые комплексы. Теория кристаллического поля достаточно просто и наглядно объясняет магнитные свойства комплексов, их спектры и ряд других свойств. Для понимания этих свойств необходимо знать характер распределения электронов по -орбиталям иона, находящегося в поле лигандов. Последнее зависит от соотношения величины энергии расщепления А и энергии отталкивания электронов друг от друга. [c.507]


    История развития этих теорий служит иллюстрацией утверждения, что неверную теорию всегда можно усовершенствовать, но никогда нельзя доказать, что она окончательно правильна. Успешное объяснение теорией валентных связей координационной геометрии и магнитных свойств комплексов не дает гарантии правильности этой теории или хотя бы правильности ее подхода. Каков, например, правильный ответ на вопрос-обусловлено ли расщепление уровней 2д и образованием молекулярных орбиталей (точка зрения теории поля лигандов), электростатическим отталкиванием (теория кристаллического поля) или выбором шести орбиталей для гибридизации (теория валентных связей) А может быть, неверны все три точки зрения, и когда-нибудь мы будем относиться к теории поля лигандов с тем же снисхождением, с каким сейчас относимся к теории валентных связей  [c.246]

    В чем отличие способов, которыми теория валентных связей и теория кристаллического поля объясняют магнитные свойства комплексных ионов  [c.248]

    В устойчивом коллоидном ферромагнетике поверхностный слой частиц обычно полностью теряет магнитные свойства вследствие хемосорбционного взаимодействия поверхиости частиц со стабилизатором (поверхностно-активным веществом). Толщина немагнитного слоя приближенно равна постоянной й кристаллической решетки магнитного вещества (несколько ангстрем). Таким образом, если известно, какое вещество находится в коллоидно-растворенном состоянии, то известны и постоянная й, и намагниченность насыщения магнитной фазы Это позволяет по двум параметрам Хн и определить  [c.231]

    Следует отметить, что метод ЭПР дает возможность изучения кинетики радикальной полимеризации и радикалов, образовавшихся в результате тех или иных воздействий. ЭПР является основным средством изучения полимеров, обладающих полупроводниковыми и магнитными свойствами. ЯКР имеет ограниченную применимость для полимеров, так как в них редко встречаются ядра, обладающие электрическим квадрупольным моментом. Однако введение в полимеры кристаллических порошков, содержащих такие ядра, дает возможность оценивать их внутренние напряжения. [c.230]

    Однако применение законов кинетической теории газа к электронному газу приводит к значению а, отличающемуся от эксперимента. Делокализация валентных электронов-в кристаллической решетке металла, а следовательно, отсутствие в ней направленных валентных связей объясняет тот факт, что металлы имеют большое координационное число К, плотнейшую сферическую упаковку, а также чаще всего кубическую объемно-центрированную элементарную ячейку решетки. Некоторые металлы могут кристаллизоваться в различных типах решеток например, при температуре <768 °С магнитное -железо имеет /( = 8, а при температуре >906 °С устойчивым является немагнитное у-железо с /С=12. Впрочем, для некоторых тяжелых металлов наряду с металлической связью, образованной З -электронами, реализуются слабые ковалентные связи между атомами, в то время как 45-электроны образуют электронный газ. Для такой смешанной металлической и межатомной связи характерно образование пар электронов как с параллельными, так и с антипараллельными спинами (для марганца— антипараллельные, для железа — параллельные). Этим объясняется различие в магнитных свойствах металлов параллельные спины обусловливают ферромагнетизм, т. е. положительная магнитная восприимчивость на два или три порядка [c.138]


    Хотя способность образовывать комплексы присуща ионам всех металлов, наиболее многочисленные и интересные комплексы образуют переходные элементы. Уже давно стало понятно, что магнитные свойства и окраска комплексов переходных металлов связаны с наличием a-электронов на атомных орбиталях металла. В данном. разделе мы рассмотрим модель химической связи в комплексах переходных металлов, носящую название теории кристаллического поля такая модель очень хорошо объясняет наблюдаемые свойства этих интересных веществ. [c.390]

    Окраска, магнитные свойства, теория кристаллического поля [c.404]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    Парамагнетизм кислорода в кристаллическом, жидком и газообразном состояниях явился в свое время отправной точкой для разработки метода молекулярных орбиталей. Магнитные свойства молекулярных ионов кислорода (О2 , О2+) и кристаллических соединений, ими образованных, подтверждают предложенные распределения электронов по молекулярным орбиталям и хорошо согласуются с энергетическими свойствами ионов и межъядерными расстояниями. [c.197]

