Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

О современном состоянии теории скорости реакции

    Скорость химической реакции А + + В О + Е будет определяться числом столкновений возбужденных молекул А и В, суммарная энергия которых должна быть выше энергии Е, необходимой для образования переходного состояния. Однако это условие является необходимым, но не достаточным. Для образования переходного состояния кроме избыточной энергии сталкивающихся молекул необходимо благоприятное расположение атомов в реакционных центрах реагирующих молекул. Следовательно, теория элементарного химического акта должна давать возможность расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из строения и свойств реагирующих молекул. Одним из первых направлений в развитии теории элементарных реакций является теория активных столкновений. Ее основы разрабатывались на базе молекулярно-кинетических представлений и идеи, выдвинутой Аррениусом об активных столкновениях, заканчивающихся химическим актом. На современном этапе это направление развивается на базе квантовой теории химической связи и строения молекул. Начало этому было положено работами Эйринга, Эванса, Поляни и др., создавших новое направление в теории элементарных химических реакций, так называемую теорию абсолютных скоростей реакций. В этой теории ставится задача расчета высоты энергетического барьера и вероятности образования переходного состояния исходя из свойств реагирующих молекул. За последние три десятилетия получило развитие новое направление в теории элементарных химических реакций, в котором строение и свойства переходного состояния описываются на базе теории молекулярных орбиталей. [c.562]


    Все эти факторы, влияющие на энергию активации, часто проявляются одновременно и, строго говоря, не могут быть отделены один, от другого. Однако при современном состоянии теории химических реакций рассмотрение всех структурно-химических факторов, влияющих на скорость реакции, с единой точки зрения представляет трудную задачу. В этой главе будут рассмотрены некоторые теоретические соображения, преимущественно качественного характера, относительно полярного эффекта при радикальных реакциях. Эти соображения позволят более систематически рассмотреть опытные данные по радикальным реакциям молекул, содержащих гетероатомы. [c.242]

    Современное состояние теории элементарного химического акта и теории катализа позволяет определить лишь направления, по которым следует вести поиски катализаторов и условий процесса. Как правило, еще требуются большие экспериментальные исследования при создании новых высокоэффективных катализаторов и каталитических процессов. Одной из задач химической кинетики является выяснение возможности представления сложного химического процесса в виде стадий и определение скоростей, констант скоростей и энергий активации отдельных стадий. Эта задача частично решается в разделе химической кинетики, который получил название формальной кинетики химических реакций. [c.532]

    Применение метода переходного состояния значительно расширило возможности теоретического подхода к решению кинетических задач. Однако современное состояние теории этого метода представляется крайне неудовлетворительным. В последнее время получила значительное распространение теория абсолютных скоростей реакций, которая в ряде своих положений обнаруживает тесную связь с грубо ошибочной идеалистической теорией резонанса . Многие выводы теории абсолютных скоростей реакций, в особенности расчеты энергий активации, не верны и нуждаются в серьезном пересмотре. [c.85]

    Точками на этой схеме обозначена пониженная плотность электронов по сравнению со связями в исходных молекулах. Современные теории скоростей реакций основаны на подробном рассмотрении этой промежуточной стадии реакции, которую называют переходным состоянием или активированным комплексом . Воспользовавшись первым термином, мы можем определить молекулярность как некоторое число ранее обособленных молекул или атомов, которые соединяются с образованием переходного состояния в одной стадии реакции. [c.65]


    Химическая кинетика, как и термодинамика, является теоретической базой химической технологии. Поэтому состояние и достижения науки в области кинетики и катализа в значительной степени определяют технический уровень производства в химической промышленности. Для разработки высокоэффективных реакторов и процессов необходимо прежде всего найти кинетические уравнения, описывающие процесс, константы скоростей реакций и зависимость их от различных факторов. Нужны высокоэффективные селективные катализаторы. Решение этих задач осуществляется на базе законов химической кинетики. На современном этапе развития теории химической кинетики центральной является проблема зависимости реакционных свойств химической системы от строения атомов и молекул [c.521]

    Основное положение теории абсолютных скоростей химических реакций заключается в том, что всякий элементарный химический акт протекает через переходное состояние (активированный комплекс), когда в реагирующей системе исчезают отдельные связи в исходных молекулах и возникают новые связи, характерные для продуктов реакции. В теории абсолютных скоростей химических реакций можно выделить две основные задачи расчет поверхности потенциальной энергии элементарного акта и расчет вероятности образования и времени существования переходного состояния. Первая задача связана с решением уравнения Шредингера для системы частиц, образующих активированный комплекс. Эта проблема очень сложна и в настоящее время приближенно решается с помощью современных ЭВМ только для простейших реакций. Поэтому в основном теория развивается в поисках методов оценки энергии и энтропии образования активированного комплекса исходя из свойств реагирующих молекул. [c.568]

