Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы ван-дер-Ваальса теория

    Возникновение и распад таких ассоциатов соответствует времени жизни кластера порядка 10- —10-" с (мерцающие кластеры). Кластер и окружающие частицы удерживаются друг около друга силами Ваи-дер-Ваальса. Теория мерцающих кластеров имеет ряд серьезных недостатков, хотя она многократно модифицировалась и уточнялась. Несомненно, однако, что молекулы воды проявляют стремление к образованию трехмерного каркаса, в котором приблизительно тетраэдрическая структура поддерживается изогнутыми водородными связями. [c.245]


    Брунауэр, Эммет и Теллер пытались создать единую теорию физической адсорбции. Они рассматривают процесс адсорбции как образование на адсорбенте молекулярных слоев, которые составляют общую толщину адсорбционной пленки, и указывают, что нри любом равновесии на адсорбенте имеются различные толщины пленки. Таким образом, к действию адсорбционных сил, исходящих от поверхности адсорбента, присоединяются силы взаимного притяжения Ваи-дер-Ваальса между молекулами адсорбированного вещества. На основании этого предположения выводится уравнение изотермы  [c.401]

    Физическая теория адсорбции рассматривает адсорбцию как результат действия силового поля твердой поверхности. Силы притяжения между молекулами адсорбтива и адсорбента имеют такую же природу, что и силы притяжения между молекулами (силы Ван-дер-Ваальса). Молекулы адсорбируемого вещества при этом располагаются довольно большим слоем на поверхности адсорбента. [c.219]

    Приводимые ниже данные относятся только к растворимости парафина, находящегося в крупнокристаллическом состоянии. Вследствие неоднородности парафина и множества входящих в его состав компонентов понятие о его растворимости является до некоторой степени относительным, поскольку насыщенный раствор наиболее высокоплавких парафинов будет ненасыщенным для находящихся в растворе легкоплавких компонентов.. Кроме того, легкоплавкие компоненты парафина являются растворителем по отношению к высокоплавким компонентам. Растворимость объясняется [41,42] взаимным притяжением молекул растворителя и растворяемого вещества. Современная молекулярная теория растворов базируется на том, что свойства растворов определяются в основном межмолекулярным взаимодействием, относительными размерами, формой молекул компонентов и их стремлением к смешению, которое сопровождается ростом энтропии [43]. Притяжение между молекулами органических соединений создается силами Ван-дер-Ваальса и водородными связями. Силы Ван-дер-Ваальса слагаются из следующих трех составляющих. [c.69]

    Весьма подробная информация о механизме реакции (18.1) может быть получена путем расчета поверхности потенциальной энергии. Заметный прогресс в этом направлении наметился в последнее время в связи с упомянутыми выше работами Базилевского, где обращается внимание на то, что применение полуэмпирических вариантов метода МО, явно не учитывающих неортогональность базисных функций (например, метод Хюккеля и др.), не позволяют дать правильную картину взаимодействия реагентов. На основе таких методов удается объяснить лишь притяжение между ними (этот эффект является наиболее существенным, когда расстояния между атомами частиц незначительно превосходят равновесные). Между тем при расстояниях, которые значительно превосходят равновесные, но меньше радиуса действия сил Ван-дер-Ваальса, наблюдается отталкивание между частицами. Это отталкивание можно описать, принимая во внимание неортогональность базисных функций. Поэтому во всех вариантах метода МО, где неортогональность явно не учитывается, не учитывается и эффект отталкивания. Последовательный учет неортогональности АО в методе МО ЛКАО в л-электронном приближении позволил Базилевскому представить потенциальную энергию реагентов в виде суммы, учитывающей энергии притяжения и отталкивания между ними, причем слагаемые этой суммы вычисляются в рамках теории МО при любом расположении атомов исходных частиц. Определение функции (2.3) является основой расчета кинетических параметров А к. Е. [c.177]


    Первые попытки рассчитать адгезию частицы к поверхности твердого тела с помощью сил Ван-дер-Ваальса были осуществлены для микрочастиц (10 мкм), Лифшиц [512], а затем Крупп [468] разработали общую теорию макроскопического воздействия сил [c.332]

