Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота адсорбции статическим методо

    Изучение дифференциальных теплот адсорбции нормальных алканов С] — Сд на образце кристаллического цеолита НаХ газохроматографическим методом [1] показало, что определенные этим методом теплоты адсорбции нормальных алканов, начиная с С4, отклоняются в сторону меньших величин от значений теплот, полученных статическими методами [2, [c.61]


    Изучая одним из статических методов количество поглощенного газа в зависимости от его равновесного давления при постоянной температуре, получают изотерму адсорбции. Выполняя эксперимент при постоянном давлении и при различной температуре, можно получить зависимость адсорбции от температуры и из этих данных рассчитать теплоту адсорбции. По характеру и взаимному расположению изотерм адсорбции, полученных для разных газов или паров, можно судить об избирательном действии выбранного адсорбента по отношению к тому или иному газу. Данные, получаемые из статических измерений, позволяют также рассчитывать пористость, удельную поверхность, коэффициент диффузии и другие характеристики адсорбента и адсорбата. [c.112]

    Изменения свободной и внутренней энергии, энтропии и теплоемкости газа. Дифференциальная и изостерическая теплота адсорбции. Изменения термодинамических функций адсорбционной системы при предельно малой адсорбции. Возможности, достоинства и недостатки статических и хроматографических методов определения термодинамических характеристик адсорбции при малых заполнениях. [c.145]

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]

    Найденные величины теплот адсорбции водорода на цеолитах в диапазоне температур от комнатной до 250—300° С близки к литературным данным, полученным как статическим [83], так и хроматографическим [82] методами, Нулевой тепловой эффект адсорбции водорода на цеолитах при температурах 300-500° С ранее в литературе не отмечался. Однако в работе [59] на основе результатов исследования изобары адсорбции водорода иа цеолите было указано, что адсорбция растет с повышением температуры до 350° С, а при более высоких температурах ее увеличение незначительно. [c.53]


    Статические (вакуумные) и калориметрические методы измерения, позволяющие выявлять форму изотермы адсорбции и вид зависимости теплоты адсорбции от заполнения, также дают возможность судить об однородности поверхности. При неспецифической адсорбции на близкой к однородной поверхности, состоящей из кристаллической грани одного индекса, получаются изотермы адсорбции, вначале обращенные выпуклостью к оси давления в газовой фазе р, а затем [c.25]

    Для адсорбентов с близкой к однородной поверхностью произведены многочисленные измерения величин адсорбции и соответствующих величин давления или концентрации в газовой фазе при постоянной (изотермы адсорбции) и при разных температурах. Эти измерения производились как статическими, так и газохроматографическими методами. Значительно меньше сделано калориметрических измерений (статических и динамических) теплот адсорбции. Наконец, совсем немного сделано калориметрических измерений теплоемкости адсорбционных систем. Однако именно все эти независимые измерения, вместе взятые, для одной и той же системы адсорбат—адсорбент дают необходимую информацию о термодинамических свойствах адсорбционной системы. Вместе с тем перечисленные методы измерений имеют свои особенности, которые необходимо зачитывать как при оценке точности измеряемых величин, так и при дальнейшей их обработке для получения термодинамических характеристик адсорбции, не зависящих от способа измерений. [c.93]

    Сопоставление величин изменения внутренней энергии при адсорбции, полученных разными методами. Рассмотрим теперь результаты независимых определений величин АС/ как из исследований адсорбционных равновесий статическими и динамическими методами, так и из калориметрических измерений теплот адсорбции. [c.145]

