Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез стереорегулярных (изотактических) полимеров

    Синтез стереорегулярных (изотактических) полимеров [c.640]

    Стереорегулярная полимеризация открывает широкие возможности для синтеза из одного и того же мономера полимеров с самыми различными свойствами, зависящими от характера чередования звеньев и их конфигурации в макромолекуле, от формы последней и от способности полимера кристаллизоваться или оставаться аморфным. Например, изотактический полипропилен представляет собой жесткий [c.110]


    Перспективным вариантом метода цепной полимеризации является синтез стереорегулярных (изотактических) полимеров. Стереорегулярными называют полимеры, в макромолекулах которых отдельные функциональные группы расположены в пространстве строго упорядоченно [c.18]

    Характерной особенностью современного периода является все большее применение стереорегулирования в процессе синтеза полимеров. В области полимеризации такими примерами являются получение стереорегулярных изотактических и т. п.) полимеров, синтез опти-чески-активных полимеров, получение цис-1,4- и гране-1,4-полидиенов и синтез стереоблочных полимеров. [c.27]

    Одним из интересных и перспективных вариантов метода цепной полимеризации является разработанный и осуществленный в последние годы в производственных условиях метод синтеза стереорегулярных (изотактических) полимеров. [c.640]

    Хотя переход от 3 констант к 10 не вносит принципиальных усложнений в теоретические расчеты, возможность применения уравнений типа (III.27) к конкретным химическим реакциям представляется маловероятной. Это связано с экспериментальными трудностями в определении кинетических констант. Даже в случае стереорегулярных образцов, для которых надо определить из эксперимента всего 3 константы, эта задача достаточно сложна и требует специального методического подхода, который будет рассмотрен в гл. V. Для атактических полимеров применение этого же подхода связано с необходимостью синтеза модельных изотактических и синдиотактических полимеров с очень высокой степенью регулярности, что представляет собой достаточно сложную самостоятельную задачу. [c.78]

    Теоретические положения Аркуса и экспериментальные попытки получить оптически активные полимеры асимметрическим синтезом привели к выводу, что независимо от экспериментального метода наличие плоскостей симметрии должно приводить к отсутствию оптической активности. Успешное получение стереорегулярных изотактических и синдиотактических полимеров, не проявляющих оптической активности, подтверждает это положение. [c.48]

    Полимеризация окиси пропилена в присутствии некоторых металлоорганических катализаторов, как отмечалось выше, ведет к стереорегулярным полимерам. В продуктах полимеризации содержатся фракции, обладающие способностью к кристаллизации и представляющие собой изотактический полипропиленоксид, т. е. полимер, в цепи которого мономерные звенья имеют одинаковую стереохими-ческую конфигурацию. Относительная доля такого полимера в суммарном продукте широко варьируется подбором катализатора и сокатализатора, их соотношением, температурой синтеза, средой и т. п. Этп же факторы существенно влияют на другие свойства полимеров, в частности на молекулярно-массовое распределение. [c.254]


    До открытия стереоспецифического синтеза было известно только несколько природных полимеров, способных кристаллизоваться или, по крайней мере, образовывать высокоупорядоченные трехмерные системы — целлюлоза, шелк, каучук и гуттаперча. Мономером последних двух полимеров является изопрен-1,4, каучук на 97% состоит из г<ис-изопрена-1,4, гуттаперча— почти полностью из гранс-изопрена-1,4. Синтетические полимеры по своим упругим свойствам явно уступали природным, поскольку они не были стереорегулярными. После того как удалось провести стереоспецифический синтез каучука [6, 7] и гуттаперчи [8], оказалось, что искусственные полимеры нисколько не уступают природным аналогам. Вскоре были синтезированы полимеры, не встречавшиеся в природе и превосходящие природные по своим механическим свойствам. В частности, изотактический и синдиотактический полибутадиен-1,4, а также цис- и т занс-полибутадиены-1,4 9] казались значительно дешевле полиизопрена-1,4. Наконец, широкое промышленное применение получил огромный класс синтетических полимеров — поли-а-олефины, свойства которых подробно описаны в работе [10]. [c.7]