    Устойчивость дисперсных систем определяется балансом энергии притяжения и энергии отталкивания частиц. Энергия притяжения обусловлена межмолекулярными силами, главным образом силами Ван-дер-Ваальса. В первом приближении эта энергия обратно пропорциональна квадрату расстояния между частицами. По теории ДЛФО (Дерягина, Ландау, Фервея, Овербека), учитывающей только электростатическую составляющую расклинивающего давления (давления отталкивания), энергия отталкивания убывает с расстоянием по экспоненциальному закону. [c.161]

    В 1937—1941 гг. независимо друг от друга Б. В. Дерягин и Л. Д. Ландау в СССР и Э. Фервей и Дж. Т. Овербек в Голландии развили количественную теорию устойчивости коллоидных систем. Эта теория, названная ДЛФО (первые буквы фамилий авторов теории), получила широкое признание. В ней рассматривается совместное действие сил притяжения Лондона — Ван-дер-Ваальса и электростатических сил отталкивания (взаимодействие двойных слоев). [c.416]

    Растворы можно различать по агрегатному состоянию — твердые, жидкие и даже говорят о газообразных растворах, имея в виду газовые смеси. Последним, точнее идеально-газовым смесям, было уделено некоторое внимание в гл, V в связи с химическим равновесием. О твердых растворах, являющихся предметом изучения, главным образом физики твердого тела и металловедения, будет более подробно упомянуто в следующей главе. В этой же главе будут обсуждаться лишь жидкие растворы — системы, весьма разнообразные по своей природе и характеру межмолекулярного взаимодействия. Так, при растворении серной кислоты в воде наблюдается выделение большого количества теплоты, отмечается образование ряда гидратов определенного состава. Отчасти на основании этих наблюдений Д. И. Менделеев развивал свою химическую теорию растворов. Несомненно, что силы, действующие в упомянутых гидратах серной кислоты, приближаются по св ему характеру к силам химической связи. В качестве другого крайнего случая можно указать на растворы веществ типа аргона и неона (илн других элементов нулевой группы), когда проявляется действие сил только физической природы — относительно слабых сил Ван-дер-Ваальса. [c.262]

    Однако, несмотря на большое внимание к изучению растворов, и сейчас вопрос об их природе все еще не решен. Это является следствием многообразия типов растворов, а также отсутствия в достаточной степени совершенной теории жидкого состояния. При растворении между компонентами происходит химическое взаимодействие, взаимодействие за счет сил Ван-дер-Ваальса и т. д. Поэтому исследование растворов представляет сложную задачу. [c.9]

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]


    На основании общих модельных предста влений Б. В. Дерягиным совместно с Л. Д. Ландау была развита количественная теория коагуляции и устойчивости дисперсных систем. Основу этой физической теории составляет учет молекулярных сил Ван дер Ваальса взаимодействия между коллоидными частичками и электростатического отталкивания двойных электрических слоев этих частичек при их перекрытии. Задача, таким образом, сводится к расчету баланса сил сцепления и сил отталкивания между коллоидными частичками. [c.80]

    Сжиженные инертные газы неон, аргон, криптон и ксенон являются простейшими по своим свойствам и типу межатомного взаимодействия жидкостями. Интерес к изучению их структуры связан с необходимостью дальнейшего развития теории жидкого состояния. Для этих веществ теоретические расчеты физических величин можно сделать более количественными, чем для других жидкостей. Притяжение атомов у сжиженных инертных газов описывается дисперсионными силами Ван-дер-Ваальса. Эти силы имеют квантовую природу. Своим существованием они обязаны нулевой колебательной энергии атомов. Не будь ее, нельзя было бы осуществить сжижение инертных газов, не существовало бы в природе парафинов, полимеров и многих других веществ с неполярными молекулами. Предпосылкой для появления дисперсионных сил является динамическая поляризуемость атомов и молекул, возникновение у них мгновенных диполей благодаря вращению электронов вокруг ядра. Электрическое поле такого диполя одной молекулы индуцирует дипольный момент в окружающих молекулах, что и приводит к появлению сил притяжения. [c.152]

