Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрофильное замещение при атоме углерода

    Реакция представляет электрофильное присоединение к алкену последовательно ВНп, его алкил- и диалкилпроизводных. Электрофильным центром является атом бора, имеющий незаполненную орбиталь и присоединяющийся к менее замещенному атому углерода алкена (механизм гидроборирования подробно обсуждается в разд. 5.4.1). [c.689]

    Но поскольку пиридины — это основания, электрофильная атака может проходить у них скорее по атому азота, чем по С-атому кольца. В результате в электрофильное замещение по углероду часто вступают не сами свободные основания, а соединения, в которых атом азота протонирован, кватернизован или координирован с другим атомом или группой. Реакционная способность таких соединений пиридиния по отношению к электрофилам намного ниже, чем у свободных оснований парциальный фактор [c.28]


    Представление о карбкатионном характере переходного состояния в рассматриваемых реакциях дает возможность правильно предсказать ориентацию при присоединении к несимметрично замещенным олефинам, закономерности которой были сформулированы Марковниковым около 100 лет назад при присоединении галоген-водородов и воды отрицательный элемент присоединяется к наименее гидрогенизированному атому углерода. Если предположить, что строение активированного комплекса близко к карбкатиону, очевидно, что присоединение электрофильного агента (например, протона) должно идти преимущественно с образованием более стабильного катиона. Поскольку увеличение числа алкильных заместителей при катионном центре стабилизирует карбкатион, протон должен присоединяться к менее замещенному атому углерода  [c.381]

    Реакция азосочетания — взаимодействие солей диазония с ароматическими соединениями (аминами и фенолами), которое приводит к образованию азосоединений Аг—Аг по механизму электрофильного замещения. Ион диазония, являясь электрофильным агентом, атакует атом углерода с наибольшей электронной плотностью  [c.191]

    Подвижный атом водорода метиленовой группы можно заменить на галоген или щелочной металл (электрофильное замещение у метиленового атома углерода)  [c.101]

    В любой ионной реакции, приводящей к образованию новой углерод-углеродной связи [979], один атом углерода выступает как нуклеофил, а другой — как электрофил. Поэтому отнесение любой реакции к нуклеофильному или электрофильному типу является вопросом традиции и часто основывается на аналогиях. И хотя реакции с 11-13 по 11-30 и с 12-14 по 12-18 не обсуждаются в этой главе, они представляют собой нуклеофильное замещение по отношению к одному из реагентов, но традиционно они классифицируются по другому реагенту. Аналогично все реакции этого раздела (от 10-87 до 10-116) можно назвать электрофильным замещением (ароматическим или алифатическим), если реагент рассматривать как субстрат. [c.186]

    МОЖНО Предложить еще по одной. Стабильность этих двух ионов возрастает не только в результате появления еще одной канонической формы, а также потому, что эта форма устойчивее других и вносит больший вклад в резонансный гибрид. Каждый атом (кроме, конечно, атомов кислорода) в этих формах (В и Г) обладает полным октетом электронов, тогда как во всех остальных формах один атом углерода несет на себе секстет электронов. Такую форму нельзя написать для мета-изомера. Включение этой формы в гибрид понижает энергию не только в соответствии с правилом 6 (т. 1, разд. 2.4), но также и в результате делокализации положительного заряда по большей площади — в делокализации участвует и группа Z. Тогда можно ожидать, что группы, которые имеют пару электронов, осуществляющих взаимодействие с кольцом, в отсутствие эффектов поля будут не только направлять замещение в орто- и /гара-положения, но и активировать эти положения в отношении электрофильной атаки. [c.316]


    В пиридине более электроотрицательный атом азота оттягивает к себе электронную плотность, поэтому у атомов углерода в положениях 2, 4 и 6 наблюдается дефицит электронов и, следовательно, реакции электрофильного замещения предпочтительнее будут протекать по положению 3. Необходимо, однако, подчеркнуть, что электрофильное замещение (нитрование, галогенирование) у пиридина по сравнению с бензолом протекает значительно труднее  [c.417]

    В реакциях типа а) вытеснение происходит, как правило, у атома углерода вытесняться может как атом водорода или какой-нибудь другой атом, так и группа атомов. В реакциях электрофильного замещения чаще всего замещается водород примером такой реакции может служить классическое ароматическое замещение (см. стр. 138)  [c.49]

