Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализатор Циглера структура

    Изотактические полимеры из пропилена и 1-бутена получают реакцией полимеризации под действием триэтилалюминия в присутствии катализатора Циглера. Составьте схемы указанных реакций полимеризации и изотактические структуры полимеров. [c.112]

    Реализуются оба способа соединения бутадиена в макромолекуле, а соотношение между ними зависит от условий, при которых проводилась полимеризация. В последнее время полимеризация проводится преимущественно с катализаторами Циглера и образуется прежде всего цис-1,4-полибутадиен (по своей структуре он напоминает натуральный каучук). [c.294]


    Катализаторы Циглера — Натта позволили получать полиэтилен (ПЭ), полипропилен (ПП) и другие поли-олефины с чрезвычайно высокой молекулярной массой, особой малоразветвленной структурой, высокой степенью кристалличности. Полимеризация этилена протекала в мягких условиях, не требовалось высоких давлений и температур. При исследовании полимеризации пропилена была обнаружена стереоспецифичность новы  [c.6]

    Начиная с 1959 г., часто упоминается об использовании носителей для катализаторов Циглера — Натта с целью повышения выхода ПЭ с единицы массы активного компонента. Однако только в последнее десятилетие были найдены носители или добавки к катализаторам Циглера — Натта, которые оказывают синергическое действие на каталитический комплекс, увеличивая активность переходного металла в десятки и сотни раз. Создание таких катализаторов стало возможным, когда были-получены данные о структуре каталитического комплекса, решающей роли связи Ме—С в реакции роста цепи и механизме элементарных стадий процесса, протекающих по этой связи [69]. Прочность связи и ее дестабилизация зависят от природы и валентного состояния переходного металла природы и числа лигандов и свободных групп, окружающих [c.87]

    Многие годы механизм действия окиснохромовых катализаторов был неясен. Эрих и Марк [171] предполагали катионный механизм, исходя из структуры полимера. Отличие окиснохромовых катализаторов от классических катализаторов Циглера— Натта состоит в том, что они полимеризуют этилен в отсутствие активаторов, в частности АОС. При нанесении на алюмосиликат или силикагель хрома в количестве, отвечающем оптимальной активности катализатора, после активации были обнаружены соединения хрома, в которых хром имел различную степень окисленности Сг +, Сг +, Сг +, Сг +. Неясным оставалось, [c.161]

    Ионно-координационная полимеризация происходит тогда, когда между мономерами и активным центром возникает координационный комплекс. Структура мономера и тип катализатора оказывают решающее действие как на процесс комплексообразования, так и на стереорегулярность полимера. В качестве катализаторов чаще всего применяют комплексные соединения, так называемые катализаторы Циглера - Натта. Эти катализаторы образуются из алкилов металлов переменной валентности и галогенидов металлов. Катализаторами могут являться также я-аллильные комплексы переходных металлов и оксидно-металлические катализаторы. Из катализаторов Циглера - Натта в производстве обычно используют комплексы алюминий-алкилов и галогенпроизводные титана и ванадия. Такие катализаторы используются для полимеризации неполярных алкенов (этилен, пропилен и др.) и диенов (бутадиен, изопрен и их производные). [c.35]


    В конечной структуре потребления этилена 60—70 % занимают пластмассы (полиэтилен, поливинилхлорид, полистирол). Самый крупный потребитель этилена — производство полиэтилена. Полиэтилен высокого давления (низкой плотности) получают методом радикальной полимеризации при 200—270°С и 100—350 МПа в присутствии инициаторов (кислород, органические пероксиды). Полиэтилен среднего давления получают в присутствии оксидных катализаторов при 130—170 °С и давлении 3,5—4,0 МПа. Для производства полиэтилена низкого давления (высокой плотности) применяют металлорганические катализаторы Циглера при 75—85 °С и давлении 0,2—0,5 МПа. [c.269]

    Скорости ионной полимеризации слабо зависят от температуры, поскольку энергии активации стадий инициирования и роста цепи малы (существуют исключения из этого положения, например при инициировании на катализаторах Циглера—Натта). Поэтому в отличие от радикальной полимеризации ионная полимеризация протекает с высокими скоростями при низких температурах. Так, полиизобутилен в промышленности получают в присутствии трехфтористого бора при —100 °С в жидком пропане (см. опыт 3-23). Однако температура полимеризации оказывает решающее значение на структуру образующегося полимера. [c.138]

