Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура выбор метода измерения

    Выбор метода измерения зависит от диэлектрической проницаемости е, диэлектрических потерь е", диапазона температур и частот, в котором проводятся измерения. [c.30]

    ВЫБОР МЕТОДА ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ [c.34]

    При выборе метода исследования необходимо учитывать оснащенность лаборатории приборами (в случае, если имеется инфракрасный спектрофотометр, спектрометр ядерного магнитного резонанса, не позволяющий проводить измерения при повышенной температуре). Поэтому ядерный магнитный резонанс возможен для анализа проб, растворимых при нормальной температуре. Вследствие ограниченной растворимости полиоксиметилена и сополимера, содержащего большие количества полиоксиметилена, для определения количественного состава сополимера останавливаются на ИК-спектроскопии твердого вещества. Аналогично поступают и при определении среднего молекулярного веса, но здесь возникает трудность в приготовлении соответствующих эталонов (изменение интенсивности при смешивании). В крайнем случае можно получить данные, характеризующие растворимую часть сополимера. При определении структуры цепи ЯМР-спектроскопия, обладающая большей селективностью, дает лучшие результаты, чем ИК-спектроскопия. Метод ЯМР-спектроскопии также можно применять только для растворимых сополимеров. [c.419]


    Как видно из сказанного, общим недостатком электрических методов измерения является субъективизм в выборе электрического сопротивления, отвечающего температуре точки росы, и невозможность сравнения 17 247 [c.247]

    Точность измерения давления и вакуума зависит от метода измерения, метрологических характеристик средств измерения, условий измерения и ряда других факторов. В табл. 7,22 приведены сравнительные характеристики средств измерения, облег-чаюш,ие их выбор. При этом необходимо учитывать, что в реальных условиях эксплуатации показания измерительных приборов могут суш,ественно отличаться от нормальных условий или от условий градуировки. Шкала измерительного прибора должна быть выбрана с учетом номинального, макси.мального и минимального значений измеряемого давления или вакуума. Место отбора давления должно быть в точке, давление в которой наилучшим образом характеризует данный технологический процесс, Соединительная линия от места отбора давления до измерительного преобразователя не должна искажать или затруднять передачу давления как в статическом, так и в динамическом режиме. Устройства отбора давления не дол кны вызывать возмущения потока и связанного с этим изменения давления в импульсных линиях. Средства измерения давления подключаются к импульсным линиям с помощью специальных устройств, которые должны защищать их от вредного воздействия измеряемой среды (высокой температуры, агрессивного воздействия, загрязнения и т.н.). Выбор способа подключения специальной арматуры при измерении давления осуществляется для конкретных условий измерения, расположения места отбора давления и средств измерения. [c.370]

    Методы и средства измерения температуры. Современная Т. располагает разнообразными методами измерений, каждый из к-рых специфичен и не универсален. Выбор оптимального для данных условий метода обусловлен требуемой точностью и продолжительностью измерений, необходимостью регистрации и автоматич. регулирования т-ры. Методы измерений т-ры подразделяют на контактные (ср-во измерения непосредственно соприкасается с контролируемым объектом) и бесконтактные. Наиб, доступны, точны и надежны контактные методы, используемые в собственно Т. и реализуемые с помощью термометров. Совокупность бесконтактных методов определения т-ры (вьпие 600 °С), основанных на измерении интенсивности излучения света нагретым телом, наз. пирометрией, а ср-ва измерения - пирометрами. [c.543]


    При испытании форсунок очень немногие из интересующих величин могут быть определены путем прямых измерений. Как правило, это лишь параметры, характеризующие режим работы форсунки (давление распыляемой жидкости, давление газа для пневматических форсунок, температура). Большинство же параметров, по которым судят об основных данных форсунки и о совершенстве ее элементов, являются результатами косвенных измерений, т. е. подсчитываются по тем или иным формулам с использованием данных прямых измерений различных физических величин. Так определяются расходы распыляемой жидкости и газа, тонкость распыла и другие параметры форсунки. При этом указанные выше величины могут быть подсчитаны разными способами по результатам прямых измерений тех или иных параметров и точность результата будет зависеть от точности, измерений и от самого вида расчетных формул. Поэтому выбор метода [c.203]