    Рассмотрим влияние поля лигандов на магнитные свойства иоиов /-элементов 4 периода Периодической системы и их кристаллических комплексных соединений. Электронное строение расщепленного /-подуровня двух- и трехзарядных ионов показано в табл. 17. [c.205]

    Ионы-комплексообразователи, имеющие на -подуровне по 8 и 9 электронов, обладают одинаковыми магнитными свойствами независимо от силы кристаллического поля. Таковы ионы [c.206]

    Теория поля лигандов объединяет в той или иной мере идеи теории электростатического взаимодействия, метода валентных связей, теории кристаллического поля и метода молекулярных орбиталей. Теории поля лигандов и молекулярных орбиталей способны объяснить строение комплексов, энергию связи, магнитные свойства комплексных ионов, их окраску (спектральные свойства), а также иногда объяснить реакционную способность комплексных соединений. [c.210]

    На основе теории валентных связей (МЕС) и теории кристаллического поля (ТКП) невозможно достаточно полно описать свойства комплексных соединений. МВС, хотя и дает наглядное представление о химической связи между атомами, но ограничивается только качественными объяснениями. Не приводится интерпретация спектров комплексов и детальное объяснение магнитных свойств, не учитываются энергетические и другие факторы при образовании комплексов. Достоинство ТКП в возможности количественных расчетов и в сопоставлении теории с экспериментом, ио это сопоставление далеко не всегда на пользу ТКП. Для комплексов, в которых энергия делокализации играет значительную роль, например для систем, в которых существуют я-связи, электростатическая теория непригодна. ТКП не рассматривает электронную структуру лигандов и принимает их как неизменные частицы. Невозможность удовлетворительного описания свойств комплексов в МВС и ТКП в значительной степени связана с тем, что обе теории исходят из одностороннего и абстрактного предположения о природе связей в комплексах — чисто ковалентной (в МВС) или чисто ионной (в ТКП). Эти недостатки в известной мере преодолеваются в теории поля лигандов, которая использует метод молекулярных орбиталей (метод МО). [c.232]

    В табл. 1.13 для некоторых комплексов приведены величины Д, определенные из спектров поглощения, вычисленные значения энергии Р и данные о спиновом состоянии иона, полученные по результатам исследования магнитных свойств соединений. Как видно, приведенные в табл. 1.13 сведения находятся в соответствии с теорией кристаллического поля. [c.134]

    Теория кристаллического поля, развившаяся из простой электростатической модели, может быть применена к комплексам для интерпретации и предсказания наиболее выгодных координационных чисел, стереохимии, путей реакций замещения, спектров поглощения, магнитных и термодинамических свойств. На некоторых из этих вопросов следует остановиться более подробно. В частности, будут рассмотрены стереохимия, магнитные свойства, спектры поглощения и термодинамические свойства комплексных ионов. Это отчетливо покажет, что теория кристаллического поля — более удовлетворительный и более общий метод изучения комплексов, чем метод валентных связей. Однако, придавая особое значение орбиталям и электронам центрального атома, теория кристаллического поля неизбежно должна стать менее точной, когда усиливается роль делокализации электронов и орбиталей лиганда, т. е. при возрастании ковалентности связи. [c.264]


    При относительной простоте теория кристаллического поля оказалась полезной при решении таких вопросов химии комплексных соединений, как их магнитные свойства, происхождение спектров, изменение ряда физических свойств в рядах сходных комплексов, количественные характеристики и -г. п. Вместе с тем эта теория имеет и недостатки, основной из которых состоит в пренебрежении электронной структурой лигандов, приводящее к игнорированию возможности образования различного типа ковалентных связей между центральным ионом и лигандами. Этот недостаток был устранен использованием метода МО к координационным соединениям переходных элементов. [c.120]

    Рассмотрите строение следующих комплексов с позиций теории кристаллического поля, определите тип гибридизации орбиталей центрального атома и укажите магнитные свойства комплексов  [c.276]