    Найдено, что изопрен может подвергаться стереоспецифиче-ской полимеризации с металлическим литием [11] или катализатором типа катализатора Циглера (комплекс алкилалюминия и четыреххлористого титана) [12] с образованием чис-структуры в положении 1,4 при этом он дает молекулы, подобные моле-кулам натурального каучука, не содержащие разветвлений. Можно предполагать, что подобные полимеры ведут себя при действии ионизирующей радиации так же, как натуральный каучук. [c.175]

    А. И. Якубчик, С. Я. Грили-хес, В. С. Пурлова и другие [112] разработали способ гидрогенизации 1,4-полибутадиена, полученного с помощью катализаторов Циглера. Структура молекул этих линейных гидроге-низатов имеет много общего со структурой полиэтилена. Так, при непредельности 10% они имеют степень кристалличности 52%. Для склеивания применяется композиция примерно следующего состава, в. ч. гидрированный 1,4-полибутадиен — [c.217]

    В некоторых случаях твердая фаза катализатора имеет микрокристаллическую структуру и присутствует в виде коллоидного раствора. Катализаторы Циглера — Натта получают смешением компонентов при комнатной или повышенной температуре в углеводородных средах. Соотношение компонентов и порядок их смешения оказывают существенное влияние на активность, стереорегулирующее действие, молекулярный вес и структуру образующихся полимеров. Строгие требования, предъявляемые к соотношению компонентов указанных катализаторов, связаны с валентным состоянием титана или другого переходного металла в каталитическом комплексе. Эффективные катализаторы должны включать соединения металла в двухвалентном состоянии. [c.179]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Оказалось, что наиболее хорошими товарными свойствами обладает изотактическая форма полипрогашена. Полипропилен, получен-ге.ш на катализаторах Циглера-Наата, до 95 % состоит из изотакгачес-кой структуры, т.е. катализатор, как было сказано вьш1е, позволяет регулировать и пространственную структуру полимеров, а значит, и их свойства. Катализаторы назвали именами Циглера-Натта, а оба уче ных в 1963 г. получили Нобелевскую премию, т.к. это открытие произ вело подлинную революцию в промьппленности. [c.89]

    Оказалось, что наиболее хорошими товарными свойствами обладает изотактическая форма полипропилена. Полипропилен, полученный на катализаторах Циглера-Натта, до 95 % состоит из изотактичес-кой структуры, т.е. катализатор, как было сказано выше, позво мет регу шровать и пространствехшую структуру полимеров, а значит, и их свойства. Катализаторы назвали именами Циглера-Натта, а оба ученых в 1963 г. получшш Нобелевскую премию, т.к. это открытие произвело подлинную революцию в промьшшенности. [c.85]


    Т я ( ) л и II я 3.1. Типы структур полибутадиена и полннзопрена, получаемые на катализаторах Циглера — Натта [c.52]

    Примеры формирования различных структур у этих полимеров в, завнсим(зсти от состава катализаторов Циглера — Натта приведены в табл. 3.1. [c.52]

    Применяемые для снитеза катализаторы Циглера — Натта определяют структуру получающегося полимера с производными молибдена формируетсн цис-струк-тура титана, вольфрама — трине-[6]. [c.58]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    В последние десятилетия широкое распространение получила анионно-координационная полимеризация в присутствии комплексных катализаторов Циглера — Натта. Этот метод используется в промышленном синтезе стереорегулярных полимеров. Кроме того, этот метод является единственным для полимеризации а-олефинов (пропилена, бутена-1 и др.). В состав катализаторов Циглера — Натта входят металлоорганические соединения I—П1 групп и хлориды IV—VH групп с переходной валентностью. Наиболее часто используются металлоорганические соединения алюминия и хлориды титана. Так как алкильные производные алюминия обладают электроноакцепторными свойствами (алюминий на четыре валентные орбиты имеет три электрона), а металлы переходной валентности являются электронодонорами (имея на -орбитах неспаренный электрон), они легко образуют координационные связи. Такие комплексные катализаторы нерастворимы, и их строение точно не установлено, но па основании данных, полученных при изучении строения растворимых комплексных катализаторов, предполагается, что они представляют собой биметаллический комплекс с координационными связями. При изучении структуры растворимого комплексного катализатора, полученного из дициклопентадиенилхлорида титана и диэтилалюмииийхлорида методом рептгеноструктурного анализа, было установлено, что он имеет следующее строение  [c.89]