    МКЛ метод физико-химического исследования поверхностей твердых тел (см. литературу в книге [2]), причем не только дисперсных 2,5шл тел, но и ряда непористых материалов [39]. Газо-хро-матографический метод обладает высокой чувствительностью и точностью при анализе как напористых, так и достаточно крупнопористых адсорбентов. В качестве примера на рис. 8 приведены хроматограммы пара воды на графитированной саже и полученные из них изотермы адсорбции. Эти изотермы обращены выпуклостью к оси давления пара. Исследование столь слабой и неспецифической адсорбции воды статическими методами представляет весьма трудную задачу, метод же газовой хроматографии позволяет изучить такую систему сравнительно быстро и с высокой точностью [2, 40]. При сопоставлении результатов газо-хромато-графического и статического методов исследования поверхностей твердых тел надо, однако, иметь в виду зависимость от температуры сравниваемых величин, например теплот адсорбции, по- [c.210]

    Вместе с тем метод газовой хроматографии для исследования адсорбции отличается высокой чувствительностью, позволяющей изучать область малых заполнений, возможностью работать на серийной аппаратуре в широкой области температур и, следовательно, изучить адсорбционные взаимодействия большого числа интересных молекул разного строения. Однако нри этом используется приближение теории нелинейной равновесной хроматографии. Сопоставление со статическими исследованиями показывает, что обычно критерием достаточной близости к равновесным условиям в колонке при проявительной хроматографии является, во-первых, совпадение размытой границы пика для разных проб (от нуля до точки перегиба изотермы) и, во-вторых, вертикальность противоположной границы пика. Здесь демонстрировались примеры расчета изотерм адсорбции на основе теории Глюкауфа для таких случаев. Теплоты адсорбции находятся далее из изостер, а не по максимумам несимметричных пиков. [c.467]

    Основными физико-химическими характеристиками адсорбентов являются, с одной стороны, их структурные характеристики, часто не зависящие или мало зависящие от свойств адсорбирующихся веществ (удельная поверхность, пористость) и, с другой стороны, свойства, определяемые в основном природой системы адсорбент — адсорбат (энергия адсорбции, изотерма адсорбции и т. п.). Все эти величины обычно определяются при помощи адсорбционных опытов в статических условиях. Однако адсорбционные измерения часто бывают весьма длительными и требуют много времени для завершения и получения окончательного результата. В особенности это относится к калориметрическим определениям дифференциальных теплот адсорбции, требующим сложной аппаратуры, весьма чувствительной к колебаниям внешних условий. В послед нее время появляется довольно много работ по газо-хроматографическому исследованию изотерм адсорбции [1]. В ряде работ показано, что хроматографический метод позволяет быстро при некоторых допущениях определить изотерму адсорбции в удовлетворительной близости к изотермам, измеренным в статических условиях в вакуумной аппаратуре. Гораздо в меньшей степени исследованы возможности определения теплот адсорбции по данным газовой хроматографии [2], так как в лабораториях, занимающихся газовой хроматографией, обычно нет калориметров, позволяющих для сопоставления непосредственно измерять теплоты адсорбции для тех же систем. [c.37]


    Хорошо известно, что адсорбция в сильной степени зависит не только от химической природы поверхности, но и от структуры пор адсорбентов. Исследования изотерм и теплот адсорбции паров углеводородов на силикагелях статическими методами показали, что адсорбция и теплота адсорбции углеводородов увеличиваются при сужении пор силикагеля, причем это увеличение возрастает с увеличением числа атомов углерода в молекуле. По мере сужения пор силикагеля изотермы адсорбции сильно искривляются, а Для разных образцов с порами приблизительно одинаковых размеров они оказываются близкими. [c.90]

    ОТ температуры [16]. Как видно из рисунка, до 350 К наблюдается лишь молекулярная адсорбция. Рассчитанная из хроматографических данных теплота адсорбции оказалась равной 14,6 кДж/моль, что хорошо согласуется с данными, полученными статическим методом [17], — 15,6 кДж/моль. Начиная с температуры 380 К, часть кислорода адсорбируется необратимо. При 480 К и выше наблюдается появление двуокиси углерода, т. е. при этой температуре одновременно наблюдаются три формы взаимодействия кислорода с поверхностью угля. Считая, что процесс мономолекулярный, по уравнению /(=(1/0 1п (Со/с,) рассчитываем константу скорости процесса необратимой сорбции кислорода и константу скорости образования двуокиси углерода. Из зависимости 1п К от ИТ определяют энергию активации этих процессов, которые оказались равными 99,5 и 94,5 кДж/моль соответственно. [c.195]