    Рассматривая прогресс в синтезе карбоцепных полимеров, нужно прежде всего отметить выявившуюся в последние годы тенденцию ж развитию производства и исследовательских работ в области полимеров, получаемых на базе нефтехимического сырья, каменного угля и природных газов, представляющих наиболее доступные и дешевые виды сырья, обеспечивающие массовое производство большого числа полимеров. К этому направлению относится получение полиэтилена, изотактического полипропилена и других стереорегулярных полимеров а-олефинов, полиформальдегида, поли-акрилонитрила, полистирола, полибутадиена, полиизопрена и других полимеров, которые являются исходным материалом для производства пластических масс, синтетического волокна и синтетического каучука. Массовое производство дешевых полимеров в первую очередь преследует цель удовлетворения повседневных нужд техники и потребностей населения в различных товарах народного потребления. [c.177]

    Это изотактические (а), синдиотактические (б) и атактические формы (в) 0 всеми переходами от строгого повторения одной и той же ориентации через правильное чередование противоположно ориентированных радикалов к полному беспорядку. Число вариантов быстро увеличивается с переходом к сополимеризации двух, трех и более разных мономеров. Между тем в живых организмах белковые полимеры содержат одновременно до двадцати видов мономерных звеньев, принадлежащих разным аминокислотам. Даже одна лишь расшифровка последовательности расположения этих аминокислот представляет труднейшую задачу, а возможное число сочетаний здесь необычно велико. Это является основой индивидуализации белкового строения не только видов, но и отдельных особей. В живом организме строго регулярный синтез индивидуальных белков и нуклеиновых кислот обеспечивается серией строго коррелированных каталитических процессов. В полимеризации и сополимеризации, проводимой в лабораториях и в промышленности, также достигнуты результаты, хотя сильно уступающие биосинтезу полимеров, но имеющие выдающееся практическое значение. Действительно, отыскание удачного катализатора и правильный выбор условий позволяют из одних и тех же мономерных кирпичиков строить различные полимерные структуры. Рассмотрим некоторые особенности этих процессов, несмотря на то, что методы газовой хроматографии пока мало применялись к изучению стереорегулярной полимеризации. [c.45]

    Изотактический П. м. б. получен полимеризацией О. п. в присутствии металлоорганич. катализаторов (См. Окисей органических полимеризация). Существует в оптически активной и рацемич. форме (см. Оптически активные полимеры). Изотактич. П. кристаллизуется в ячейке орторомбич. типа, включающей 2 полимерных цепи, взаимное расположение к-рых таково, что наличие противоположных по конфигурации (D или L) макромолекул не препятствует кристаллизации. Плотность полностью кристаллич. полимера 1,157 г/см , степень кристалличности варьирует в очень широких пределах и зависит, в основном, от способа синтеза. Большинство полимеров этого типа структурно неоднородно и содержит фракции, различающиеся по стереорегулярности фракционирование м. б. осуществлено путем охлаждения р-ров П. в -гексане, ацетоне, изооктане. [c.211]

    Механизм процесса и структура получаемого продукта. В химич. термодинамике постулируется, что путь реакции (т. е. механизм) не влияет на термодинамику процесса. Это справедливо, если несколькими способами можно одни и те же начальные вещества превратить в одни и те же конечные. В случае синтеза высокомолекулярных полимеров это условие трудно выполнимо. Полимеры при одинаковой химич. структуре практически всегда будут отличаться средними мол. массами, молекулярно-массовым распределением (ММР), стереорегулярностью, кристалличностью, природой концевых групп и др. Напр., при П. ацетальдегида и высших альдегидов возможно образование (в зависимости от применяемых катализаторов и темп-ры реакции) изотактических или аморфных атактич. полимеров. В случае образования изотактич. продукта Т р на 8 °С меньше. [c.307]