    Позднее утвердилось мнение, что определяющим компонентом в каталитическом комплексе циглеровских I катализаторов является соединение переходного ме- талла.,Дьячковский методом ЯМР подтвердил [149], что 1 рост полимерной цепи происходит по связи Т1—С. В спектрах ЯМР катализаторов Циглера происходит, расщепление структур на структуру, обусловленную свя- зями Т1—С и А1—С если ввести мономер, который не полимеризуется, а только встраивается (например, ви-нилацетилен), то исчезают линии, соответствующие связи Т1—С. Работы Бура [150] и Оливе [151] также подтверждают это мнение. Имеются даже катализаторы (Т1С12, УС12, ацетилацетонат титана и др.), которые работают без алкилов А1. [c.144]

    Особым типом полимеризации является координационная полимеризация. Она представляет собой реакцию между мономером и полимером, которые координированы с каталитическим центром определенного типа. Обычно применяют гетерогенные катализаторы наиболее известным нз них является катализатор Циглера — Натта, который получают взаимодействием триал кил алюминия с четыреххлористым титаном в инертном углеводородном растворителе. Существует множество аналогичных систем. Полагают, что инициирующая труппа и, следовательно, растущая полимерная цепь координируются с центрами титана на поверхности катализатора. Титан может также принимать мономер в свою координационную сферу в качестве л-связанного лиганда. Затем две координационно связанные частицы реагируют с образованием удлиненной алкильной цепи и освобождают место, доступное для я-координации другой мономерной молекулы. Истинная структура активного центра и вопрос, насколько тесно связан с происходящим процессом другой присутствующий металл (алюминий), не установлены. [c.408]

    Получение и структура. Осн. способ синтеза - полимеризация ацетиленовых соед. при нагр., под действием света, радиоактивных излучений, радикальных инициаторов, анионных и катионных катализаторов и чаще всего-разл. солей, карбонилов и металлоорг. соед. переходных металлов и их комплексов, в т.ч. катализаторов Циглера-Натты. Синтезируют П. также поликонденсацией и полимеранало-гичными превращениями. [c.616]

    Прививку полимера к пов-сти наполнителя можно осуществить разл. способами. Эффективность прививки определяют после длит, обработки продукта р-рителем по доле нерастворимого полимера, связанного с наполнителем. Наиб, изучена радикальная прививка. Так, привитые полимеры образуются при измельчении минер, наполнителей в присут. жидких или газообразных мономеров, напр, стирола, метилметакрилата (кол-во привитого полимера обычно 1-2% по массе), а также при радиац. обработке смеси наполнителя (напр., целлюлозы) с мономером (образуется также нек-рое кол-во гомополимера). Прививкой к пов-сти наполнителя в-в (в т. ч. инициаторов), содержащих функц. группы, осуществляют фиксацию на частицах наполнителя активных центров, используемых в дальнейшем для получения наполненных полимеров заданного состава. Подобным способом получены наполненные материалы на основе, напр., полистирола, поливинилхлорида, политетрафторэтилена. В случае прививки к минер, наполнителям полиолефинов используют способность катализатора Циглера-Натты, а также катализатора на основе Сг или Zr взаимодействовать с группами ОН, имеющимися на пов-сти таких наполнителей. Сначала наполнитель подвергают термообработке с целью удаления нежелат. примесей, затем обрабатывают катализатором, после чего проводят жидко-или газофазную полимеризацию олефинов. Полученные в этом процессе наполненные материалы обладают необычным комплексом св-в. Напр., высокомол. полиэтилен, содержащий 50-60% по массе минер, наполнителя, обладает высокими износостойкостью и ударной вязкостью, к-рые невозможно достигнуть при мех. смешении полимера с наполнителем фафито- и саженаполненный полипропилен имеет необычно высокую электропроводность. Методом П. на н. можно получить структуры, в к-рых частицы наполнителя окружены равномерными слоями полимеров и сополимеров разл. типа. Особенно перспективен этот метод для получения сверхвысоконаполненных материалов с равномерным распределением наполнителя в матрице полимера. [c.638]

