Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Флуоресценция применение

    Главы 14—17 представляют собой превосходное введение во все аспекты аналитических р азделений представлена информация о теории и практике дистилляции, природе фазовых равновесий я экстракции и применение различной хроматографической техники для разделения смесей неорганических, органических и биологических веществ. Наиболее интересные методы современного спектрохимического анализа изложены в главах 18—21 — взаимодействие ультрафиолетового и видимого излучения с атомами и молекулами, приводящее к абсорбции, эмиссии и флуоресценции применение инфракрасной спектрометрии и спектрометрии комбинационно го рассеяния для определения молекулярной структуры. [c.19]


    Несмотря на высокую чувствительность молекулярной флуоресценции, применение для определения ртути весьма редко. Прямое определение [c.113]

    В последние годы разработаны способы, позволяющие значительно повысить эффективность разделения и количественного анализа методам ТСХ за счет нанесения на пластины очень малых (до 100 нанограмм) проб, перехода к круговой ТСХ и применения сканирующих пластинку устройств, фотометрирующих и регистрирующих интенсивность спектров рассеяния или флуоресценции сорбированных соединений или работающих на иных физических принципах детектирования [156]. [c.20]

    Анализ с помощью плоскостной (тонкослойной, бумажной) Ш X технически осуществляется почти так же, как и препаративное разделение, и отличается от последнего лишь малым объемом разделяемой пробы. Пятна разделенных ГАС выявляются сравнительно просто визуальным наблюдением их свечения при УФ облучении или окрашивании после опрыскивания слоя специфическими реагентами [267, 268]. В аналитических работах метод ТСХ чаще всего применяется для качественной идентификации отдельных групп соединений по характеру окрашивания (свечения) и параметрам удерживания (величинам И ). Получение точных количественных данных о составе разделяемой смеси с помощью ТСХ обычно связано с определенными трудностями. Некоторые перспективы улучшения разделения и облегчения количественного анализа кроются в применении уже упоминавшейся высокоэффективной круговой тонкослойной ЖХ и сканирующих устройств, фотометрирующих интенсивность спектров рассеяния или флуоресценции разделенных соединений [156]. [c.34]

    Трудность применения метода люминесценции для целей детальной характеристики структуры асфальтенов заключается в большой диффузности полос флуоресценции при комнатной температуре. По всей вероятности, эта трудность усиливается также наличием в таких сложных веществах, как асфальтены, нескольких соединений с взаимно перекрывающимися спектрами. [c.215]

    Этот принцип был применен М. 3. Бикбаевой [15 — 18] при изучении фракций асфальтенов. Низкотемпературные спектры флуоресценции и фосфоресценции фракций асфальтенов показали, что наряду с широкой полосой высвечивания в области 220— 400 нм просматриваются также полосы 660 и 680 нм. Для растворов асфальтенов в октановой матрице получены четкие линии 402, 407,9, 425,9, 426,3, 430 нм, которые характерны для индивидуального ароматического соединения — 3,4-бензпирена. При замораживании в матрице и-гексана нитробензольных растворов асфальтенов обнаруживалось красное свечение последних (720— 760 нм) при возбуждении свечения в максимуме полосы поглощения (405 нм). [c.215]


    Для выяснения тонкой структуры спектров флуоресценции их исследуют при низких температурах (например, при температуре жидкого азота 77 К), при этом подбирают растворители, в которых наиболее отчетливо проявляется структура спектров. Этот метод измерения квазилинейчатых спектров в твердой матрице при низких температурах был предложен Э. В. Шпольским. Особенно успешно он был применен к исследованию полициклических ароматических углеводородов. Получаемые квазилинейчатые спектры флуоресценции ароматических углеводородов в растворах алифатических углеводородов являются очень характерными и позволяют получать информацию о колебательной структуре основного электронного состояния ароматических углеводородов. Квазилинейчатые спектры флуоресценции обладают рядом важнейших свойств. Прежде всего квазилинейчатые спектры в каждом случае носят ярко выраженный индивидуальный характер (специфичность). В отличие от обычных размытых спектров поглощения и флуоресценции они существенно различаются даже у близких по строению молекул. Это отличие оказывается значительным и для изомерных молекул. Другая важная особенность квазилинейчатых спектров заключается в очень высокой селективности таких измерений. Благодаря малой ширине и высокой интенсивности линий квазилинейчатые спектры позволяют определять индивидуальные соединения в сложной смеси даже тогда, когда они входят в многокомпонентную смесь в ничтожно малых концентрациях. Третьей характерной особенностью квазилинейчатых спектров флуоресценции является чрезвычайно высокая чувствительность методов, основанных на их применении. Измерение квазилинейчатых спектров позволяет при прочих равных условиях увеличить чувствительность люминесцентных измерений примерно в 100 раз. [c.72]