    Подавляющее большинство стереорегулярных полимеров до настоящего времени было получено полимеризацией. Не меньший интерес представляет синтез стереорегулярных поликонденсационных полимеров. Получение стереорегулярных полимеров преимущественно методом полимеризации вполне объяснимо. Дело в том, что стереорегулярность полимеров, синтезируемых из ви-нильньтх и других ненасыщенных мономеров, является следствием невалентных взаимодействий боковых заместителей в радикале (радикальная полимеризация) или следствием реакций комплексо-образования между мономерами и реакционными центрами растущей цепи (ионные виды полимеризации). Поэтому из одних и тех же мономеров можно получить полимеры различного строения изотактические, синдиотактические и атактические. Механизм синтеза стереорегулярных полимеров методом поликонденсации иной. [c.307]

    Из всех синтетических полимеров, используемых для производства синтетических волокон, одними из наиболее, доступных являются полиолефины. Однако еще несколько лет назад получение волокон из полимеров этого класса, в макромолекуле которых не содержится полярных групп, представлялось нецелесообразным ввиду низкой прочности и теплостойкости вырабатываемых нз них изделий. Формование волокон с ценным комплексом свойств стало возможным лищь после того, как были разработаны методы синтеза полиэтилена строго линейной структуры и особенно стереорегулярных (изотактических) полимеров из а-олефинов (пропилена, бутилена и др.). При использовании таких полимеров удалось резко улучшить свойства получаемых материалов (возрастает интенсивность межмолекулярного взаимодействия и соответственно повышается весь комплекс физико-механических свойств полимера) и тем самым создать необходимые условия для использования полиолефинов для производства волокна. [c.256]

    В процессе синтеза наиболее часто реализуются соединения повторяющихся звеньев типа голова к хвосту . Если в полимерной цепи встречаются соединения типа голова к голове , то полимер является нерегулярным. В последнем случае говорят, что полимер атактический. Важное значение имеют стереорегулярные полимеры, у которых все повторяющиеся звенья и все боковые привески располол<ены в строго определенном порядке. Наиболее явно стереорегулярность проявляется у изотакти-ческих и синдиотактических полимеров. К изотактиче-ским относятся полимеры, у которых повторяющиеся звенья имеют одинаковую конфигурацию. Химическое строение изотактического полимера можно представить в виде [c.12]

    Особенно интересно выяснить причины, вызываюш ие образование стереорегулярных полимеров при применении катализаторов Циглера—Натта. Многие наблюдения, относяш иеся к этой области, указывают на существование связи между стереоспецифичностью катализатора и гетерогенностью системы катализатор— мономер. Так, образование изотактических поли-а-олефинов до настоящего времени обнаружено лишь при использовании кристаллических нерастворимых катализаторов. Немногие известные процессы полимеризации а-олефинов под влиянием растворимых стереоснецифических катализаторов приводят только к образованию синдиотактических полимеров [39]. Вместе с тем далеко не кагкдый нерастворимый катализатор позволяет синтезировать стереорегулярньш поли-а-о.пефин (табл. 54, 55). При синтезе изотактических полимеров олефинового ряда определяющая роль часто принадлежит кристаллической структуре катализатора. [c.418]

    Эффект стереорегулярности можно поэтому объяснить ориентацией мономера на новерхности кристаллической решетки катализатора либо в стадии образования я-комплекса с катализатором, либо в переходном состоянии. Такое представление делает понятной связь между кристаллической структурой катализатора и его стереоспецифичностью. Необходимо подчеркнуть, что образование макромолекулы изотактического строения является энергетически менее выгодным, так как в этом случае расстояния между ближайшими боковыми группами полимерной цепи оказываются наименьшими. При синтезе изотактических полимеров катализатор навязывает растущей цепи структуру, менее вероятную с термодинамической точки зрения. Поэтому для объяснения механизма стереоспецифичности недостаточно приписать твердому катализатору ориентирующую способность по отношению к растущей цепи. Детальная интерпретация этого явления требует сопоставления пространственных структур катализатора и мономера с микроструктурой полимера. Как полагает Косси [40], для системы пропилен—Ti lg—AlRg можно принять, что начало реакции происходит за счет вакантного места (дефекта) на новерхности кристаллической решетки катализатора (образование я-комплекса мономера с титаном), рост идет но связи Ti—С и снова возникает вакантное место при закреплении очередной молекулы мономера в составе растущей цепи  [c.419]