    Дефекты кристаллов и их возникновение. Ранее были рассмотрены физико-химические характеристики идеальных кристаллических структур. Закономерности формирования таких структур позволяют объяснить многие свойства и реальных кристаллов, такие, например, как плотность, диэлектрическая проницаемость, удельная теплоемкость, упругость. В то же время целый ряд очень важных свойств твердых систем (прочность, электрическая проводимость, теплопроводность, оптические и магнитные свойства, каталитическая активность) существенно зависит от того, насколько кристаллические структуры таких веществ отклоняются от идеальных. В реальных кристаллах всегда существуют структурные нарушения, обычно называемые несовершенствами или дефектами. Дефекты кристаллов иногда сообщают твердым телам весьма ценные свойства, в связи с чем их реализуют искусственным путем. [c.78]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Большим достижением теории кристаллического поля является объяснение окраски и магнитных свойств комплексных соединений. При качественном рассмотрении принято различать в спектрах ком-лексных соединений следующие группы полос поглощения  [c.123]

    Теория кристаллического поля позволяет объяснить многие физико-химические свойства комплексов (спектры поглощения, магнитные свойства), их геометрическую конфигурацию. Так, наиболее ранним применением ТКП было объяснение магнитных свойств комплексных соединений. Последние определяются величиной Л и энергией спаривания электронов. Вещества, содержащие атомы с неспаренными электронами, парамагнитны (притягиваются магнитом), а вещества, содержащие только электронные пары, диамагнитны (магнитом не притягиваются). [c.382]

    Электронное состояние переходных металлов определяет ряд их физических свойств (температуры плавления и кипения, межатомные расстояния, прочность или твердость кристаллической решетки и т. п.). Для металлов 4-го периода прочность решетки возрастает от К, Са и Ti, V, достигает максимума у хрома, затем падает у Мп и вновь несколько растет в ряду Fe -)- o- Ni. При учете распределения с1- и 5-электронов в переходных металлах помимо указанных физических свойств большое значение придается магнитным свойствам. С современной точки зрения магнитные свойства металлов определяются -электронами с неспаренными спинами. Соответствующие магнитные моменты насыщения )J, для металлов 4-го периода имеют значения Сг 0,22 Мп 1,22 Ре 2,22 Со 1,71 N1 0,6(0,66). [c.147]

    Так, представления ТКП можно распространить на описание кристаллических соединений. Если допустить, что кристалл состоит из ионов, то каждый из ионов ( -эле-мента 1 аходится в поле отрицательных ионов. Это приводит к расщеплению -уровня иона -элемента, что определяет магнитные свойства его соешнений, их окраску и другие свойства. [c.509]

    Магнитные свойства комплексных соединений хорошо описываются с позиций теории кристаллического поля. Эта теория основана на предположеиии, что между комплексообразователем и лигандами осуществляется чисто электростатическое взаимодействие. Однако, в отличие от классических электростатических представлений, в теории кристаллического поля учитывается пространственное распределение электронной плотности -орбиталей комплексообразователя. [c.205]

    Энергия расщепления кристаллическим полем, Д , оценивается путем измерения энергии, поглощаемой при возбуждении одного электрона с уровня на уровень (рис. 20-12). Величина этой энергии очень важна при объяснении магнитных свойств комплексов. Если энергия А невелика, как в комплексе СоР , щесть -электронов иона Со расселяются по всем пяти -орбиталям (рис. 20-13), потому что при минимальном спаривании электронов достигается выигрыщ в энергии. И наоборот, если энергия расщепления, Д , достаточно велика по сравнению с энергией спаривания двух электронов на одной орбитали, больщая устойчивость достигается, если на каждой из трех орбиталей нижнего энергетического уровня 3, располагается по два спаренных электрона, а две орбитали верхнего уровня остаются вакантными. Такая ситуация реализуется в комплексе Со(ЫНз)й . Из-за различного числа неспаренных электронов в двух рассмотренных структурах ион Со (N113) + называется низкоспиновым комплексом, а ион СоР -высокоспиновым комплексом. [c.231]

    Мы показали, что магнитные свойства и окраска комплексов переходных металлов зависят от природы лигандов и металла, которая влияет на энергию расщепления кристаллическим полем, А . Тем самым получен ответ на два вопроса из числа поставленных в начале данного раздела. Можно также объяснить необычную устойчивость 3 - и -конфигураций в комплексах с лигандами сильного поля. Эти конфигурации соответствуют полузаполненному и полностью заполненному Г2 ,-уровням. Они обладают повышенной устойчивостью при большом расщеплении уровней по той же причине, по которой устойчивы конфигурации 3 и 3 °, когда все пять -орбиталей имеют одинаковую энергию. Устойчивость 3 - и -конфигураций более заметна в комплексах с лигандами слабого поля, где расщепление кристаллическим полем невелико. [c.237]