    Температура. Для измерения и регулирования температуры в процессах, проводимых при высоком давлении, применяют обычные приборы, показания которых не зависят от давления в системе. Методы измерения и регулирования температуры, а также проблемы теплопередачи рассмотрены в отдельных главах этой серии (см. главу Нагревание и охлаждение в книге [30], а также главы Измерение температуры и Регулирование температуры в книге [48]). Наиболее распространенный метод измерения и регулирования температуры в каталитических аппаратах высокого давления основан на использовании э.д.с., генерируемой термопарой. Величину э.д.с. измеряют милливольтметрами или потенциометрами, которые могут приводить в действие двухпозиционные регуляторы, работающие по схеме включено—выключено , или же приборы, регулирующие величину подводимого к нагревателю напряжения. Выбор регулятора определяется требуемой точностью регулировки температуры [87]. [c.64]

    При выборе детектирующего устройства следует учитывать сравнительную простоту конструкции и автоматизацию метода измерения, высокую чувствительность и универсальность его, пропорциональность сигнала детектора концентрации компонентов и обеспечение устойчивости нулевой линии к изменению температуры, давления и скорости газа-носителя, а также низкую инерционность и некоторые другие параметры. [c.243]

    В последние годы значительное внимание уделялось развитию и совершенствованию аппаратурного оснащения лаборатории. Разработан ряд технических заданий на приборы и аппаратуру для изучения старения пластмасс в различных напряженных состояниях. Проводилась работа по совершенствованию методов измерения интенсивности УФ-радиации, температуры образцов при лабораторных и естественных испытаниях. Накоплен экспериментальный материал, показывающий, что наряду с ранее рассмотренными процессами термо-и фотоокислительной деструкции, в термопластах происходят изменения структуры, которые в значительной степени развиваются уже на ранних стадиях старения и должны учитываться при выборе режима ускоренного старения. [c.257]

    Изучение эмиссии под влиянием поля позволяет получить значение работы выхода электрона альтернативными путями. В соответствии с уравнением (30) изменение тока эмиссии с величиной приложенного поля дает прямой метод измерения Ф. Однако из результата исследования эмиссии под влиянием поля фактически невозможно получить точные значения абсолютных величин Ф. Для реализации сильного поля необходима очень острая геометрия (кончик эмиттера обычно имеет диаметр порядка 1000— 10 000 А), что вызывает некоторые сложности при определении точной величины приложенного поля на расстоянии нескольких ангстрем от эмиттирующей поверхности. Можно получить точные относительные значения Ф для разных частей одного и того же эмиттера. Поскольку опыты можно проводить в интервале температур 4—800° К, то могут быть исследованы эффекты, связанные с адсорбцией газов. Выбор материала эмиттера ограничивается высокими требованиями к его механической прочности. Металлы, обладающие высокими точками плавления и, следовательно, годные для изучения термоионной эмиссии, обычно характеризуются также и высокой прочностью. Таким образом, существует возможность сравнения различных методов, а абсолютную шкалу работы выхода в случае эмиссии под влиянием поля можно получить на основании величин работы выхода, полученных методом термоионной эмиссии. [c.163]

    Температурные коэффициенты важны для многих ранее обсуждавшихся методов, но аналитики интересовались ими лишь для выбора оптимальных условий проведения анализа. В этой главе рассматривается ряд методов, основанных на измерении какого-либо свойства системы как функции температуры или на измерении количества выделенного или поглощенного в реакции тепла. Эти методы перечислены в табл. 23-1. Некоторые аналогичные, но менее распространенные методы в таблицу не включены (более подробная информация содержится в работах [1,2]). [c.485]