    Применение методов флуоресценции [c.74]

    Применение импульсного фотолиза для изучения флуоресценции [c.169]

    Экспериментальная проверка и применение. Экспериментальное исследование опалесценции коллоидных систем осуществляют либо путем измерения интенсивности света, рассеянного под данным углом, либо по ослаблению проходящего света. Первый метод часто называют нефелометрией, а соответствующие ему приборы — нефелометрами. Устройства, используемые во втором методе, представляют собой обычные фотометры. В случае сильно разбавленных золей изометрических, достаточно малых, непроводящих бесцветных или слабоокрашенных частиц результаты измерений могут быть интерпретированы в рамках теории Рэлея. В качестве переменных используются длина волны света, угол, под которым измеряется рассеянный свет, разбавление (концентрация) золя, а также поляризация рассеянного света. Интенсивность рассеянного и проходящего света определяется визуальными сравнительными методами или с помощью фотометров и фотоэлектрических умножителей. С целью устранения эффекта флуоресценции используют то обстоятельство, что длина волны флуоресценции всегда повышена по сравнению с длиной волны рассеянного света. Поэтому, если при визуальном измерении рассеянного света использовать красный свет, эффект флуоресценции будет исключен. Так как интенсивность рассеянного света сильно зависит от угла наблюдения, то в исследованиях необходимо использовать очень узкий пучок света, а измерения производить при сильном диафрагмировании. К сожалению, эти требования, далеко не всегда выполнимые, вносят довольно большие сложности в изучение рассеяния света коллоидными системами и требуют тщательного обдумывания эксперимента. Желающим заниматься этими исследованиями мы рекомендуем ознакомиться с приборами новейшей конструкции. [c.26]

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]

    Наибольшее применение нашел морин-3, 5, 7, 2, 4 -пентаоксифлавон который в кислой среде образует с цирконием соединение, обладающее ярко-зеленой флуоресценцией. Структура соединения окончательно не выяснена. [c.95]

    Специальные области применения. Применяя специальные рентгеновские трубки, можно получать узкие пучки лучей диаметром. 100 мкм. В связи с этим в сплавах и рудах можно качественно и количественно анализировать отдельные фазы и включения без разрушения образцов. В случае когда необходимо измерить очень малую интенсивность линий флуоресценции, можно даже отказаться от разложения излучения в спектр кристалл-анализа-тором и определять элементы по энергии соответствующих квантов при помощи амплитудного анализатора. [c.217]


    Определение толщины покрывающего слоя при помощи рентгеновских спектрографов можно провести двумя путями а) непосредственно измерять интенсивность флуоресценции исследуемого внешнего слоя и б) определять способность его к поглощению излучения, возбуждая флуоресценцию нижележащего материала носителя. Так как для большинства слоев коэффициенты поглощения известны, его толщину можно рассчитать непосредственно. В первом методе определяют так называемое локальное распределение элемента в слое, которое при очень тонких слоях (до 150 нм) пропорционально интенсивности флуоресценции. Возможная модификация обоих методов может заключаться в определении толщин сравнением с эталонами. В зависимости от обстоятельств при выборе наиболее целесообразного метода учитывают как размеры и однородность слоя, так и атомные номера элементов покрытия и основы. Другие специальные области применения рассматриваются в литературе [25—32]. [c.218]

    Аналитическое применение атомно-флуоресцентной спектроскопии, как и всех спектроскопических методов, основано на построении градуировочного графика, который представляет собой графическую зависимость аналитического сигнала (например, значение мощности спектра флуоресценции) или логарифма сигнала от концентрации определяемого элемента или от логарифма концентрации. Обычно отсутствие информации о некоторых экспериментальных параметрах не позволяет предугадать точную форму такого графика. Однако общие закономерности его изменения ясны, и поэтому для выбора оптимальных условий измерений аналитик должен иметь представление о форме ожидаемого градуировочного графика. [c.137]

    Физико-химические (или инструментальные) методы анализа— это условное название большого числа количественных методов, основанных на измерении различных физических и химических свойств соединений и простых веществ (поглощение лучистой энергии, дисперсия, флуоресценция, потенциал разложения, поверхностное натяжение и т. д.) с использованием соответствующих приборов. Применение их позволяет намного полнее охарактеризовать состав и количество исследуемых материалов, сократить по сравнению с химическими методами продолжительность определений и повысить точность. [c.60]