    Полипропилен теоретически может иметь шесть стерео-регулярных форм, две из к-рых (изо- и синдиотактич.) получены в результате полимеризации пропилена по типу голова к хвосту на катализаторах Циглера - Натты. Из остальных четырех возможных структур-торео- и эритро-диизотактические, трео- и эрширо-дисиндиотактические, к-рые могли бы образоваться при полимеризации пропилена по типу голова к голове , получена (сополимеризацией этилена с 2-бутеном) лишь одна. Из шести теоретически возможных структур поли-1-бутена синтезирована только изотактическая, существующая в виде двух кристаллич. модификаций. [c.429]

    Как видно из приведенной таблицы, растворители и катализаторы значительно влияют на структуру образующихся полидиенов. Так, строение цепи полиизопрена, полученного на различных щелочных металлах в одном и том же растворителе, значительно различается. При полимеризации изопрена и бутадиена в присутствии одного и того же инициатора реализуются различные типы присоединения, что отчетливо демонстрируется в опыте с типичным катализатором Циглера—Натта — системе триалкилалюми-ния с четыреххлористым титаном. [c.144]

    Ч с-1,3-Дивинил- циклопентан Полимер (I) Катализатор Циглера (изо-С Н8)зА1—Т1Си(1 1) 1 — линейный (65%) со структурой бицикло-3,2,2-октана [638] [c.580]

    U -1,3-Дивинил-циклогексан Полимер (I) Катализатор Циглера Ti U—А (иао-С4Н9)з (1 1) в н-гептане. I — линейный полимер со структурой бицикло-3,3,1-нонана с незначительной ненасыщенностью [638] [c.581]

    Этилен, пропилен, акзо-(1) или 9ндо-(11)дициклопентадиен Терполимер Катализатор Циглера. Сополимеризация с I ведет к обращению структуры в форму II [979] [c.598]

    В предыдущей главе было показано, что присутствие комплексообразующих агентов при полимеризации под влиянием металлорганических соединений вносит существенные изменения в кинетику полимеризации и структуру полимеров. Известны бодее сложные каталитические системы, представляющие собой двух- и трехкомпонентные комплексы, отличающиеся высокой эффективностью действия и стереоспецифичностью — алфиновые катализаторы, катализаторы Циглера—Натта и окисные катализаторы. Общей чертой для них является образование координационных комплексов катализатор—мономер, которое предшествует гетеролптическому разрыву связи в мономере. Подобный механизм может быть распространен и на некоторые другие катализаторы полимеризации. [c.399]

    Прежде чем перейти к изложению особенностей процесса полимеризации в системах с участием катализаторов Циглера—Натта, необходимо остановиться на условиях их образования, структуре и на связи менгду природой и стереоспецифичностью катализатора. [c.403]

    Особенно интересно выяснить причины, вызываюш ие образование стереорегулярных полимеров при применении катализаторов Циглера—Натта. Многие наблюдения, относяш иеся к этой области, указывают на существование связи между стереоспецифичностью катализатора и гетерогенностью системы катализатор— мономер. Так, образование изотактических поли-а-олефинов до настоящего времени обнаружено лишь при использовании кристаллических нерастворимых катализаторов. Немногие известные процессы полимеризации а-олефинов под влиянием растворимых стереоснецифических катализаторов приводят только к образованию синдиотактических полимеров [39]. Вместе с тем далеко не кагкдый нерастворимый катализатор позволяет синтезировать стереорегулярньш поли-а-о.пефин (табл. 54, 55). При синтезе изотактических полимеров олефинового ряда определяющая роль часто принадлежит кристаллической структуре катализатора. [c.418]