    Постоянное пользование такими термометрами приводит к тому, что при измерении температуры редко возникает вопрос о принципах, на которых основываются эти измерения. Между тем знание этих принципов во многих случаях является необходимым. Так, при решении ряда научных и технических задач часто бывает важно повысить, насколько это возможно, точность измерения температуры. В других случаях практические потребности приводят к необходимости самостоятельного изготовления термометров, например термометров сопротивления или термопар. Очень часто большое значение имеет выбор термометра и метода измерения. Правильное решение этих и подобных им задач невозможно без знакомства с основами измерения температуры и особенностями различных типов термометров. [c.19]

    В термометрических измерениях, проводимых при помощи термопар, температуру находят по величине т. э. д. с. Последнюю либо измеряют непосредственно, либо определяют по величине термотока или создаваемого им напряжения. Выбор того или другого метода измерения определяется величиной т. э. д. с. и требующейся точностью. [c.157]

    Так, например, если температура калориметра измеряется термометром с точностью до 0,001° и подъем температуры в опыте около 1°, максимальная погрешность измерения разности температур — о, т. е. величины А/, равна 0,2% Чтобы увеличить точность измерения А/, надо или увеличить подъем температуры в опыте, или повысить точность его измерения. Однако увеличить подъем температуры больше чем до 3—5° без риска внести существенную ошибку в вычисление поправки на теплообмен невозможно (см. стр. 239). В этом можно убедиться, исследуя константу охлаждения калориметра. Точность измерения М может быть повышена соответствующим выбором термометра и метода измерения температуры (оптическое увеличение в случае ртутного термометра, повышение чувствительности электроизмерительных схем в случае термометров сопротивления или термопар и др.). При планировании проведения работы с данным калориметром следует выбрать термометр и способ измерения температуры, имея в виду необходимую точность результата. [c.244]

    Из выражения (3. 9) видно, что работа по методу переменной температуры нити при — Рх обеспечивает вдвое большую чувствительность, чем работа по методу постоянной температуры. Нижний предел измерения Ра может быть значительно меньше Р при соответствующем выборе Пользуясь выражением (3. 10), из условия Рц = О получим [c.56]

    Напротив, выбор способа определения требуемой величины часто бывает затруднительным. Для такого определения чаще всего используют калориметрические методы (например, измерение величин ЛЯ или аО в соответствующих калориметрах, вычисление А5 из калориметрических данных по теплоемкостям, вычисление АО из экспериментально измеренных величин АН и А5). Но нередки случаи, когда эти величины можно получить, не обращаясь к калориметрическим измерениям (например, вычисление АО, АН, Аи или Д5 химических реакций из экспериментальных данных по константам равновесия при различных температурах или из измерения э.д. с. соответствующим образом составленных гальванических элементов, расчет термодинамических величин из спектроскопических данных и т. д.). [c.9]

    Одна из первых задач, которая возникает перед исследователем в начале работы, — выбор наиболее целесообразного способа нагрева реагентов и метода измерения вводимой при этом нагреве теплоты. Естественно, чем ниже требуемая температура, тем шире выбор способов нагрева. В общем случае предпочтения заслуживает тот способ, который обеспечивает достижение необходимой температуры при введении меньшего количества теплоты. [c.154]

    При заданных условиях испытания от выбора метода зависит значение коэффициента трения. Под методом мы в данном случае понимаем способ измерения, который определяется геометрией поверхностей, способом измерения силы и температуры, способом приложения тангенциальной силы и т. п. [c.82]