    Теплоты адсорбция определены статическим (О — калориметрическим, V — изостерическим) и газохроматографическим ( ) методами [c.54]

    Представляет большой интерес сопоставление газохроматографических данных, полученных при простейшем допущении о практическом достижении адсорбционного равновесия с данными, полученными статическими методами. Некоторые сопоставления такого рода уже были сделаны выше (см. рис. 24 и табл. 2). Они показывают, что на однородных поверхностях оба метода дают близкие результаты. Особенно хорошие результаты получены для однородного непористого и неспецифического адсорбента — графитированной термической сажи [59, 62]. Также близкие к статическим результаты получаются при применении газохроматографического метода к изучению адсорбции относительно слабо адсорбирующихся благородных газов и низших углеводородов на геометрически весьма однородных пористых кристаллах цеолитов (см. рис. 24). Удовлетворительные результаты были получены также и на неоднородных поверхностях (см., например, рис. 51), однако лишь для сравнительно слабо адсорбирующихся веществ [57]. Худшие результаты получаются обычно для сравнительно сильно адсорбирующихся веществ на адсорбентах с неоднородной поверхностью. Так, было найдено [79], что полученные газохроматографическим методом теплоты адсорбции нормальных алканов Се—Се и бензола на силикагелях с порами размером от 100 до 1000 А на 15—20% ниже измеренных в калориметре при тех же заполнениях той же поверхности. [c.122]

    Вычислив из этих хроматограмм рассмотренным выше методом (см. стр. 105—108) изотермы адсорбции, можно получить изостеры и определить зависимость теплоты адсорбции от заполнения. Обычно изостеры, полученные из статических измерений, охватывают интервал более низких температур, а изостеры, полученные пз хроматограмм, — интервал более высоких температур. При этом возникает существенный вопрос о зависимости теплоты адсорбции от температуры и о влиянии на эту зависимость степени неоднородности поверхности. Ответить на этот вопрос помогает измерение теплоемкости адсорбционных систем. Такие определения сделаны, в частности, для бензола на графитированной термической саже [83] и для н.гексана на силикагеле с удель- [c.124]

    Основной причиной различия газохроматографических и статических определений теплот адсорбции (за исключением специфических адсорбентов с малой поверхностью) является влияние различия температуры в этих определениях, тем более существенное, чем больше неоднородность поверхности адсорбента. Представление об изменении дифференциальной теплоты адсорбции бензола с изменением температуры на однородной поверхности графитированной термической сажи [83] и н.гексана на неоднородной поверхности силикагеля [84] дает рис. 65. Эти результаты показывают, что при достаточно высоких температурах газохроматографический метод дает величины адсорбции и теплот адсорбции, близкие к величинам, полученным статическим методом и приведенным к той же температуре. В этих условиях влияние некоторой неизбежной неравновесности вследствие динамического характера газохроматографического опыта, по-ви-димому, невелико. [c.126]

    Петровой, Храповой и Щербаковой [20] из газохроматографических данных были определены теплоты адсорбции низших углеводородов от С до С4 на цеолите СаА. Сравнение теплот адсорбции, полученных из газохроматографических данных, с величинами, определенными прямыми калориметрическими измерениями и рассчитанными из изостер по статическим адсорбционным данным, показывает, что метод газовой хроматографии может быть использован для быстрой оценки теплот адсорбции несильно адсорбирующихся газов цеолитами и для исследования их зависимости от строения поверхности адсорбента и молекул адсорбата. Теплоты адсорбции цеолитом нормальных алканов и нормальных алкенов линейно возрастают с увеличением числа атомов углерода в молекуле. При переходе от насыщенных к [c.127]