    Позже Дзялошинский, Лифшиц и Питаевский [27] распространили этот подход на взаимодействие через среду, используя тензор напряжения электромагнитного поля в поглощающей среде. Трудностью применения этого метода к реальным системам являлась сложность и громоздкость необходимых вычислений. В последние годы были предприняты попытки упростить расчеты при вычислении сил Ван-дер-Ваальса, которые привели к значительному прогрессу. Упрощения касались главным образом способов вывода основной формулы для силы (или свободной энергии) взаимодействия между макроскопическими телами, хотя конечный результат был таким же, как и в теориях Дзялошинского, [c.50]

    До развития современной квантовой механики наиболее успешная теория сил Ван-дер-Ваальса основывалась на модели электростатического взаимодействия диполей. Два диполя, разделенные расстоянием R, обладают энергией взаимодействия, которая пропорциональна (или сила пропорциональна R ). Эта энергия, кроме того, зависит от углов, которые диполи образуют между собой и с вектором расстояния R между ними. Наиболее компактно это можно представить в векторных обозначениях  [c.351]

    Одним из первых претворений в жизнь идей Гиббса о межфазных поверхностях мы обязаны Ван-дер-Ваальсу. Основываясь на элементарной градиентной теории плотности Максвелла для межфазных поверхностей [9], Ван-дер-Ваальс к 1888 г. [10, стр. 171 111 владел методикой, которая сохранила свою силу до настоящего времени. Две другие строгие формулировки градиентной теории плотности Ван-дер-Ваальса впервые опубликованные в 1971 г. [7, 12, 13], обеспечивают наиболее эффективный современный подход к статистико-механическим теориям поверхностного натяжения, его зависимости от кривизны и связанных с ним свойств. [c.65]

    Было исследовано явление частичного отравления катализатора. Оказалось, что первые порции хинолина наиболее сильно дезактивируют катализатор. Степень дезактивации катализатора различными азотистыми соединениями различна. По уменьшению дезактивирующего действия азотистые соединения можно расположить в следующем порядке хинальдин > хинолин > пиррол > пиперидин >дециламин > анилин. Если рассмотреть их исключительно с точки зрения основности, то наиболее эффективным из приведенных ядов должен бы быть пиперидин. Однако в присутствии катализатора пиперидин в значительной степени распадается при температуре около 425°, Дециламин избирательно расщепляется на аммиак и децен. Хинолин и хинальдин в этих условиях не расщепляются и являются эффективными ядами. Сравнительно сильное отравляющее действие пиррола, возможно, является следствием отложения на катализаторе полимера, так как известно, что пиррол легко полимеризуется в присутствии кислот. Кроме того, на хемосорбцию азотистых оснований оказывают влияние силы ван-дер-Ваальса. Необходимо учитывать степень этого влияния так же, как размер молекулы и структуру адсорбированного вещества. Отравляющая природа азотистых оснований согласуется с общей теорией катализаторов кислотного типа, которые содержат серную и фосфорную кислоты и промотированы галогенидами алюминия и бора. Предполагают, что механизм действия этих веществ включает образование карбониевых ионов. Азотистые. соединения являются более основными, чем олефины или ароматические соединения, если основность определять, согласно Льюису, как способность отдавать электронную пару. Азотистые основания, следовательно, способны реагировать с кислотой катализатора с образованием устойчивой соли. Следствием таких реакций является отравление катализатора, который обычно действует путем обратимого образования нестойких комплексов. [c.241]

    На основании анализа теории концентрированных растворов Онзагер [54] высказал предположение, что эти члены, учитывающие влияние сил отталкивания, можно выразить в виде обычной поправки на собственный объем молекул согласно Ван-дер-Ваальсу  [c.370]

    Если причиной адсорбции являются силы молекулярного притяжения (силы Ван-дер-Ваальса), что и предполагается в этой теории, то полученная указанным образом зависимость будет отображать распределение потенциала молекулярных сил возле поверхности твердого тела. [c.558]