    Выдающимся достижением полимерной химии в последнее десятилетие является синтез стереорегулярных полимеров. Впервые обнаруженная Натта [175] в 1955 г. на примере синтеза изотактического полипропилена реакция стереосиецифической полимеризации, приводящая к получению стереорегулярных полимеров, получила дальнейшее развитие в исследованиях большого числа ученых. Результаты этих работ обобщены в ряде обзоров и монографий [1—3, 7—10, 14—17, 21, 23, 24]. [c.50]

    Одним из новых и перспективных направлений в синтезе стереорегулярных полимеров является получение оптически активных полиолефинов 4557-4554 Оптическая активность полученных полимеров, отнесенная к мономерной единице, значительно больше активности низкомолекулярных соединений аналогичного строения. Наличие оптической активности у аморфных фракций объясняется тем, что даже в атактических макромолекулах присутствуют небольшие изотактические участки цепи, имеющие спиральную форму 4559 Рацемическую смесь оптически активных поли-а-олефинов разделяют селективной абсорбцией из раствора кристаллическим оптически активным углеводородом, нерастворимым в растворителе смеси 4557,4558 Получены изотактические сополимеры 4-метилпентена-1 со стиролом и другими олефина- [c.311]

    Окиси тяжелых металлов (хрома, молибдена) на носителях типа силикагеля, окиси алюминия, алюмосиликатах также способствуют полимеризации различных ненасыщенных углеводородов (олефинов, диенов) и синтезу стереорегулярных полимеров. Промоторами таких катализаторов являются окислы щелочноземельных и тяжелых металлов (стронция, вольфрама, железа, кобальта и т. п.). Окисные катализаторы менее активны, чем катализаторы Циглера — Натта. Полимеризация в присутствии этих катализаторов протекает при олее высокой температуре, а получающиеся полимеры имеют меньшую длину цепи. При полимеризации пропилена на хромоокисном катализаторе образуется смесь атактического и изотактического полипропилена. Полимеризация диеновых углеводородов приводит к образованию стереорегулярных полимеров. Механизм действия этих катализаторов изучен недостаточно. [c.546]

    В последние годы внимание химиков все больше привлекают методы синтеза полимеров стереорегулярной структуры. Эти полимеры значительно превосходят по своим физическим свойствам аналогичные аморфные продукты нерегулярной структуры. Проявляемый к этим методам интерес связан с тем, что, кроме новых приемов получения до сих пор неизвестных кристаллических полимеров, которые все больше получают широкое промышленное применение, в этих реакциях впервые осуществляется регулирование реакции полимеризации на стадии роста цепей. Метод синтеза полимеров этого типа был назван стереоспецифи-ческой полимеризацией, а сами полимеры—стереорегулярными (изотактическими). В этом процессе мономерные звенья соединяются по типу голова—хвост , причем не образуются разветвления в результате реакций передачи цепи. Кроме того, мономерные звенья в цепи занимают строго определенное пространственное положение, обусловливая наиболее энергетически выгодное состояние полимерной молекулы. [c.14]