    Температурные и частотные зависимости диэлектрических потерь в полярных полимерах в действительности оказываются гораздо более сложными, нежели это можно было предполагать на основании рассмотренных выше простейших теоретических соображений. Тангенсы угла диэлектрических потерь для этих материалов могут изменяться в чрезвычайно широком диапазоне. Соответствующие данные представлены на рис. 84, 85 и 86. Максимумы диэлектрических потерь, наблюдаемые для различных материалов, могут быть весьма различными по форме. Из-за сложности характера наблюдаемых частотных и температурных зависимостей очень трудно, исходя из экспериментальных данных по диэлектрическим свойствам полимеров, определенных в одних условиях эксплуатации, предсказать,, какими окажутся эти свойства в других условиях. Поэтому принятый метод измерения диэлектрических констант полимеров при одной частоте, например при 1000 гц, вообще говоря, неудовлетворителен. При выборе материала для той или иной цели необходимо провести его испытания во всем том диапазоне температур и частот, в котором предполагается его использовать. Это относится и к измерению тангенса угла диэлектрических потерь, и, хотя и в меньшей степени, к диэлектрической проницаемости. Температурные и частотные зависимости диэлектрической проницаемости ряда полярных [c.138]

    При выборе метода окончания анализа было отдано предпочтение спектрофотометрическому определению кремния в виде синего кремнемолибденового комплекса. Синий комплекс по сравнению с желтым обеспечивает более высокую чувствительность метода и меньшую зависимость оптической плотности от температуры. Кроме того, кремний можно определять в этой форме в присутствии других элементов, также образующих гетерополикислоты с молибдат-ионом, в первую очередь фосфора, мышьяка и германия. В предложенном нами варианте метода использован мягко действующий восстановитель — метол-сульфитная смесь. Кривая поглощения комплекса имеет максимум в области 800—825 нм. Измерения проводят при 812 нм, т. е. в середине максимума, что позволяет свести к минимуму погрешности, связанные с неточностью настройки спектрофотометра. Ни один из применяемых реагентов в выбранной области спектра не поглощает, что, безусловно, относится к преимуществам метода. [c.171]

    Для оценки густоты пространственной сетки в технологической практике обычно используют различные механические методы, хотя многие из них являются качественными. Наиболее широкое распространение получили методы измерения деформации образцов под нагрузкой при различных те.мпературах, твердости и степени набухания в различных растворителях. Результаты таких измерений зависят от размера и формы образца, от выбора сочетаний различных значений те.мпера-туры и нагрузки, скоросги повышения температуры [150, 151], [c.127]

    В обширной литературе по изучению влияния различных факторов на активность катализаторов и ее изменение во времени встречаются разные подходы к определению меры каталитической активности. Различия в выборе меры и методах измерения активности катализаторов, использованных разными авторами, а также отсутствие во многих публикациях сведений о весьма существенных условиях экспериментов (распределение температур в слое, степень диффузионного тормо- [c.12]

    Газовая хроматография имеет преимущества перед другими методами измерения термодинамических величин, характеризующими адсорбцию или растворение. Прежде всего это возможность работы в широком интервале температур (от —180 до 600 °С) а, следовательно, и значительно более широкий выбор исследуемых веществ (сорбатов, тестовых соединений, молекул-зондов ) — от газов и жидкостей до твердых веществ, в том числе и агрессивных. Метод выгодно отличается быстротой измерения, возможностью применения простой и доступной аппаратуры. Поскольку колонка обладает и разделительными свойствами, можно в одном опыте исследовать несколько веществ и, что еще более важно, отказаться от их очень тщательной предварительной очистки. И, наконец, благодаря высокой чувствительности газовая хроматография является незаменимым методом при изучении очень маленьких количеств сорбата, т. е. при бесконечном разбавлении . [c.308]

    Можно надеяться, что указанны материалы помогут экспериментатору выбрать именно тот метод измерения температуры, который лучше всего отвечает условиям того или иного эксперимента. На это, к сожалению, не всегда обращают внимание. В некоторых случаях свобода выбора ограниченна. Так, например, для абсолютных измерений температуры ниже 1°К единственно пригодным термометром является магнитный термометр. Термометр на основе полупроводникового сопротивления для этой области температур имеет второстепенное значение. Однако в большинстве случаев имеется все же возможность известного выбора. [c.129]