    Здесь имеется полная аналогия с тем, что мы говорили выше о причинах появления полуэмпирических методов квантовой химии. Кроме того, современные исследования в области кинетики показали и недостаточность теории активированного комплекса, например в определении влияния возбужденных колебательных состояний реагирующих веществ на скорость реакции и в других вопросах, рассматриваемых на молекулярном уровне [60]. [c.153]

    Классические воззрения на химические реакции, как на реакции, в основе которых лежат активированные молекулы и эффективные столкновения, для современной кинетики являются недостаточными, так как они не затрагивают поведения молекул в момент соударения и причин превращения одной реагирующей системы в другую. В результате развития статистической термодинамики было создано новое представление о переходном состоянии [33], так называемая теория активированных, комплексов, или теория абсолютных скоростей реакций. Основная идея этой теории заключается в том, что при реакциях исходные молекулы, активируясь, образуют активированный комплекс, в котором они находятся в особом переходном состоянии. Это позволяет системе легче перейти через потенциальный энергетический барьер, в результате чего происходит конечный распад. Например, реакцию следует изобразить таким образом [c.128]

    В связи с этим Аррениус выдвинул идею, согласно которой условие эффективности столкновений состоит в том, что участвующие в них молекулы должны иметь повышенный запас энергии и что любой реакции предшествует превращение определенной части нормальных молекул в особое, активное состояние. Откуда же черпают активные молекулы необходимую избыточную энергию Напомним, что молекулы газов находятся в непрерывном хаотическом тепловом движении. Их энергии и скорости неодинаковы. При столкновениях молекул друг с другом происходит обмен энергиями и осуществляется определенное распределение молекул по энергиям. Таким образом, активные молекулы возникают из нормальных в результате случайных благоприятных столкновений. Статистическая термодинамика показывает, что благодаря огромному числу молекул в реальных телах случайный на первый взгляд характер распределения молекул по скоростям представляет собой строгую закономерность. Представления о существовании некоторого промежуточного состояния па пути реакции сохранились и в современных теориях. [c.237]

    На основе современных представлений о структуре молекулы была разработана новая теория, которая известна иод названием теории абсолютных скоростей реакций, или теории переходного состояния. [c.89]


    Указанные величины можно оценить, не прибегая к эксперименту. Для их расчета можно воспользоваться теорией абсолютных скоростей реакций (теорией переходного состояния), основанной на применении термодинамики и современных представлений о строении молекул [2, 3]. [c.10]

    По мнению Эйринга [55], теория переходного состояния в своем современном виде не может (и никогда не была предназначена) уверенно оперировать с теми величинами различий в скоростях реакций, с которыми сталкиваешься при изучении вторичных изотопных эффектов,. Тем не менее, если возникает необходимость теоретического рассмотрения подобных эффектов, следует все же воспользоваться теорией кинетических изотопных эффектов, которой, по существу, ограничиваются все наши возможности в настоящее время. К счастью, как указывают Бигеляйзен и Вольфсберг [48а], влияние изотопного замещения на различные количественные характеристики молекул может быть часто предсказано с большей достоверностью, чем сами характеристики. Поэтому можно было бы попытаться предсказать величины изотопных эффектов даже для таких сложных реакций, для которых никто бы не взялся предсказать величину к>у. [c.113]

    Теперь мы постараемся показать, как информация такого типа может быть использована для понимания сущности протекания химических реакций. Мы опишем здесь основы и достижения теоретического рассмотрения скоростей реакций в его современном состоянии. Начнем с наиболее простой системы — газофазной мономолекулярной реакции. Теория мономолекулярных реакций, однако, еще далека от завершения, и в настоящее время ее уточнение продолжается усилиями ученых многих стран. [c.230]