    Приготовление других оптически активных полимеров, так же как и получение синтетических полипептидов и полинуклеотидов (раздел Г и О), доставляет много трудностей химикам, занимающимся синтезом полимеров. Это в значительной степени обусловлено поисками возможных стереорегулярных конформаций этих полимеров в жидкой фазе. В самом деле, из данных инфракрасной спектроскопии для изотактического полистирола следует, что этот полимер, по-видимому, сохраняет свою спиральную структуру в сероуглеродном растворе ИЗО, 131]. Но в полимерах, не имеющих асимметрических заместителей, как правая, так и левая спирали (если спиральная конформация существует) должны иметь одинаковую вероятность. Однако введение асимметрических боковых групп будет, вероятно, способствовать отбору предпочтительной структуры, что обусловлено взаимодействием боковых групп с основной полимерной цепью. Данные рентгенографических исследований также говорят о том, что на кристалличность изотактических полимеров очень сильно влияет природа заместителей у основной цепи [132]. Что касается оптически активных полимеров, то ДОВ, естественно, станет очень полезным и мощным методом исследования структуры таких полимеров. Речь идет не только о характеристическом вращении звеньев полимерной цепи, с которым связан удобный способ идентификации и характеристики этих полимеров, но и о том, что сама природа однонаправленной спиральной конформации (если таковая существует в растворах) может обусловливать заметный дополнительный вклад и оптическое вращение. Однако до сих пор в литературе имеется очень мало данных по ДОВ рассматриваемых полимеров такое положение, безусловно, будет исправлено в ближайшие годы. [c.123]

    Предложенная интерпретация некоторых из известных зависимостей микроструктуры полимера от типа реагирующих веществ, реакционной среды и условий проведения процесса основывается на данных, относящихся к мономерам, для которых установлена возможность стереоснецифической полимеризации. Интересен вопрос о причинах неудач при попытках синтеза стереорегулярных полимеров во многих других случаях. Ограниченный объем экспериментальных данных не позволяет пока сформулировать по этому поводу общую гипотезу. Известные из литературы соображения имеют частный характер. Например, по Натта [26], образование полимеров с повышенной регулярностью при анионной полимеризации 2-винилпиридина по сравнению с 3- и 4-вп-нилпиридином следует приписать бидентатному характеру промежуточных комплексов (6, HI). Расстояния между донорными позициями мономера (N-атомом и винильной группой) позволяют допустить образование подобного комплекса (6, III) только для 2-винилпиридина. Представление о возможности изотактического присоединения в анионных системах только у полярных мономеров, способных к образованию бидентатных комплексов с противоионом, согласуется с некоторыми другими фактами. Оно может быть привлечена для объяснения различий в поведении двух наиболее хорошо изученных мономеров — метилметакрилата и акрилонитрила, только первый из которых образует в анионных системах изотактические полимеры. Отсутствие избирательности в реакции роста у акрилонитрила согласуется с его неспособностью к образованию бидентатных комплексов с противоионами, обеспечивающими синтез изотактического метилметакрилата (Li, Mg) это следует из геометрии молекулы акрилонитрила (см. гл. 1, стр, 35). С другой стороны, метакрилонитрил, не отличающийся в этом отношении от акрилонитрила, способен к образованию изотактических полимеров при анионном инициировании [27]. Следовательно, определяющими для стереохимии реакции роста могут быть и другие факторы. Различие в поведении этих двух мономеров тем более интересно, что акриловые и метакриловые эфиры сравнительно мало отличаются друг от друга по склонности к изотактическому присоединению. В частности, полиметилакрилат, полученный под действием литийбутила, принадлежит к числу полимеров с высокой стерео-регулярностью. В отличие от пары акрилонитрил-метакрило-нитрил здесь 2-метилпроизводное не имеет никаких преимуществ перед незамещенным мономером (табл. 83). [c.253]

    Первый синтез стереорегулярного полимера - поливинилизобутилового эфира осуществил Шильдкнехт в начале 1950-х гг. У волокон такого полимера была обнаружена кристаллическая структура с периодом 0,62 нм. В то же время работы в данной области проводил Натта. Он внимательно следил за работами Циглера, который на катализаторах AIR3 получал олигомеры этилена. Натта сразу оценил значение одного из опытов Циглера, в котором на каталитической системе Л1Кз-Т1С14 был получен полиэтилен. Он применил эту систему к полимеризации пропилена и впервые получил стереорегулярный изотактический полипропилен, упомянутый выше. Большое значение в успехе Натта имело примененное им фракционирование полимера в кипящих растворителях, позволившее выделить стереорегулярную кристаллизующуюся фракцию, содержание которой в первых опытах не превышало 40 %. В короткий срок Натта и его сотрудники получили целый ряд других стереорегулярных полимеров а-олефинов, диенов и стирола на катализаторах Циглера-Натта . [c.243]