    Определение теплот адсорбции углеводородов С —С при малых заполнениях (малых дозах) на силикагелях различной пористости газохроматографическим методом проведено в работе [21]. Как уже отмечалось выше, для мелкопористых силикагелей в соответствии с результатами статических определений наблюдается повышение теплоты адсорбции с уменьшением среднего размера пор и увеличением числа атомов углерода в молекуле н.алкана. Для более широкопористых адсорбентов наблюдается линейная зависимость дифференциальной теплоты адсорбции от числа атомов углерода в молекуле. В работе [79] установлено, однако, что значения теплоты адсорбции ряда насыш енных углеводородов и бензола па силикагеле при малых заполнениях меньше значений теплот адсорбции, определенных при тех же заполнениях в калориметре (см. стр. 126). [c.129]

    На рис. 66 приведены зависимости от числа атомов углерода п величин дифференциальных тенлот адсорбции Qa нормальных углеводородов и спиртов, определенных статическими методами при небольших заполнениях (в калориметре и из изостер — см. литературу в [25]) и газохроматографическим методом нри очень малых заполнениях и более высоких температурах. На этом же рисунке приведены также теоретически вычисленные значения потенциальных энергий адсорбции Фд при нулевом заполнении (литературу см. в [25]). В случае нормальных алканов дифференциальная теплота адсорбции Qa растет с заполнением монослоя на графитированной саже приблизительно линейно, так что экстраполяцией к нулевому заполнению 0 = 0 легко определить предельное значение ( о при нулевом заполнении. В случае спиртов зависимость Qa от 0 имеет более сложный вид (см. рис. 63), так что определить ( оПз калориметрических данных, полученных для более высоких 0, затруднительно. Поэтому на рис. 65 данные статических определений приведены в слзгчае спиртов для 9 0,1 для нормальных алканов значение Qa при 0 0,1 весьма близко значению Qf,, полученному экстраполяцией к 0 = 0. [c.131]

    Эти отклонения, по-видимому, превышают возможные уменьшения теплот адсорбции, связанные с тем, что адсорбент при опытах, выполнявшихся хроматографическим методом, находился при более высоких температурах, чем при статических опытах. Из хроматограммы, однако, видно, что пики для всех этих углеводородов при достаточно высоких темпе- [c.61]

    В настоящей работе определена изостерическая дифференциальная теплота адсорбции ксенона на кристаллах цеолита NaX газохроматографическим методом. Результаты сопоставлены с результатами статических определений адсорбции ксенона этим цеолитом. [c.62]

    Получив с помощью уравнения (116) изотерму адсорбции, можно ее обработать рассмотренными в главах XVI, XVII и XIX способами и получить, например, методом БЭТ (см. сгр. 454) емкость плотного монослоя и величину удельной поверхности адсорбента, а также получить изменение химического потенциала исследуемого вещества при адсорбции, откуда можно вычислить зависимость коэффициента активности адсорбата от заполнения иоверхности. Из серии хроматограмм, определенных при разных температурах, можно получить соответствующую серию изотерм адсорбции и определить нз них зависимость дифференциальной теплоты адсорбции от заполнения поверхности, дифференциальные энтропии и другие термодинамические характеристики адсорбции при разных заполнениях. Результаты таких газо-хроматографических исследований при благоприятных условиях опыта близки к результатам статических методов. [c.592]

    Теплоты адсорбции катионированными цеолитами, особенно лолярных молекул, велики, поэтому соответствующие изотермы адсорбции поднимаются при обычной температуре очень круто. Константы Генри так велики, что их определение методом газовой хроматографии затруднительно, так как время удерживания в колонне велико и пики сильно размываются. Это же мешает газохроматографическому разделению на цеолитах многих веществ за исключением легких газов и паров. Поэтому здесь будут рассмотрены результаты исследований адсорбции цеолитами, полученные главным образом статическими методами. Этими методами адсорбция изучается не только при малых, но и средних, а иногда и больших заполнениях полостей цеолита. Следует однако иметь в виду, что при определении константы Генри и начальных [c.32]