    Дисперсионный эффект. Представление об ориентационном и индукционном взаимодействии позволило понять причины взаимного притяжения молекул в том случае, если все молекулы или часть их являются полярными. Но опыт показывает, что силы Ван-дер-Ваальса действуют между частицами и в тех случаях, когда они неполярны. Таковы, например, атомы инертных газов, электронные оболочки которых обладают сферической симметрией. С другой стороны, выяснилось, что даже в случае полярных молекул ориентационное и индукционное взаимодействие составляют лишь часть наблюдаемого на опыте ван-дер-ваальсова взаимодействия. Все это указывало на существование еш,е одной составляющей сил Ван-дер-Ваальса. Теория этого эффекта была развита Вангом [14] и в особенности Лондоном [15]. [c.64]

    Можно найти известную аналогию в развитии теории растворов электролитов и теории газового агрегатного состояния. В том и другом случаях первоначально предполагалось, что система ведет себя подобно идеальной и что между образующимися частицами нет сил взаимодействия. Приложение полученных на основе таких представлений законов к реальным системам приводило к значительным расхождениям между теорией и опытом. В связи с этим для газов вместо простого уравнгния газового состояния рУ = ЯТ предлагались другие, более сложные, в которых так или иначе учитывались силы взаимодействия между частицами. Одним из них было уравнение Ван-дер-Ваальса [c.73]

    Устойчивость и коагуляция связаны непосредственно с взаимодействием частиц дисперсной фазы между собой или с какими-либо макроповерхностями. Это взаимодействие также определяет адгезию частиц к макроповерхностям и структурообразование в дисперсных системах. Поэтому в основе любой теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Существует единое мнение в отношении природы сил притяжения, которые обусловлены межмолекулярными силами Ван-дер-Ваальса. Силы же отталкивания между частицами могут иметь разную природу, соответствующую факторам устойчивости. Предложено несколько теорий, объясняющих те или иные экспериментальные факты с различных позиций (Дюкло, Фрейндлих, Мюллер, Рабинович, Оствальд и др.). Однако все эти теории были односторонними, они не учитывали и не объясняли многие факты. Создание общей количественной теории устойчивости дисперсных систем оказалось крайне трудной задачей. [c.325]

    Несколько исследователей прямо измерили дальнедействующие силы Вап-дер-Ваальса между отшлифованными пластинками. Их результаты согласуются в пределах ошибки опыта с теоретически вычисленными. Это показывает, что теория Лондона является надежной для очень больших расстояний между макроскопическими телами (0,1 — 1 мкм). При очень малых расстояниях величина энергии когезии неполярных жидкостей хорошо согласуется со значением, вычисленным на основе теории Лондона для случая притяжения между молекулами, находящимися в тесном контакте. Поэтому нельзя считать, что эта теория, справедливая для больших и малых расстояний, не будет применима для промежуточных расстояний (папример, 100 —1000 А), используемых в теории коллоидной стабильности, где прямые измерения невозможны. [c.81]

    Коагуляция наступает при значениях, лежащих ниже некоторой величины -потенциала (около 30 мВ). Это так называемый критический потенциал. Различают концентрационную коагуляцию при действии ионов с зарядами, равными 1, когда изменяется ионная сила раствора, и коагуляцию нейтрализациониую ионами с зарядами более 1, когда заметно снижается ф-потенциал. Физическая теория нарушения агрегативной зстойчивости основана на представлении о соотношении спл при- д тяжения и отталкивания прп сближении одноименно за,ряженных коллоидных частиц. При столкновении коллоидных частиц в результате броуновского движения на них действуют взаимное молекулярное притяжение, обусловленное ван-дер-ваальсо-выми силами. Сближению препятствует электростатическое отталкивание, возникающее лишь прн перекрытии диффузных слоев Ах и Ач коллоидных частиц (область Ло на ряс. 62, а). При малом расстоянии между частицами силы притяжения преобладают над сп-ламп броуновского движеиия, в результате частицы слипаются. [c.267]