    НИИ зависимости кинетики интенсивности излучения (или квантового выхода) от концентрации излучающих и тушащих частиц. В этом разделе мы сначала ознакомимся с применением стационарных методов исследования тушения флуоресценции (или фосфоресценции), а затем дадим определение излучательного времени жизни люминесцирующего уровня, существенного при нестационарных условиях. [c.85]

    Свойства бесцветный порошок, сл. раств. в воде, EtOH, ацетоне, легко раств. в щел. растворах, приводя к интенсивной синей флуоресценции Применение в анализе фл. — F  [c.656]

    Свойства желто-оранжевый порошок, т. пл. 312—318°С (разл.), нераств. в воде, Et20, H I3 и СеНе раств. в EtOH и МегСО водные растворы натриевой соли (уранин) проявляют интенсивную зеленую флуоресценцию Применения в анализе фл. — фл. яде, и окисл.-восст. инд. кач. пр. — Вг- титр. — Вг , С1 , I-  [c.724]

    Свойства аморфный белый порошок, т. пл. 174,9°С, почти нераств. в воде, легко раств. в EtOH, Et20. Растворы хинина в серной кислоте дают интенсивную голубую флуоресценцию Применения в анализе кач. пр. — Bi фл. кисл.-осн. инд., интервал pH 5,9—6,1 фл.— эталон [c.727]

    Большой интерес представляют работы, появившиеся в последние годы, в которых метод поляризовапной флуоресценции применен к исследованию белков и других биологических и биохимических объектов. Среди них особого внимания заслуживают работы Вебера. В первой из них [27] проведены теоретические расчеты деполяризации люминесценции для случая эллипсоидальных молекул, у которых имеются три разных характеристических времени врап] ательной релаксации, соответствующих трем осям эллипсоида. Эти расчеты учитывают хаотичность ориентации излучающих осцилляторов относительно осей молекул. Последнее существенно во всех случаях, когда флуоресцируют молекулы, связанные с крупными нефлуоресцирующими частицами. Кроме этого, расчеты учитывают также и ту деполяризацию, которая обусловливается колебаниями осцилляторов в молекуле, а также возможность присутствия в растворе нескольких флуоресцирующих компонентов. [c.339]

    Свойства. Протравной краситель антрахинонового ряда. Темно-коричневый порошок. Из нитробензола кристаллизуется в виде листочков с бронзовый блеском. Не растворим в воде, растворим в ледяной уксусной кислоте, раствор имеет желтовато-красную окраску с зеленой флуоресценцией. С растворами щелочей дает сиешй раствор, с конц. серной кислотой — синий раствор с красной флуоресценцией, . Применение. В микроскопии в сочетании с хлоридом алюминия в качест ве протравного красителя для получения очень чистой и четкой окраски ядер в синий цвет [Ромейс, 176]. I, Хранение. Плотно укупоренный.  [c.25]

    Характеристика некоторых серийных фотоумножителей представлена в табл. П1-14 [1, 36, 62]. Наибольшее распространение при измерении интегральной флуоресценции имеют фотоумножители с торцевым сурьмяно-цезиевым фотокатодом диаметром 34 мм—ФЭУ-19 и ФЭУ-29 они одинаковы по изготовлению, но ФЭУ-29 — лучший образец. Для - измерения свечения таких растворов, как экстракты родаминовых комплексов металлов, целесообразно применять фотоумножители с вис-муто-серебряно-цезиевыми или сурьмяно-натриево-калиево-цезиевыми фотокатодами, например ФЭУ-12, ФЭУ-14, ФЭУ-38. Выше было отмечено, что такие фотоумножители особенно эффективны во флуориметрах с возбуждением при помощи ламп накаливания их следует применять также и для снятия спектров флуоресценции. Применение остальных типов ФЭУ во флуориметрии пока ограниченно, но они могут быть полезными для разрешения отдельных частных задач. [c.111]

    Чувствительным методом обнаружения и измерения концентрации атомов, радикалов и насыщенных молекул, получившим нриме-нение в последнее время, является метод резонансной флуоресценции. Особенно высокая чувствительность этого метода получается при применении лазеров в качестве источников возбуждения [175, 234]. [c.25]

    Флуоресцеин образует темно-желтые кристаллы, которые растворяются в щелочах с оранжевым окрашнваннем и сильной, очень красивой зеленой флуоресценцией. Последняя настолько интенсивна, что позволяет обнаруживать даже очень незначите.тьные количества красителя. Поэтому флуоресцеиновая проба используется для качественного определения л-диоксибензолов, а также фталевого ангидрида. Интересно применение этого красителя для установления места слияния различных водных источников. [c.770]