    Чтобы сделать правильный выбор, нужно тщательно взвесить все требования эксперимента и учесть его специфику. Возможные методы измерений температуры отличаются друг от друга  [c.129]

    Для статического метода с мембранным нуль-манометром измерения давления (Рд ) и температуры (Гэг) можно считать элементарными. Ввиду этого, рассматривая только случайную составляющую ошибки измерения, для экспериментальных величин разумно предположить нормальный закон распределения. Тогда очевидно, что распределение любой нелинейной функции от этих величин будет отличаться от нормального. По этой причине применение метода наименьших квадратов с произвольной целевой функцией не всегда приводит к оценкам искомых параметров, обладающим требуемыми статистически-АШ свойствами (см., например, [1 ]). При выборе целевой функции следует принять во внимание также и тот факт, что случайные ошибки, а следовательно, и дисперсии экспериментальных величин в общем случае различны для каждой экспериментальной точки. [c.99]

    Поляризационный метод имеет очевидные преимущества при расчетах мгновенных значений скорости коррозии многих металлов в разнообразных средах при различных температурах и скоростях протекания растворов. Он также может быть использован как для выбора ингибитора или защитного покрытия, так и для изучения изменения коррозии во времени. Если при измерении имеет место омическое падение напряжения, требуется внесение поправок. [c.67]

    Выбор метода измерения во многом зависит от того, для какой частоты надо получить данные. Поскольку с помощью одного и того же моста можно легко измерять проводимость или потери и емкость или диэлектрическую проницаемость в широком интервале частот, то мост для измерений в твердых веществах обычно наиболее удобен. При измерении диэлектрической проницаемости и потерь в широком интервале частот от 10 до 10 гц можно пользоваться емкостным мостом типа 716-С (фирмы Дженераль рэдио компани ). Мост типа 716- S1 покрывает интервал от 5-10 до гц. Другие мосты работают обычно при фиксированных частотах, но при некоторой их модификации интервал может быть несколько расширен. Интервал частот можно растянуть по крайней мере до 10 гц путем использования резонансного метода, при котором очень высокая точность определений обеспечивается резонансной настройкой контура. При частотах от 5-10 до 6-10 гц используются методы резонирующей полости и волновода. Если физические свойства материала позволяют придать образцу соответствующую форму, то слиток или брусок вещества может быть помещен для измерений в резонирующую полость или волновод [92]. Проводились измерения в широком интервале температур с веществами, которым не удавалось придать точно заданную форму, но которые вплавлялись в измерительную ячейку [85, 117]. Для измерений в миллиметровом диапазоне длин волн могут применяться оптические методы или метод волновода. Хотя для жидкостей эти методы уже дают удовлетворительные результаты [87, 108], в настоящее время их продолжают совершенствовать. [c.630]

    При сопоставлении экспериментальных и вычисленных значенш максимально температуры как пр1 взрывах, так и в стационарных пламенах часто обнарз живаются значительные расхождения. Выяснению причин, вызывающих эти расхождения, посвящен ряд работ Дэвида и его сотрудников. Данное ими объяснение предполагает существование так называемой скрытой энергии ) горения, заключенной в метастабильных возбужденных молекулах, образующихся в ходе горения. По этому вопросу возникли значительные разногласия между Дэвидом и его сотрудниками, с одно т стороны, и Льюисом и Эльбе — с другой. При решении этого вопроса наиболее существенным оказался выбор наилучшего метода измерения температуры пламени (методы измерения температуры будут рассмотрены в следующе главе). Вопрос о том, существенна ли скрытая энергия в слу чае обычных водородсо- [c.199]

    Таким образом, чтобы найти коэффициент активности при любой заданной температуре, кроме криоскопических данных необходимо знать теплоты разбавления Ь) растворов при разных концентрациях и тепл оемкости растворов при разных концентрациях. Получение донолнительных данных требует значительно большей затраты труда и времени, чем это необходимо для измерения самих криоскопических и эбулиоскопических величин. Это нужно иметь в виду при выборе методов определения коэффициентов активности. [c.48]