    Брунауер, Эммет и Тейлер создали обобщенную теорию физической адсорбции. Они рассматривали процесс адсорбции как образование на адсорбенте многих молекулярных слоев, которые составляют общую толщину адсорбционной пленки и указывают, что при любом равновесии на адсорбенте имеются пленки различной толщины. Таким образом, на адсорбционные силы, исходящие от поверхности адсорбента, накладываются силы Ван-дер-Ваальса, действующие между молекулами адсорбированного вещества. На основании этого предположения выведено уравнение изотермы, называемое изотермой БЭТ  [c.427]

    Убедительным примером применимости теории регулирования механических свойств дисперсных структур могут быть водные гели и органогели гуминовых веществ — природных ионсобменников и структурообразователей почв. Так, структурно-механический анализ дисперсий гуминовых кислот и полученных на их основе гуматов кальция, магния и кобальта показал, что в этих системах при малом содержании твердой фазы (5—10%) образуются типичные коагуляционные структуры со всеми присущими им упруго-пластично-вязкими свойствами и способностью к тиксотропному упрочнению. Установлено, что наибольшая склонность к структурообразованию среди образцов гуминовых веществ (гуминовые кислоты, гуматы металлов) выражена у гуминовых кислот, о объясняется тем, что в гуминовых кислотах, в отличие от гуматов кальция, магния, кобальта и др., функциональные группы свободны , а поэтому их дисперсные частички легко взаимодействуют друг с другом не только за счет сил Ван дер Ваальса, но и по водородным связям. [c.253]

    Частным случаем общей теории термодинамического подобия ФХС веществ является двухпараметрическое приведенное уравнение Ван-дер-Ваальса (2.5). Оно качественно удовлетворительно (количественно слабо) описывает Р, V к Т свойства только неполярных веществ со сферическими молекулами, между которыми дейонуют слабые силы ММВ. В химическом мире таковых веществ значительно меньше, чем полярных. [c.28]

    Теория стерической стабилизации строится по аналогии с теорией устойчивости ДЛФО. Возможны два варианта расчета сил отталкивания — с частичной десорбцией ПАВ и при постоянной адсорбции. В первом случае отталкивание рассчитывается из работы, необходимой для частичной десорбции ПАВ при сближении адсорбционных слоев. Это направление теории стерической стабилизации развивалось Макором и Ван-дер-Ваальсом [210, 214], а позже Эшем и Финденэггом [215]. [c.161]

    Сутерленд (Л. 2-12, 2-1, 2-13] предложил теорию, правильно отображающую температурный ход вязкости газов. В этой теории молекула рассматривается находящейся в сфере притяжения окружающих ее частиц. Он полагал, что кроме сил, проявляющихся при упругом ударе, имеют место взаимодействия между молекулами, обусловливающие до бавочный член, который характеризует внутреннее давление в уравнении Ван-дер-Ваальса. [c.122]

    Каков же механизм возникновения адгезионной связи между полимерным покрытием и металлической поверхностью Существует несколько теорий, различным образом трактующих природу этого явления. За рубежом главным образом придерживаются адсорбционной теории, разработанной Н. А. Дебройном, который рассматривает адгезионную связь как адсорбционную. По мнению советских ученых [36], адсорбционная теория ошибочна по своей сути, поскольку теория адгезии должна охватывать любые основные факторы, влияющие на величину адгезии, между тем адсорбционные явления не всегда сопутствуют возникновению адгезионной связи. По наиболее современным представлениям, развитым Б. В. Дерягиным, Н. А. Кротовой, В. П. Смилгой [36], адгезия во всех случаях является результатом межмолекулярного взаимодействия поверхностей разнородных материалов и обусловливается силами химической связи, или силами Ван-дер-Ваальса. Поэтому нельзя противопоставлять электронную теорию адгезии химической теории. [c.29]