    Для определения ртути после ее восстановления хлоридом олова предложен атомно-флуоресцентный метод с применением низкотемпера-рного пропан-воздушного пламени [12]. Флуоресценция паров ртути возбуждается также излучением ртутной лампы при 184,9 и 253,7 нм 1131. В этом случае предел обнаружения метода достигас т К) %. [c.249]

    Определение ПАУ в объектах окружающей среды, основанное на применении эффекта Шпольского, включает в себя их концентрирование путем экстракции н-гексаном, а затем идентификацию и количественное определение. В частности, количественное определение бенз(а)пирена проводят по линейчатым спектрам флуоресценции экстрактов [18]. Предел обнаружения с использованием внутренних стандартов составляет 10 7-10 8 о/д а д случае метода добавок - до 3 10 %. Как правило, спектры люминесценции регистрируют при 77 К (жидкий азот). Снижение температуры позволяет улучшить отношение сигнал/шум, однако сложность требуемого оборудования (гелиевые криостаты) гфепятствует внедрению сверхнизких температур. Обычно экстракт замораживают быстрым по-фужением тонкостенной кварцевой пробирки в жидкий азот. Иногда наносят каплю раствора на охлаждаемую площадку криогенератора. Для возбуждения люминесценции гфименяют источники с непрерывным спектром (ксеноновые лампы), из которого с помощью монохроматора или интерференционного фильтра вьщеляют полосы в 1-3 нм. Длины волн, рекомендуемые для возбувдения каждого ПАУ, приведены в [c.250]

    В соответствии с существующей в настоящее время теоретической концепцией получение абсолютно чистых веществ т. е. совершенно не содержащих примесей) принципиально возможно, но только в очень небольшой области концентраций для достаточно большой пробы чистого вещества и за более или менее ограниченный промежуток времени. Для контроля чистоты необходимы особо чувствительные методы анализа. Применение методов ультрамикроанализа позволяет осуществить мечту аналитиков — обнаружение отдельных атомов в матрице вещества. Одним из таких методов является лазерная спектроскопия. Вещество испаряют и атомы селективно возбуждают действием лазерного излучения в узкой области частот. Возбужденный атом затем ионизируется вторичными фотонами. Число испускаемых при этом свободных электронов фиксируют пропорциональным счетчиком. С помощью эффективно действующей лазерной установки можно ионизировать все атомы определяемого вещества. Метод, основанный на использовании этого явления, называют резонансной ионизационной опектро-скопией (РИС). Например, можно определять отдельные атомы цезия. В другом варианте метода — оптически насыщенной нерезонансной эмиссионной спектроскопии (ОНРЭС) — измеряют интенсивность флуоресцентного излучения возбужденных атомов. Чтобы отличить излучение определяемых элементов от излучения других компонентов пробы, длины волн флуоресценции сдвигают воздействием других атомов или молекул. Этим методом также можно определять отдельные атомы вещества, например натрия. [c.414]

    Эффективным индикатором, указывающим на мицеллообразование, может служить такой краситель, у которого окрашенный ион имеет заряд, противоположный по знаку заряду мицелл ПАВ. Таким образом, ККМ анионных ПАВ можно установить с помощью красителей катионного характера. Из них наибольшее применение нашли пинацианолхло-рид (или йодид) и родамян 60. В случае родамина 60 определение основано на том, что выше. ККМ появляется интенсивная флуоресценция раствора. [c.130]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    Хроматографический анализ органических веществ развивался попутно с хроматографией неорганических веществ. В 1935— 1936 гг. появились первые сообщения об успешном применении метода Цвета в анализе синтетических красителей. Из жидкофазных вариантов хроматографии наиболее широкое применение в органической и биологической химии получила бумажная хроматография. Это тонкий микрометод, позволяющий разделять смеси нескольких десятков компонентов на полоске пористой бумаги, которая выполняет роль хроматографической колонки. Хроматограмма получается в виде пятен, окраска которых соответствует природной окраске разделяемых компонентов смеси. При анализе бесцветных веществ пятна проявляют, опрыскивая бумагу реактивом, образующим с разделяемыми компонентами окрашенные соединения. Например, при определении аминокислотного состава белков после их гидролиза бумагу опрыскивают раствором нин-гидрина, в результате чего на поверхности бумаги появляются пятна розового цвета, соответствующие индивидуальным аминокислотам (см. рис. 1.2). Если разделяемые бесцветные вещества обладают способностью к флуоресценции, бумагу облучают ультрафиолетовыми лучами (кварцевой или ртутной лампой) и тогда хроматограмма становится видимой. Этот случай можно наблюдать при разделении смеси антрахинонов, пятна которых в ультра- [c.9]