    Кцубрит и Гессер [6] изучали адсорбционные свойства порапака 8 газохроматографическим и статическим методами. Пользуясь хроматографическим методом, в интервале температур О—78° С авторы получили значения начальных теплот адсорбции СН4 и СО2, равные 3,12 и 5,0 ккалЫоль соответственно. При использовании статического метода [c.97]

    Исследования адсорбции и теплот адсорбции на графитированных сажах как вакуумными статическими, так и газохроматографическими методами проводились в работах Смита и Биби с сотр. [53, 107, 111, 120, 121, 131-141], Пирса с сотр. [112, 142-149], Крауэла и Янга [150, 151], Хэлси с сотр. [32, 128, 152—157], Цетлемойера с сотр. [158—160], Росса с сотр. [116, 126, 161, 165], Киселева с сотр. [8-11, 14, 16-18, 22, 24-27, 47, 108, 109, 111, 117, 122, 123, 125, 129, 130, 136, 137, 166—216] и рядом других авторов [12,. 13, 15, 19, 21, 23, 28-30, 33-37, 52, 54, 63, 84, 95, 115, 217-262]. [c.55]

    Все эти особенности экспериментальных методов должны быть учтены при оценке точности и обработке результатов адсорбционных измерений. Для дальнейшей обработки очень важно, в частности, знать, при каких внешних условиях проводились измерения. В частности, статические измерения изотерм адсорбции и калориметрические измерения теплот адсорбции обычно проводят в вакуумных установках с постоянным или мало изменяющимся объемом и при постоянной температуре. Калориметрические измерения теплоемкости адсорбционных систем проводят при их медленном нагревании при постоянном объеме. Постоянство определенных термоди-намичес1 их параметров адсорбционной системы при проведении измерений очень важно, так как оно позволяет более надежно про-изводить расчет воспроизводимых и сопоставимых термодинамических характеристик адсорбции, не зависящих от условий и способа измерений. [c.102]

    Из изотерм адсорбции, намеренных при разных температурах статическим методом, часто определяют так называемую изостери-ческую теплоту адсорбции [32—34] [см. формулу (111,110)]  [c.222]

    В связи с использованием вириальных разложений следует обратить внимание на то, что для сопоставления с молекулярной теорией адсорбции суш,ественна правильная оценка экспериментальных величин. Константы Генри и величины теплоты адсорбции при малых заполнениях поверхности графитированной термической сажи могут быть непосредственно определены из газо-хроматографических измерений при малых пробах и достаточно высоких температурах. Определение же этих констант и других вириальных коэффициентов из изотерм адсорбции, измеренных статическими методами, вызывает определенные трудности. Для обработки экспериментальных данных на однородных или почти однородных поверхностях при достаточно высоких температурах в этом случае можно нри.менить вириальное разложение [c.351]

    Карберри [5 ] дал сводку того, что известно о влиянии на величину удерживания различных адсорбционных равновесий, т. е. различных форм зависимости К от С . Он отмечает, что уравнение (I. 12), строго говоря, применимо только к значениям величины Сд, отвечающим линейным участкам изотерм адсорбции. Этим соображением ограничивается максимальная величина начальной концентрации вещества, вводимого в колонку, если предполагается, что для времени и объема удерживания должны получаться воспроизводимые результаты. Если это ограничение учитывается, могут быть получены линейные графики, показанные на рис. 1-10. Теплоты адсорбции газов и углеводородов на различных адсорбентах, найденные по этому методу Грином и Пастом [18 ], соответствовали теплотам адсорбции, полученным с помощью статических тепловых измерений. [c.37]