    Органическая химия в своем развитии стремится к тому, чтобы ее основные законы и теории позволяли без специально поставленных опытов избирать приемлемый метод синтеза любого органического вещества и предсказывать все его свойства. Однако строение молекул большей части органических веществ настолько сложно, что едва ли кот да-либо в полной мере будет достигнуто такое состояние науки. Поэтому химики-органики должны довольствоваться более скромной целью — извлечением из точных данных науки всего, что может содействовать проявлению их чудесного инстинкта (Гильберт Льюис). Роль, которую в этом может играть современная физическая химия, становится ясной, если руководствоваться ранее сказанным. Так, чтобы избрать хороший способ синтеза любого органического соединения, необходимо учитывать следующее 1) намеченная реакция должна быть термодинамически возможной, 2) реакция должна протекать с достаточно большой скоростью, чтобы ее можно было осуществить практически, и 3) она должна сопровождаться возможно меньшим числом побочных реакций, а те из них, которых нельзя избежать, должны протекать значительно медленнее главной реакции. Отсюда, естественно, вытекает, что если мы хотим иметь возможность учесть эти условия, необходимо знать, какое влияние оказывают изменения среды и строения молекулы как на свободную энергию, так и на энергию активации реакций органических веществ. Но для осуществления этого должно произойти слияние электронных теорий органической химии с такими современными ответвлениями физической химии, как квантовомеханическая концепция резонанса и теория переходного состояния в кинетике реакций. Главная цель данной книги состоит в том, чтобы показать, каким образом осуществилось такое слияние идей. Поиски решения родственной задачи предсказания физических свойств веществ на основе знания их молекулярной структуры заставили бы нас заглянуть во все самые отдаленные уголки физической химии. Вторая проблема будет лишь частично рассмотрена в этой книге, так как для решения этой проблемы пришлось бы охватить слишком обширную область. [c.13]

    Соотношение между скоростями химической реакции и процесса дезактивации является сложной функцией электронных состояний исходных и конечных частиц, энергии электронного возбуждения частицы А, запаса и распределения тепловой энергии частиц А и В, вероятности превращения энергии в процессе дезактивации и т. д. (см., например, [1118]), Не останавливаясь на теоретической оценке констант скорости указанных процессов, требующей построения поверхностей потенциальной энергии для исходного и конечного состояний системы, знания энергий активации ИТ. п., из чего следует, что на современном уровне развития теории элементарного акта взаимодействия молекул такая оценка практически во всех случаях не может считаться надежной, здесь мы рассмотрим некоторые экспериментальные данные, относящиеся к реакциям электронновозбужденного атома иода с молекулами С Нв и СзН , а также к реакциям, некоторых других частиц. [c.300]

    Как было показано, теория столкновений дает наглядное и в ряде случаев согласующееся с опытом описание закономерностей, определяющих скорости газовых реакций. Однако развитие исследований показало, что она недостаточна для объяснения большого круга явлений и, главное, для теоретического предсказания течения реакций во времени. Так, теория столкновений не в состоянии объяснить существование большого числа как медленных реакций, скорости которых намного меньше вычисляемых, так и очень быстрых реакций. Это обусловлено упрощенным характером теории, рассматривающей молекулы как миниатюрные шарики и не учитывающей взаимодействие молекул перед столкновением, внутримолекулярное движение атомов, взаимную ориентацию в пространстве реагирующих молекул. Эти явления учитываются в современных теориях, которые дают и более подробное описание процесса активации и физической природы энергии активации. Остановимся вкратце на последнем вопросе. [c.176]

    В предыдущих главах было показано, что обязательной стадией гетерогенных каталитических реакций является образование промежуточного соединения адсорбционного типа на поверхности катализатора. Свойства этого промежуточного соединения определяют направление и, в случае если процесс лежит в кинетической области, скорость химического процесса, уровень активности катализатора и те кинетические характеристики, которые обычно можно получить из опытных данных. Свойства самого промежуточного соединения определяются характером взаимодействия между исходными веществами и активными центрами катализатора на его поверхности, т. е. электронным состоянием поверхности катализатора и катализируемых моле-, кул, а следовательно, электронным состоянием промежуточного соединения. Поэтому объяснение каталитических превращений на основе электронных представлений является одним из главных аспектов современной теории гетерогенного катализа. [c.479]

    В последние годы все чаще обнаруживаются ферментативные реакции, не подчиняющиеся так называемой кинетике Михаэлиса (простой гиперболической зависимости начальной скорости реакции от концентрации субстрата). Кинетика таких, реакций представляет большой интерес, поскольку она может быть связана с механизмом саморегуляции на уровне индивидуального фермента. В книге Уэстли эти актуальные допросы рассмотрены, по нашему мнению, несколько поверхностно и не вполне отражают современное состояние теории, развивающейся особенно интенсивно в последние 2 — 3 года. По этим причинам мы сочли целесообразным снабдить гл. XV, посвященную регуляции активности ферментов, небольшими подстрочными примечаниями и ссылками на работы, вышедшие в последнее время. В список лит - [c.6]