    Классич. теория К. я. восходит к Дж. Гиббсу и Я.Ван-дер-Ваальсу в наиб, общей формулировке термодинамич. потенциалы предполагаются аналит. ф-циями и м. б. представлены разложением в ряд по степеням параметра порядка (разложение Ландау). Флуктуации предполагаются малыми, поэтому их учет не меняет характера критич. аномалий термодинамич. и кинетич. величин, возникают лишь малые поправки. Для нек-рых объектов, напр, сверхпроводников и сегнетоэлектриков, в экспериментально достижимой окрестности фазового перехода К. я. хорошо описываются классич. теорией, т. е. флуктуации параметра порядка не оказывают существ, влияния на характер критнч. аномалий. Это связано с особенностями межмол. взаимодействия. Если оно проявляется на расстояниях, существенно превышающих среднее расстояние между частицами, то установившееся в в-ве среднее силовое поле почти не искажается флуктуациями и К. я. обнаруживаются лишь вблизи точки перехода. Если же силы взаимод. достаточно быстро убывают с расстоянием, флуктуации играют значит, роль, К. я. возникают задолго до подхода к критич. точке и не Описываются классич. теорией. К. я. носят классич., не-флуктуационный характер и в т. наз. трикритич. точке на диаграмме состояния, где линия фазовых переходов I рода переходит в линию фазовых переходов II рода, напр, в трикритич. точке Х-переходов в р-ре Не — Не. [c.541]

    Теоретические исследования жидкого состояния посвящены в основном различным проявлениям межмолекулярных сил к сожалению, существующие теории жидкого состояния настолько сложны, что из них нельзя извлечь модельного представления о структуре жидкостей. Одним из немногих эффективных представлений о жидком состоянии, позволяющим объяснить различные его свойства, является так называемый свободный объем. Это представление может быть использовано также и для рассмотрения структурных особенностей других агрегатных состояний вещества. Например, в применении к газам свободный объем может рассматриваться как объем, не занятый молекулами, что соответствует члену V— Ь в уравнении Ван-дер-Ваальса. При сжатии газа его свободный объем уменьшается в соответствии с законом Бойля — Мариотта. Хотя плотность жидкости намного больше плотности газа, в ней сохраняется предположительно 3% свободного объема. При повьш1ении температуры жидкости кинетическая энергия ее молекул увеличивается, и это приводит к ее расширению в результате возрастания свободного объема. Увеличение объема сопровождается увеличением среднего расстояния между молекулами и, следовательно, уменьшением сил межмолекулярного взаимодействия. Подвергая жидкость постепенно увеличивающемуся сжатию, можно уменьшить ее первоначальный объем до 97%. Для дальнейшего уменьшения объема жидкости требуются гораздо большие давления (рис. 11.2). [c.188]

    Это, например, справедливо для методов проверки теории, основанных на определении константы а в уравнении Ван-дер-Ваальса, теплоты сублимации и испарения, энергии адсорбции и смачивания. Точное сопоставление с теорией вл всех этих случаях затруднено тем, что на столь близких расстояниях ни одна теория молекулярных сил, строго говоря, неприменима и, кроме того, результат зависит от наложения сил разного характера (например, квад-рупольных), к тому же зависящих от часто неизвестной ориентации молекул и асимметрии их силовых полей. [c.61]

    Понятие остаточной (Ван-дер-Ваальсовой) связи. При выводе законов для газов обычно делается допущение, что молекулы взаимодействуют друг с другом только при столкновениях. Такое допущение есть идеализация, и сами законы носят название законов идеальных газов. К реальным газам эти законы применимы лишь в известном приближении и только в определенных условиях (не очень высокие давления и плотности газов). Но даже в этих условиях можно наблюдать отклонения поведения реальных газов от идеальных. Ван-дер-Ваальс (1873 г.) исследовал эти отклонения и объяснил их тем, что в теории реальных газов следует учитывать взаимодействия между молекулами не только посредством столкновений. Силы такого дополнительного взаимодействия названы Ван-дер-Ваальсовыми, или остаточными силами. [c.206]


Смотреть страницы где упоминается термин Силы ван-дер-Ваальса теория: [c.262]    [c.184]    [c.107]    [c.14]    [c.226]    [c.21]    [c.74]    [c.412]    [c.40]    [c.97]    [c.95]    [c.199]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.351 , c.355 ]




ПОИСК





Смотрите так же термины и статьи:

Ван-дер-Ваальса

Ван-дер-Ваальса силы

Силы Ван-дер-Ваальса. Квантовая теория

Силы Ван-дер-Ваальса. Электростатическая теория

Теория Ван-дер-Ваальса



© 2025 chem21.info Реклама на сайте