    При адсорбции на твердых телах разной природы проявляются молекулярные и химические взаимодействия во всем их разнообразии от ван-дер-ваальсовых взаимодействий до образования нестойких донорно-акцепторных соединений и прочных ковалентных связей. Исследование этих взаимодействий в случае адсорбции имеет свои преимущества. Во-первых, в отличие от газов и жидких растворов, силовые центры на поверхности адсорбента фиксированы. Во-вторых, в отличие от объема твердого тела, на поверхности можно реализовать невозмущенное состояние отдельных функциональных групп, например гидроксильных. Вместе с тем, поверхностные соединения и адсорбционные комплексы можно изучать с помощью химических и физических методов, дающих богатую информацию о химии поверхности, природе адсорбционного взаимодействия и состоянии адсорбированного вещества. Здесь нашли широкое применение химические, изотопнообменные, дифр актометрические и спектроскопические методы исследования состава и структуры поверхностного слоя твердого тела и поверхностных соединений, спектроскопические и радиоспектроскопические методы изучения состояния адсорбционных комплексов, а также статические и динамические (в частности, хроматографические и калориметрические) методы измерения изотермы адсорбции, теплоты адсорбции и теплоемкости адсорбционных систем. Однако исследованию адсорбции комплексом этих методов долгое время мешала неоднородность состава и структуры самих объектов исследования — традиционно применявшихся адсорбентов (активные угли, силикагели и другие ксерогели). В результате, во-первых, образовался разрыв между молекулярными моделями адсорбции, используемыми в теоретических исследованиях, и экспериментальными данными, получаемыми на адсорбентах, по степени чистоты и неоднородности структуры весьма далеких от теоретических моделей. Благодаря этому молекулярная теория адсорбции не находила экспериментальной базы, и ее развитие задерживалось. Во-вторых, выпускавшийся набор адсорбентов не смог удовлетворить и запросы новой техники. Например, для использования в хроматографии [c.5]

    Сопоставление результатов определения теплот адсорбции методом газовой хроматографии со статическим изостерическим методом и с прямыми калориметрическими измерениями на одних и тех же адсорбентах показывает, что хроматографический метод при известных условиях может быть использован для быстрого определения этих величин и их зависимости от природы твердой поверхности и природы адсорбата [20, 2 ]. К тому же газо-хроматографический метод позволяет определять теплоты адсорбции при весьма малых степенях заполнения, меньше 0,01 монослоя, что не представляется возможным в калориметрцческнх измерениях, и методом [c.490]

    Это можно видеть, в частности, па примере адсорбции нормальных алканов на непористой однородной поверхности графитированной термической сажи и в тонких каналах кристаллов цеолита NaX [75]. В обоих случаях пики симметричны, но с ростом числа атомов углерода в молекуле н.алкана в случае адсорбции в полостях пористых кристаллов цеолита NaX происходит сильное размывание пиков благодаря увеличивающемуся торможению обмена для молекул большого размера. В случае таких сильно размытых, хотя и симметричных, пиков процессы в колонке настолько отклоняются от равновесных, что применять термодинамические формулы для равновесной хроматографии без более глубокого анализа хроматограмм на базе теории наравновесной хроматографии нельзя. Поэтому следует ожидать отклонений термодинамических величин, вычисленных по максимумам сильно размытых симметричных пиков при помощи равновесной теории, от измеренных в статистических условиях. Эти отклонения должны увеличиваться с ростом размеров молекул и энергии адсорбции. На рис. 24 (см. стр. 54) сопоставлены зависимости теплот адсорбции нормальных алканов, определенных газохроматографическим и статическими (из изостер и калориметрических измерений) методами от числа атомов углерода п в молекуле для адсорбции па графитированной термической саже и в полостях пористых кристаллов цеолита NaX. В первом случае отклонения невелики и вполне объясняются тем, что газохромато-графпческие опыты для больших п проводились при более высоких температурах, чем статические (подробнее см. ниже стр. 126). В случае же пористых кристаллов оба метода дают совпадающие результаты лишь для низших членов гомологического ряда. [c.120]