    Возникновение винилиденовых групп или внутренних двойных связей — прямое указание на существование побочных реакций (изомеризации и др.). Как показывают результаты исследования структуры полимеров, подобные явления почти не встречаются при полимеризации на хромокисных катализаторах, но имеют существенное значение для катализаторов Циглера. Это тем более интересно, что в первом случае применяются более жесткие условия реакции полиэтилен среднего давления часто получают при температуре порядка 150° (это позволяет удерживать полимер в растворе или в расплаве), т. е. на 70—80° выше, чем полиэтилен низкого давления. Следовательно, структурные особенности полимеров обусловлены различиями в механизме тех и других процессов, а не влиянием температуры. [c.436]

    Наиболее очевидный путь получения кристаллов с выпрямленными цепями — твердофазная полимеризация [53]. Однако в рамках поставленной задачи необходимо было также изучить процессы негомогенной полимеризации из жидкой или газовой фазы. В это же время к исследованию данной проблемы приступил ряд ученых, основной специальностью которых были чисто структурные исследования — в основном полиэтилена. Совершенно естественно, что для этих ученых главная задача состояла в изучении структуры уже сформировавшихся объектов, и они не обращали должного внимания на такие вопросы, как механизм и кинетика процесса полимеризации. Например, на основании простого совпадения температур плавления образг ,ов, полученных полимеризацией этилена из газовой фазы на катализаторах Циглера с равновесной температурой плавления, Маршессо с сотр. [54] сделал вывод об образовании кристаллов с выпрямленными цепями. Действительно, как показано яа рис. И1.49, внутри беспорядочно ориентированных агрегатов. ламелярных кристаллов видны волокнистые структуры, однако, по мнению Менли [55] и Келлера с сотр. [56], они образуются в результате ориентации макромолекул перпендикулярно к поверхности катализатора. Исходя из аналогии между наблюдавшимися в таких экспериментах структурами и структурами, возникавшими при кристаллизации из раствора при перемешивании, описанных в разделе П1.4.5 (структуры типа шиш-кебаб ), эти авторы предположили, что ядро волокнистых структур состоит из кристаллов [c.212]

    Для объяснения механизма образования волокнистых структур при полимеризации этилена в присутствии катализаторов Циглера Менли [13] и Келлер с сотр. [15] предложили модель, согласно которой цепи вытягиваются по нормали к новерхности катализатора. Эти авторы, исходя из аналогии между структурой полимера, вы-276 [c.276]

    При проведении полимеризации этилена в присутствии катализаторов Циглера в условиях интенсивного перемешивания в среде растворителя Менли с сотр. [13] обнаружил возникновение фибриллярных осадков. По мнению этих исследователей, эти структуры непрерывно образуются в ходе полимеризации по механизму спирального роста, однако в данном случае, естественно, необходимо принимать во внимание наличие внешних механических сил, действующих на систему. Это позволяет провести аналогию с условиями получения структур типа шиш-кебаб из растворов, которые подвергались либо интенсивному перемешиванию при кристаллизации полимера, либо же сдвиговым напряжениям. Заметим, что впоследствии сам Менли [30] пришел к выводу о необходимости сопоставления этих результатов с результатами исследования структур, полученных кристаллизацией из перемешиваемых растворов. [c.278]

    Полимеризация может также проводиться с использованием в качестве катализатора натрия или калия. При этом получается продукт, являющийся смешанным цис-, т/ акс-полимером, который образуется главным образом за счет присоединения в положении-1,2. Такие каучуки хуже каучуков типа ЗВК. Совсем недавно, однако, применение катализаторов Циглера и литийалки-лов дало возможность получать стереоспецифичные полимеры олефинов. Таким путем получаются полибутадиены, имеющие, главным образом г ас-1,4-структуру, по своим свойствам очень близкие к природному каучуку. [c.116]


Смотреть страницы где упоминается термин Катализатор Циглера структура: [c.415]    [c.50]    [c.91]    [c.474]    [c.329]    [c.433]    [c.89]    [c.355]    [c.434]    [c.34]    [c.355]    [c.402]    [c.403]    [c.404]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы структура

Циглера катализатор



© 2025 chem21.info Реклама на сайте