    По растворимости в воде соединения делят на две группы, которые затем подразделяются в соответствии с растворимостью в других растворителях. Все измерения проводят при комнатной температуре с 0,02... 0,03 мл жидкости или 4... 6 мг твердого тонко измельченного вещества и 0,2 мл растворителя, прн этом смесь растирают палочкой и сильно встряхивают. Испытания проводят в порядке, указанном в приложении 1, и по нх результатам относят исследуемое вещество к одной нз шести групп. Если на первый Взгляд кажется, что неизвестное вещество более растворимо в разбавленной щелочи или кислоте, чем в воде, то это необходимо подтвердить нейтрализацией раствора,, в результате чего должен выпасть осадок исходного вещества. Ароматические аминокислоты в отличне от алифатических не образуют внутренних солей н растворимы как в разбавленной соляной кислоте, так и в разбавленном растворе гидроксида натрИя, однако нерастворимы в растворе гидрокарбоната натрии, Аминосульфокислоты, существующие в виде внутренних солей, растворимы в щелочах, ио нерастворимы в кислотах. Определение растворимости не всегда приводит к однозначному результату, однако дает предпосылки для выбора методов функционального анализа. [c.66]

    Необходимо учитывать также возможность деструкции цепей растворенного полимера под влиянием растворителя или термического воздействия и в том случае, когда все связи в молекуле являются го-меополярными. Так, например, многие гетероцепные полимеры, как полиамиды, белки, полиэфиры, целлюлоза и др., легко распадаются под влиянием растворителей кислотного характера, а также под влиянием кислорода и других агентов. Растворенные молекулы полимера чрезвычайно чувствительны к термическому и механическому воздействиям и легко подвергаются дроблению даже при многократном пропускании через капиллярный вискозиметр или при определении тех или иных свойств при высоких температурах. Следовательно, при выборе метода исследования растворов полимеров необходимо учесть особенности их химического строения и стабильность, возможность химического взаимодействия с растворителем и продуманно подобрать условия проведгния измерений. [c.17]

    На практике часто не удается получить величину открываемого минимума соответствующей реакции несмотря на точное соблюдение всех условий анализа, т. е. концентраций реагентов, объема проб, продолжительности реакции, температуры и др. Это объясняется в основном двумя причинами. Во-первых, чувствительность реакции может сильно понииоться за счет наличия в пробе испытуемого вещества примесей, которые не были учтены при разработке реакции обнаружения во-вторых, возможность наблюдения сл-абой окраски или небольщого осадка зависит от внещних условий проведения реакции — освещения, выбора соответствующего фона и т. п. Эти факторы, в условиях возможного неблагоприятного освещения полевых лабораторий, следует учитывать при выборе метода анализа. В некоторых литературных источниках часто данные по чувствительности обозначаются в единицах р. р. т. (части на миллион) и р. р. Ь. (части на миллиард). Если р. р. т. и р. р. Ь. относятся к концентрации пара или газа в воздухе, то их можно привести к более общепринятым единицам измерения, пользуясь следующей формулой пересчета  [c.26]

    Приборы, в которых производится определение осмотического давления, термостатируют, причем выбор температуры зависит только от устойчивости мембраны существенным является соблюдение постоянства температуры во время измерения. Важнейшей частью прибора является полупроницаемая мембрана, которую при работе с большинством растворителей изготовляют из целлюлозы, регенерированной из ацетилцеллюлозы для водных растворов применяют также мембраны из целлюлозы, регенерированной из нитроцеллюлозы очень плотные мембраны можно получить из поливинилового спирта. Для измерения при повышенных температурах в агрессивных растворителях недавно были предложены мембраны из тефлона (политетрафторэтилена) и гостафлона (политрифторхлорэтиле-на) или полиуретанов. Мембраны должны быть абсолютно устойчивы к применяемым растворителям при температуре измерения. Степень пропускания растворителя этими мембранами определяет полученные результаты. Так как этот метод дает среднечисловое значение Л1 , то при слишком большой проницаемости мембраны, т. е. при прохождении через нее низкомолекулярных фракций, столбик в капилляре поднимается очень мало и, следовательно, получается завышенное значение УИ . Наоборот, при применении [c.148]