    Вторая и третья причины, т. е. адсорбция воды и других полярных молекул небольшого размера из воздуха до и во время введения адсорбента в колонку и из газа-носителя несущественны при работе с неспецифическими адсорбентами [59, 62, 75]. Так, из рис. 24 можно действительно видеть, что результаты статических и газохроматографических определений теплот адсорбции нормальных алканов па графитированной саже близки. Эта причина не может быть существенной и при работе со специфическими адсорбентами с очень большой и однородной поверхностью, так как в течение достаточного для ряда хроматографических опытов времени она приводит к отравлению лишь незначительной ее части. Наоборот, при работе с сильными специфическими адсорбентами с низкой удельной поверхностью обе эти причины существенны и действительно приводят к отравлению поверхности достаточно прочно адсорбированными или даже хемосорбированными молекулами. Это наблюдается в случае образцов MgO [80] и Т10з [81] с низкой удельной поверхностью. Поэтому изучение адсорбционных свойств чистой поверхности специфических адсорбентов с низкой удельной поверхностью газохроматографическим методом затруднительно, по крайней мере при не очень высоких температурах. Дан<е для специфических адсорбентов с большой, но неоднородной поверхностью опасность отравления наиболее активных мест адсорбцией примесей существенна и она может стать причиной занижения газохроматографических данных по теплотам адсорбции. [c.123]

    Это было подтверждено также в работе Киселева, Черненьковой и Яшина [22], в которой газохроматографическим методом были определены теплоты адсорбции 0 , N2, СО и легких углеводородов — G3 цеолитами СаА, СаХ и NaX, а также бензола и н.гексана. Теплоты адсорбции азота, этилена и бензола значительно превосходят теплоты адсорбции соответственно кислорода, этана и н.гексана, что объясняется дополнительным вкладом специфического взаимодействия я-электронных связей с катионами поверхности цеолита. В этой работе было замечено также, что по мере увеличения размеров, а также энергии адсорбции молекул углеводородов значения теплот адсорбции цеолитами, определенные газо-хромато-графическим методом (нри допущении достижения термодинамического равновесия), начинают отставать от значений, определенных статическими методами [75] (см. рис. 24 на стр. 54). Большая энергия адсорбции, а также направленность специфических взаимодействий молекул азота и этилена с находящимися на поверхности цеолитов зарядами приводят к уменьшению относительных (соответственно к метану и пропану) времен удер- кивания этих молекул цеолитами с повышением температуры. Специфичность адсорбции сильно уменьшается при увлажнении цеолита [22[. Отношение исправленных времен удерживания этилена к соответствующим временам для пропана с увеличением степени влажности цеолита резко падает, тогда как отношение соответствующих времен для этана и пропана практически не зависит от степени влан<ности цеолита. [c.128]

    Из рис. 66 видно, что для нормальных алканов, молекулы которых взаимодействуют друг с другом только слабо (неснеци-фжчески), определения Qg статическими и газохроматографическими методами дают близкие величины. Эти величины Qo близки также и к теоретически вычисленным для адсорбции отдельных молекул величинам — Ф (на рис. 66 они обозначены крестиками). В случае же спиртов, т. е. молекул группы В, способных специфически взаимодействовать друг с другом, только газохроматографические определения теплот адсорбции (при очень малых заполнениях и повышенных температурах) дали величины Q(,, близкие к величинам —Фц, вычисленным для адсорбции отдель- [c.131]

    Из угла наклона прямых (рис. 4), полученных обоими методами, была определена изостерическая теплота адсорбции ксенона кристаллами цеолита НаХ при малом заполнении. Определенная газохроматографическим методом величина составляет 4,7 ккал1моль, что хорошо согласуется с результатами статических определений в интервале температур от —90 до 50° (4,5 ккал/моль). [c.64]


Смотреть страницы где упоминается термин Теплота адсорбции статическим методо: [c.104]    [c.145]    [c.142]    [c.555]    [c.555]    [c.491]    [c.119]    [c.62]    [c.65]   
Физические методы органической химии Том 2 (1952) -- [ c.170 , c.172 ]

Физические методы органической химии Том 2 (1952) -- [ c.170 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Метод статический



© 2024 chem21.info Реклама на сайте