    Лекция 7. Основные положения метода молекулярных орбиталей (МО). Энергетические диаграммы распределения электронной плотности в молекулах. Применение метода МО к молекулам, образованным из атомов элементов первого и второго периодов. Объяснение магнитных свойств и возможности существования двухатомных частиц с помощью метода МО. Лекция 6. Межмолекулярное взаимодействие. Природа межмолекулярных сил. Ориентационное, индуктивное, дисперсионное взаимодействие. Водородная связь. Влияние водородной связи на свойства вешества. Конденсированное состояние вещества. Кристаллическое состояние. Кристаллографические классы и втя системы.. Ьоморфизм и полимор( )Изм. Ионная, атомная и молеклярная, металлическая и кристаллическая рещетки. [c.179]

    При значительном избытке железа по отнощению к фуллерену (5-10 раз) спектр МР представлен неоднородно ущиренной линией, температурная зависимость щирины и положения ее близки к полученным для продуктов термораспада Ре(асас)з.Температура синтеза не влияет существенно на параметры МР и магнитные свойства веществ. Снижение концентрации железа в исходных продуктах приводит к более симметричной линии МР, эффективный g-фактор приближается к 2, присутствие ЭПР радикала кристаллического Сбо свидетельствует об улучшении однородности внутреннего магнитного поля вещества. Магнитные характеристики соответствуют ферромагнитному состоянию. [c.163]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Чем обусловлены магнитные свойства комплексов Как можно предсказать магнитные свойства комплексов с помощью теор41и кристаллического поля  [c.88]

    Дезоксигемоглобин-голубой комплекс желе-за(П)-имеет четыре неспаренных электрона. При координировании молекулы дезоксиге-моглобином образуется оксигемоглобин — красный комплекс железа, обладающий диамагнитными свойствами. Предположите что к этим комплексам применима диаграмма энергетических уровней, соответствующая расщеплению в октаэдрическом кристаллическом поле, и объясните, чем обусловлены различия в их окраске и магнитных свойствах. [c.396]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    На основе теории кристаллического поля удается объяснить не только магнитные свойства комплексных соединений, но и их специфическую окраску. Так, в комплексе [Т1(Н20)б] нон имеет один -электрон (электронная конфигурация д ). В нормальном (невозбужденном) состоянии этот электрон находится на одной из -орбиталей, но при затрате некоторой энергии (Д = 238 кДж/моль) может возбуждаться и переходить на .-орбиталь. Длина волны света, поглощаемого при этом пер>еходе и соответствующего указанной энергии, равна 500 нм это и обусловливает фиолетовую окраску комплекса [Т1(Н20)б] . При тгисом рассмотрении становится понятным, почему комплексы, образованные ионами Си" ", Ag , и как правило, бес- [c.359]

    На магнитные свойства металлов существенное влияние оказывает симметрия кристаллической решетки. Чем резче отличается симметрия кристаллической решетки от кубической, тем значительнее ее влияние на магнитные свойстна свободных электронов. Именно поэтому аномально большой диамагнетизм наблюдается у сурьмы и висмута, графита и металлов, которые кристаллизуются соответственно в гексагональной, ромбической и тригональной син-гониях. [c.192]

    Теория кристаллического поля. В основе теории лежат фундаментальные труды Бете (1929) и Ван Флека (1932). Первоначально теория рассматривала расщепление ато1У1ных термов в кристалле и применялась для объяснения магнитных свойств кристаллов. Впоследствии она была использована также для объяснения спектров поглощения и ряда других свойств комплексных соединений переходных металлов и лантаноидов. Основные идеи теории  [c.237]

    Теория кристаллического поля Основы теории кристаллического поля были сформулированы Г. Бете (1929) и развиты Ван Флеком (1932) применительно к магнитным свойствам кристаллов. Позднее, с 50-х годов нашего столетия, на основе этой теории были объяснены не только магнитные, но и спектральные, электрические, термодинамические и другие свойства систем, в состав которых входят ионы с незаполненными d- и /-оболочками. [c.115]

    Теория кристаллического поля позволила объяснить магнитные свойства соединений /-элементов, т. е. наличие или отсутствие неспаренных электронов у центральных атомов. Действительно, из распределения электронов по d. - и -подуровням атомов 3 /-элементов в слабом октаэдрическом поле лигандов (см. рис. 11.2) можно сделать следуюищй вывод (е, — пара электронов, —неспаренный электрон)  [c.193]