    В монографии излагается современное состояние теории диссоциации двухатовгшых и многоатомных молекул в газах. Подробно рассматриваются вопросы вычисления плотности состояний, удельной константы скорости спонтанного распада многоатомных молекул, механизмы и модели активации. Особое внимание уделяется изучению роли различных видов внутримолекулярного движения в кинетике диссоциации и реакциям в экстремальных условиях (высокие температуры, быстрое изменение температуры и плотности в ударных волнах, неравновесное состояние среды или неравновесная заселенность разных подгрупп степеней свободы реагирующих молекул, лазерная и химическая активация, мономолекулярный распад в газовой фазе при активации на стенке сосуда). [c.2]

    Оценка теорий скорости реакции. Теория столкновени1г и теория переходного состояния не могли бы достичь современной ступени развития и оценки без изучения реакций в газовой фазе мы не могли бы также быть уверены в адиабатической природе большинства термических реакций и в факторах, управляющих энергией и энтропией активации. [c.23]

    Первые представления о механизмах реак1щи относятся к области органической химии и органических реакций. Ведущую роль в изучении механизмов и развитии представлений о них сыграли работы Вант-Гоффа, Бо-денштейна, Нернста, Меншуткина, Аррениуса, Шилова, Баха, Мельвина-Хьюза, Хиншелвуда, Ингольда, Семенова, Эмануэля и др. Трудно переоценить теоретические работы Эйринга, Поляньи, Глэсстона, Кимбалла и других по созданию теории абсолютных скоростей реакций, которая вполне отвечает современному состоянию науки и уровню химических знаний сегодняшнего дня. Наиболее глубокий, ясный и вместе с тем исчерпывающий обзор механизмов органических реакций приведен в великолепной монографии К. Ингольда Теоретические основы органической химии (М., Мир, 1973). Другой областью химической науки, в которой развивались и применялись успешно представления о механизмах реакций, была химия координационных соединений. Это связано с тем, что координационная химия имеет дело с органическими молекулами как лигандами и многоступенчатым характером реакции комплексообразования. Начиная со второй половины XX столетия в обеих этих областях химии представления о механизмах развивались параллельно, заметно обогащая друг друга. [c.200]

    В число основных факторов, определяющих начальную скорость ферментативной реакции, входят концентрация фермента и субстрата, pH и температура, наличие активаторов и ингибиторов, причем концентрация субстрата является одним из наиболее важных. График зависимости между начальной скоростью и концентрацией субстрата выражается в виде ветви равнобочной гиперболы. Краеугольным камнем ферментативной кинетики является теория Михаэлиса-Ментен о механизме взаимодействия фермента и субстрата через образование про.межуточного фермент-субстратного комплекса, что является исходным моментом самых современных концепций. Теория исходила из факта, что равновесие между ферментом и субстратом достигается быстрее, чем разрушается фермент-субстратный комплекс. Однако анализ, проведенный Бригсом и Холдейном, показал, что в любой момент реакции скорости образования и распада фермент-субстратного комплекса практически равны, то есть достигается стационарное состояние, в котором концентрация промежуточного соединения постоянна. На основании этого было предложено уравнение, выполняемое для многих механизмов реакций, катализируемых ферментами, которое на- [c.203]

    В современных исследовательских химических лабораториях, особенно в промышленных, немалую долю времени тратят на подбор активных и селективных гетерогенных катализаторов для новых химических реакций или уже существуюш их, но недостаточно эффективных промышленных процессов. Это связано, с одной стороны, с тем, что около 90% крупнотоннажных химических и нефтехимических производств базируются на применении катализаторов", в основном гетерогенных, а с другой стороны — с тем, что подбор катализаторов ведется большей частью чисто эмпирическими методами. Последнее обятоятельство и вызывает наибольшие нарекания в отношении теории катализа, которую обвиняют в крайней отсталости, эмпиризме и прочих грехах. Между тем, если объективно разобраться, состояние теории катализа, в том числе и гетерогенного, в настояш ее время соответствует обш ему состоянию теории химической реакционной способности, поскольку и последняя Не дает сегодня ВОЗМОЖНОСТИ определять скорости реакций чисто расчетным путем. Количественная теория химических реакций пока находится В начале своего пути. Она в значительной степени базируется на полуэмпирических закономерностях, аналогиях, качественных правилах и чисто экспериментальном материале. Химия гетерогенного катализа отличается от других разделов химии тем, что, во-первых, здесь всегда участвует в реакции на один компонент больше и моно-молекулярные реакции теоретически невозможны, а во-вторых, тем, что в ходе реализации реакций на них всегда накладываются физические явления. Физическая сторона явлений гетерогенного катализа теперь, однако, в значительной степени прояснена и поддается во многих случаях прямому расчету, а химическая, как указывалось, решается так же, как и в других разделах химии. [c.4]