    Метод основан на взаимодействии бромидного комплекса индия с родамином 6Ж. Образующееся соединение экстрагируют бензолом из 15 н. серной кислоты и определяют концентрацию индия по интенснвно-сти флуоресценции экстракта. Мешающие ионы железа (III), меди (II), олова (IV), сурь.мы (III), таллия (III), золота (III), ртути (II) удаляют при экстракции индия бутилацетатом с последующей реэкстракцнеи хлористоводородной кислотой. Возможен ускоренный вариант отделения мешающих элементов с применением двукратного осаждения аммиаком и цементации на металлическом железе. [c.388]

    Флуоресценция проявляется очень сильно при применении кварцевой (ртутной) лампы, свет которой богат ультрафиолетовьши лучами. [c.159]

    Довольно широкое применение в фотохимии при исследовании промежуточных продуктов нашли методы магнитного резонанса. Для исследований как дублетных радикалов, так и молекул в триплетном возбужденном состоянии используется собственно метод электронного парамагнитного резонанса (ЭПР). Хотя в газовой фазе молекулы с орбитальным моментом (например, Ог Дг) также дают парамагнитный резонанс, основной областью применения этого метода являются исследования в жидкой фазе. Один из недостатков собственно метода ЭПР заключается в ограниченном временном разрешении (около I мкс), преимущественно обусловленном параметрами микроволнового резонатора. Метод спинового эха позволяет достигать временного разрешения примерно 50 нс. Однако наилучшее временное разрешение порядка нескольких наносекунд дает метод оптически детектируемого магнитного резонанса (ОДМР). Этот метод относится к большой группе методов двойного резонанса. Переход в микроволновой области распознается не по поглощению, непосредственно измеряемому в микроволновом диапазоне, а по некоторому эффекту, например изменению поглощения или флуоресценции в видимой области вследствие изменений взаимодействия при перераспределении заселенностей спиновых состояний. Мы уже ссылались (см. разд. 3.7) на метод химической поляризации ядер и метод химически индуцированной динамической поляризации электронного спина при изучении поведения радикальных пар. В первом методе используется поляризация рекомбинирующих мо- [c.198]

    Экспериментальное изучение подвижности ядер при фотодиссоциации представляет трудную, но очень престижную цель потому, что изменения структуры молекул происходят на межъядерных расстояниях порядка десятых долей нанометра на временных интервалах в фемтосекундном диапазоне. Интересный подход к этой проблеме связан с применением спектроскопических эффектов, обусловленных движением ядер, в качестве индикатора зависимости от времени. В сущности требование высокого временного разрешения трансформируется в необходимость измерения амплитуд сигналов в зависимости от частоты. Как конкретный пример рассмотрим молекулу О3. При поглощении фотона эта молекула предиссоциирует в течение примерно одного колебания. Она определенно не может рассматриваться как флуоресцирующая молекула (см. разд. 3.3 и 4.3). Однако очень малая часть молекул испускает излучение (около 1 на 10 ), и при интенсивном лазерном возбуждении и чувствительной системе регистрации спектр испускания может быть записан. Интересное свойство этой флуоресценции заключается в необычно длинных последовательностях колебательных полос. При распаде молекулы она проходит через все возможные молекулярные конфигурации так, что франк-кондонов-ские вероятности переходов на соответствующие этим конфигурациям уровни оказываются большими (см. разд. 2.7). С точки зрения динамики диссоциации более важно то, что интенсивности наблюдаемых линий в опосредованном виде представляют подвижность молекул в возбужденном состоянии и тем самым несут информацию о процессе диссоциации. Диссоциация О3 под действием УФ-излучения — очевидный пример того, как качественное понимание динамики может быть получено простым способом. Полосы деформационных колебаний не видны в спектре испускания, что прямо предполагает, что деформационные колебания не участвуют на ранних стадиях реакции. Более того, наблюдаются только переходы с участием четных уровней антисимметричных валентных колебаний. Этот результат интерпретируется в рамках симметрии процесса диссоциации. [c.207]


Смотреть страницы где упоминается термин Флуоресценция применение: [c.204]    [c.20]    [c.396]    [c.90]    [c.484]    [c.485]    [c.301]    [c.369]    [c.132]    [c.195]   
Физическая Биохимия (1980) -- [ c.421 , c.427 ]




ПОИСК





Смотрите так же термины и статьи:

Флуоресценция



© 2025 chem21.info Реклама на сайте