    Пожалуй, самым крупным событием в макромолеку-лярной химии за последние годы является открытие возможности синтеза полимеров упорядоченного строения — стереорегулярных (изотактических). [c.44]

    Стереорегулярные полимеры возникают благодаря наличию асимметрического атома углерода в макромолекуле полимера. Это — стереоизомеры. Их строение схематически показано на рис. 3, где зигзагообразная основная цепь для наглядности помещена в одной плоскости. Легко убедиться, что вращение вокруг простых связей в основной цепи с учетом валентного угла между связями —С—С— не приводит к разупорядочиванию относительного расположения заместителей. Специальные методы синтеза приводят к получению изотактических макромолекул, когда заместители расположены по одну сторону плоскости, синдиотактических, когда заместители находятся по разные стороны плоскости, и атактических, когда заместители ориентированы нерегулярно. Взаимное отталкивание заместителей, изображенных на рис. 3, приводит к тому, что они смещаются относительно друг друга в пространстве н поэтому плоскость симметрии оказывается на самом деле изогнутой в виде спирали. Структура спиралей характерна не только для макромолекул с углерод-углеродными связями в основной цепи, но и для других видов макромолекул, в том числе и для биологически активных (например, двойная спираль ДНК). Различные стереоизомеры имеют и разные механические свойства, особенно сильно отличающиеся от свойств атактических полимеров того же химического состава. [c.12]

    Стереорегулярная полимеризация открывает широкие возможности для синтеза из одного и того же мономера полимеров с самыми различными свойствами, зависящими от характера чередования звеньев и их конфигурации в макромолекуле, от формы последней и от способности полимера кристаллизоваться или оставаться аморфным. Например, изотактический полипропилен представляет собой жесткий пластик с т. пл. 176 С, а атактический полимер — каучукоподобный материал. Подобные же различия наблюдаются в свойствах оптически деятельных полимеров и их ра-цематТэв. [c.198]

    Хорошо известно, что синтез поливинилметилового эфира и его гомологов может быть проведен в присутствии катионных инициаторов типа ВРз- (С2Н5)20 с образованием (в зависимости от условий реакции) мягких каучукоподобных или жестких кристаллических продуктов. Ранее было установлено, что эти различия связаны со стереохимией цепи при этом, судя по данным рентгеноструктурного анализа, кристаллический полимер имеет преимущественно изотактическую конфигурацию [46, 47]. Позднее в присутствии инициаторов Циглера [48] были получены стереорегулярные полимеры. Исследования с помощью ЯМР-спектроскопии подтвердили ранее сделанные выводы относительно изомерных форм этих полимеров. Браунштейн и Вайле [45] нашли, что в спектрах кристаллических полимеров наибольшую интенсивность имеет пик метоксильных протонов /пт-триад каучукоподобные материалы имеют менее регулярную структуру, но /ит-триады преобладают в некоторой степени во всех изученных полимерах. [c.110]