    Кристаллические модификации железа аир металлурги называют а- и р-феррит. Для обеих модификаций характерна объемно-центрированная элементарная ячейка, и с точки зрения кристаллографии они неразличимы. Однако электронная структура этих модификаций различна, поэтому, если а-феррит обладает магнитными свойствами, то для р-феррита они нехарактерны. Различны и химические свойства так, а-Ре в отличие от p-Fe не растворяет углерод. Атомы растворенного р-Ре углерода занимают середины ребер объемноцент-рированной элементарной ячейки. [c.116]

    Одновременно имеет место отталкивание лигандов друг от друга. Наиболее устойчив комплекс при таком распределении лигандов вокруг центрального иона, при котором силы притяжения максимальны, а силы отталкивания минимальны. Теория кристаллического поля показывает, что устойчивость комплекса повышается, если происходит изменение электронной структуры комплексообразователя, у которого обычно энергетические уровни внешних d-орбиталей расщепляются на подуровни. Это приводит к изменению цвета комплекса, числа неспаренных электронов в комплексе и, следовательно, к изменению его магнитных свойств. Характер и степень изменения элекронной структуры зависит от типа лиганда. По степени влияния лигандов на электронную структуру центрального иона-комплексообразователя они располагаются в следующий ряд  [c.294]

    В принципе все физические свойства кристаллов зависят от их структуры и, следовательно, от дефектности решетки. Однако не все свойства в равной мере чувствительны к наличию дефектов. Обычно число равновесных дефектов относительно невелико, поэтому к мало чувствительным свойствам относятся все те, которые зависят только от средних значений молекулярных параметров частиц в решетке. Сюда относятся такие термодинамические свойства, как теплоемкость и энергия кристаллов. Более чувствительны к наличию дефектов оптические свойства кристаллов в области основной полосы поглощения. Высокочувствительны те физические свойства, которые практически полностью определяются наличием отдельных дефектов в кристаллической решетйе — диффузия в кристаллах, электропроводность примесных полупроводников, поглощение света вне основной полосы поглощения, люминесценция, некоторые магнитные свойства, скорость химических реакций в кристаллах. Для химии большое значение имеет равновесная нестехиометричность ионных кристаллов, возникающая в связи с появлением в решетке структурных дефектов. [c.271]

    Магнитные свойства комплексных ионов -элементов находятся в прямой зависимости от числа неспаренных электронов иона-комплексообразователя. В октаэдрическом окружении первыми заполняются согласно правилу Гунда три нижележащие d-орбитали dxy, dy2 , dxz- Следующий, четвертый, d-электрон имеет две различные возможности вступления на d-орбитали- или на более низкую орбиталь, образуя пару электронов, или на более высокую орбиталь, в иеспаренное состояние. В первом случае из четырех электронов только два сохраняют неспаренное состояние. Такая конфигурация носит название низкоспиновой (НС). Во втором случае все четыре электрона неспарены и конфигурация называется высокоспиновой (ВС). Выбор той или иной конфигурации определяется плотностью электронных зарядов окружающих ионов. Если ионы окружения обладают сильным полем электронов, достаточным для выталкивания электронов с dz и орбиталей, и энергия этого поля превышает энергию спаривания электронов, электрон вступает на нижележащую орбиталь. В этом случае образуется низкоспиновое состояние. Если электрическое поле окружающих ионов недостаточно для преодоления сил отталкивания между двумя электронами в одной орбитали (слабое кристаллическое поле), электрон заполняет d или dx -y орбиталь и возникает высокоспиновое состояние. Заполнение электронами d-под- уровня с образованием высокоспиновых состояний согласуется с правилом Гунда, и магнитные свойства ионов должны изменяться в соответствии с числом неспаренных электронов. Пятый, шестой и седьмой d-электроны имеют две возможности заполнения d-подуровня—с образованием высокоспинового или низкоспинового состояния. Остальные три электрона заполняют оставшиеся места вне зависимости от силы поля окружающих ионов. [c.244]


Смотреть страницы где упоминается термин Кристаллического магнитным свойствам: [c.156]    [c.196]    [c.242]    [c.245]    [c.37]   
Механизмы неорганических реакций - Изучение комплексов металлов в растворе (1971) -- [ c.72 , c.73 ]




ПОИСК







© 2024 chem21.info Реклама на сайте