    Измерение температуры и непрерывная запись ее значении в процессе сушки всегда встречают определенные трудности. Последние возрастают при исследовании высокоинтенсивных, быстро протекающих комбинированных, прерывистых (время цикла исчисляется долями секунды) процессов сушки, когда температура в материале изменяется значительно. Эти трудности связаны с выбором прибо-)ов и датчиков для измерения и непрерывной записи температуры. Дироко применяемые методы измерения температуры с помощью термопар и гальванометров, а также электронных потенциометров не пригодны для изучения быстропеременных процессов вследствие большой инерционности приборов. [c.27]

    Теперь рассмотрим, каковы же возможности прямых методов измерений изотермической сжимаемости. Прежде всего, обратим внимание на то, что выбор точности измерения автоматически накладывает определенные ограничения как на величины приращения давления (которым производят сжатие жидкости), так и на степень изотермич-ности процесса. Дело в том, что изотермическая сжимаемость зависит от давления и температуры, причем зависимость эта нелинейная [11]. Нетрудно убедиться в том, что уменьшение сжимаемости на 1% вблизи атмосферного давления обеспечивается увеличением давления на 10 атм для органических жидкостей и на -30 атм, для воды. Отсю- [c.143]

    Выбор химической модели, а именно количества реакций и их стехиометрических коэффициентов, может потребовать варьирования не только концентраций реагентов, но и других условий, в первую очередь температуры. Примером является рН-метрическое исследование равновесий в растворах боратов. Несмотря на многолетние исследования, состав полиборат-анионов вызывал постоянные сомнения, путь к разрешению которых был неясен, и изучение таких систем на некоторое время прекратили. При этих исследованиях широко применяли ЭВМ, пытаясь дискриминировать химические модели, в частности, по величине остаточной дисперсии. Лишь недавно [12 ] были получены новые сведения о составе полиборат-анионов. При этом применялись измерения с водородным электродом в широком диапазоне температур, причем оказалось, что различные частицы лучше всего выявляются в своей температурной области. Из этого примера видна большая роль инициативы химиков, позволяющей в трудных случаях выйти за рамки традиционной области исследований, включить в рассмотрение дополнительный параметр или даже метод исследования. [c.175]

    Тепловые балансы. Вероятно, наиболее эффективным способом анализа экспериментальных данных по теплообмену является метод теплового баланса, согласно которому проводится сравнение количеств тепла, отдаваемого горячим теплоносителем и поглощаемого холодным теплоносителем. Разность этих двух величин можно сопоставить с расчетными тепловыми потерями. Если, как это часто и бывает, указанная разность не соответствует тепловым потерям, то ошибку следует связывать с неточным измерением или скорости потока, или разности температур потока теплоносителя. Поэтому целесоэбразно использовать как можно более точные приборы для измерения этих параметров. Различные температуры и изменения температуры для надежности можно сопоставлять между собой. Необходимо проанализировать, в какой мере изменение температурного уровня или скорости потока скажется на нарушении теплового баланса. Существенными факторами могут быть условия эксперимента и характер приближения к экспериментальной точке (с увеличением или уменьшением скорости течения, повышением или понижением температуры и т. п.) Нельзя указать для этого какие-то общие правила выбора оптималь- [c.320]


Смотреть страницы где упоминается термин Температура выбор метода измерения: [c.356]    [c.39]    [c.59]    [c.135]    [c.290]    [c.148]   
Физические методы органической химии Том 2 (1952) -- [ c.34 , c.35 ]

Физические методы органической химии Том 2 (1952) -- [ c.34 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Метод выбора

Температура измерение



© 2025 chem21.info Реклама на сайте