    В случае когда путем стереоспецифического синтеза необходимо получить регулярную структуру, корреляции подобного рода не могут быть представлены в такой простой форме. Ограничивая поворот вокруг связей в цепи, подвешенные боковые группы могут затруднять переориентацию молекул и замедлять процесс кристаллизации, даже если полимер состоит из коротких повторяющихся химических звеньев. Например, при сравнимых степенях переохлаждения изотактический полипропилен [105 кристаллизуется с заметно меньшей скоростью, чем полиэтилен [112] боковые метильные группы не только ограничивают гибкость молекул, но также заставляют их кристаллизоваться с образованием таких спиральных конформаций, когда эффективное повторяющееся звено или период идентичности в кристалле содержит три мономера. Кроме того, у таких полимеров обычно имеются в небольших концентрациях атактические и стереоблочные молекулы, и есть основание считать, что это является причиной дальнейшего уменьшения скорости кристаллизации. Сообщалось, например [65], что скорости кристаллизации двух образцов изотактического полистирола различались приблизительно в четыре раза. Образец, который кристаллизовался медленнее, обладал более низкой кристалличностью и считался менее стереорегулярным эта интерпретация кажется обоснованной с той точки зрения, что средний молекулярный вес исследовавшегося образца был ниже по сравнению с другим. Во многих случаях уменьшение среднего молекулярного веса стереорегулярного полимера приводит к небольшому увеличению скорости кристаллизации при любой температуре [134]. [c.413]

    Полимеризация окиси пропилена — простейшего из асимметрических эпоксидов — представляет собой практически всегда сополимеризацию (1- и I-стереоизомеров. При синтезе полимеров в присутствии стереоспецифических катализаторов образуются макромолекулы, содержащие достаточно длинные изотактические последовательности мономерных звеньев одного знака оптической активности, прерываемые включениями звеньев противоположного знака или аномальной структуры (с точки зрения раскрытия цикла) . В настоящее время нет достаточно корректных методов анализа микроструктуры пролипропиленоксида Для анализа стереорегулярности полипропиленоксида была выбрана асимметрическая полоса в интервале 1240—1300 см (рис. 17). Из теоретического расчета нормальных колебаний следует что этот интервал перекрывает оптическая ветвь, ограниченная с двух сторон частотами цепочечных колебаний в фазе (5 а) и в противофазе ( в). [c.89]

    При образовании полимеров из винильных или несимметричных винилиденовых мономеров возможны два способа соединения мономерных звеньев друг с другом — изотактическое и синдиотактическое. Этот факт известен уже давно, но термины изотактический и синдиотактический введены примерно 15 лет назад. Полимер называется стереоре-гулярным, если практически все мономерные звенья соединены одинаковым образом, и атактическим, если оба типа связей присутствуют в макромолекуле и распределены случайным образом. Некоторые безуспешные попытки синтезировать стереорегулярные полимеры отмечались в литературе и только в 1955 г. Натта и сотр. [911 впервые сообщили о синтезе изотактического полипропилена. Пропилен полимеризуется на некоторых гетерогенных катализаторах, имеющих общее название катализаторы Циглера — Натта . При этом образуется регулярный полимер, что убедительно доказано рентгеновскими исследованиями. [c.454]

    Синтез высокомолекулярного полипропилена осуществляется на гетерогенных катализаторах. Во многих работах [26, 47, 198] была показана ваншая роль строения кристаллической поверхности катализатора для получения стереорегулярных полимеров. Полагают, что присоединяющиеся молекулы мономера сначала адсорбируются на поверхности катализатора и соответственно ориентируются, а затем последовательно присоединяются к цени полимера в результате раскрытия двойной связи. В итоге реакции полимеризации образуется полимер, не являющийся индивидуальным кристаллическим продуктом, а состоящий из трех резко различающихся и легко отделимых друг от друга фракций с регулярной (изотактической) кристаллической, нерегулярной (атактической) и промежуточной (стереоблочной) структурами [39, 47]. [c.63]


Смотреть страницы где упоминается термин Синтез стереорегулярных (изотактических) полимеров: [c.73]    [c.316]    [c.401]    [c.479]    [c.9]    [c.409]    [c.354]    [c.213]    [c.20]    [c.312]    [c.312]   
Смотреть главы в:

Общая химическая технология Том 2 -> Синтез стереорегулярных (изотактических) полимеров




ПОИСК





Смотрите так же термины и статьи:

Изотактическая

Изотактические полимеры

Стереорегулярность полимера

Стереорегулярные полимеры



© 2024 chem21.info Реклама на сайте