    При решепии задач дискриминации механизмов реакции можно использовать информацию о расчетных и наблюдаемых временах релаксации и отбрасывать на ее основе заведомо неадекватные схемы. Другая задача, связанная с определением констант скоростей стадий реакции, может быть также решена, если удается определить взаимосвязь времен релаксации с этими константами. Такого рода задачи рассмотрены, например, в работах [44—49], где дано введение в теорию и практику релаксационных методов [44—46], проведена классификация релаксациоппых иривых в соответствии со структурой механизмов реакций [47] и отражено современное состояние релаксационных методов исследования гетерогенных каталитических реакций [48, 49]. [c.222]

    В статистической теории масс-спектра [2] исходят из того, что в первичном акте ионизации молекулы при электронном ударе образуется молекулярный ион, который некоторое время существует как целое, причем энергия возбуждения статистически распределяется по его внутренним степеням свободы. Затем этот молекулярный ион но законам мономолекулярного распада диссоциирует, образуя различные первичные осколочные ионы, которые в свою очередь могут претерпевать дальнейший распад также по мономолекулярному закону. Константы скоростей реакций таких распадов определяются плотностью энергетических уровней у соответствующих переходных состояний. Влияние замещающих функциональных грунн на эту плотность должно быть аналогично действию этих заместителей на переходное состояние в обычных реакциях органических молекул, хотя эти состояния могут отличаться от ионных как энергетическими уровнями, так и конфигурацией атомов в них. Объяснению кшетических явлений посвящено большое число исследований в современной физико-органической химии [3], которая оперирует понятиями поляризуемости, сверхсопряжения, резонанса, индукции и т. д. [c.349]

    Область каталитических химических реакций исключительно сложна. Рассмотрение теории каталитических превращений даже в самой элементарной и простой форме выходит из рамок данной монографии. Этому вопросу посвящены превосходные руководства, ознакомление с которыми даст читателям достаточно полное представление о современном состоянии науки о катализе [1—3]. Как хорошо известно, катализ основывается на том, что скорость некоторых химических реакций в сильной степепи зависит от присутствия некоторых веществ (называемых катализаторами) не претерпевающих превращения в ходе реакции. Катализаторы могут увеличивать (положительный катализ) или уменьшать (отрицательный катализ) скорость реакции или направлять реакцию в определенном заданном направлении. В зависимости от фазовых соотношений между катализатором и реагирующими веществами различают гомогенные и гетерогенные каталитические реакции. Гомогенные каталитические реакции характеризуются тем, что катализатор и исходные вещества находятся в одной и Т011 же фазе, в то время как при гетерогенном катализе катализатор и исходные вещества находятся в различных фазах или агрегатных состояниях. Каталитические процессы очистки газа основываются на явлениях положительного катализа. Поскольку обычно применяются твердые катализаторы, в данном случае речь идет о гетерогенных каталитических превращениях. [c.322]

    Менделеев [278, 279] предвидел современное развитие квантовой теории активации адсорбированных молекул. Все молекулы находятся в состоянии движения или колебания. При контакте с поверхностью твердого вещества движение молекул изменяется. Возникающее вследствие этого напряжение может часто изменить равновесие в молекуле и привести к реакциям, которые в противном случае не могли бы итти с заметной скоростью. В современной формулировке это означает,, что адсорбция молекул вызывает изменение реакционно способности или приводит к возбужденному состоянию, зависящему от конфигурации молекулы во время вибрации. [c.300]

    Некоторые из самых последних выводов квантовой теории активации адсорбированных молекул были предсказаны в качественной форме в чрезвычайно интересной статье Менделеева в 1886 г. Признавая, что все молекулы находятся в состоянии движения или колебания, он предположил, что в результате изменения этого движения при соприкосновении молекул с твёрдой поверхностью происходит их деформация, которая может настолько нарушить равновесие молекул, что становятся возможными различные реакции, которые иначе не могли бы итти со сколько-нибудь заметной скоростью в современной терминологии это означает, что деформация адсорбированной молекулы может приблизить её к активному или возбуждённому состоянию, зависящему от конфигураций, образующихся при колебаниях. [c.362]


Смотреть страницы где упоминается термин О современном состоянии теории скорости реакции: [c.510]    [c.286]    [c.27]    [c.222]    [c.154]    [c.107]    [c.58]    [c.112]    [c.13]    [c.287]    [c.222]    [c.154]    [c.89]    [c.89]   
Смотреть главы в:

Теория горения -> О современном состоянии теории скорости реакции




ПОИСК





Смотрите так же термины и статьи:

Теория реакций



© 2024 chem21.info Реклама на сайте