    Электрофильные агенты. Электрофильное замещение у кольцевых атомов углерода трех оксипиридинов протекает, как и следовало ожидать, гораздо легче, чем у незамещенного пиридина, и ориентировано в орто- и яара-положения к кольцевому атому углерода, связанному с кислородом. р-Оксипиридин обладает нормальной ос- [c.73]

    Нуклеофильное замещение является простой реакцией замещения, в которой нуклеофильный агент (основание) приближается к атому углерода или фосфора с дефицитом электронов (электрофильный центр) и образует с ним связь, замещая при этом какой-либо другой атом, например О, N или 5. Замещаемый атом уходит вместе с неподеленной парой электронов и с любой другой присоединенной к нему химической группировкой, причем все это вместе называется уходящей группой. Обычно для завершения реакции необходимо, чтобы одновременно с замещением или после него к атому О, N или 5 уходящей группы присоединился протон, происходящий из кислотной группы фермента или воды. Заметим, что основание В (которое может нести отрицательный заряд или быть электронейтральным) часто образуется путем ферментативного удаления протона от сопряженной кислоты ВН. [c.91]

    Взаимодействие циклогексанона с гидроксиламинсульфатом протекает по механизму электрофильного замещения Электро-фильный характер атома углерода карбонильной группы в моле-К ле циклогексанона усиливается протонированием кислородного атома кислотой При этом углеродный атом приобретает положительный электрический заряд. Атом азота в молекуле гидроксиламина присоединяется к нему неподеленной электронной парой. В то же время кислородный атом карбонильной группы присоединяет к себе водород И, наконец, происходит отщепление молекулы воды  [c.147]

    Таким образом, отсутствие изотопных эффектов указывает не только на двухстадийный характер реакции электрофильного замещения в ароматическом ряду, но и устанавливает относительные скорости стадий. Присоединение электрофила к углеродному атому кольца — наиболее трудная стадия реакции (рис. 11.2), но она одинаково затруднена для случая, когда углерод связан как с протоном, так и с дейтерием. Следующая стадия, отрыв водорода, протекает легче, чем первая. И несмотря на то, что она замедлена для случая с дейтерием, на суммарной скорости реакции это не сказывается. [c.346]

    Среди ряда реакций, в которых замещение идет только по атому углерода, можно выделить 2-бромирование бензимидазола Ы-бромсукцинимидом [7], 2-замещение бензотиазола бромом при 450 С [8] и 3-нитрование индазола [9]. В основном же электрофильное нитрование и галогенирование может идти только в бензольное кольцо по положениям 5,6 или 7. [c.561]

    Реакции замещения по атому углерода в вв -триазолах. Реакции электрофильного замещения по атому углерода в триазольном ядре идут с трудом. Нитрование 2-фенил-1,2,3-триазол-4-альдегида, соответствующей кислоты или [c.316]

    Электрофильное замещение по атому углерода триазольного кольца облегчается присутствием электронодонорной группы, находящейся у другого атома углерода. Нитрозирование 1-фенил-5-окси-1,2,3-триазола дает 1-фенил- [c.317]

    А. Электрофильное замещение. Пиридин весьма мало склонен к электрофильному замещению. Атом азота обедняет кольцо электронной плотностью, так как он более электроотрицателен, чем углерод. Кроме того, электофильные реагенты в первую очередь атакуют атом азота, образуя на нем электроположительный центр. Поэтому 0-комплексы, образование которых в данном случае требует возникновения в молекуле второго электроположительного центра, мало вероятны. Несколько большей устойчивостью обладают а-комплексы в Р-положении, резонансная стабилизация которых не связана с возникновением второго положительного заряда на атоме азота  [c.483]

    Трудность фиксации аренониевых ионов, имеющих у кольцевого 5р -гибридного атома углерода атом водорода и сильно электроотрицательный заместитель, связана с легкостью отщепления протона, переходящего далее к более основному центру. Значительно устойчивее должны быть ионы, соответствующие присоединению катиона нитрония и других гетероатомных электрофильных частиц к замещенному атому углерода ароматического кольца. Действительно, недавно двумя группами исследователей было показано, что из гексаметилбензола действием электрофильных агентов в сильных протонных кислотах при низких температурах может быть генерирован ряд 1-Х-1,2,3,4,5, б-гексаме-тилбензолониевых ионов (22). [c.17]


    В то же время для синглетных карбенов о-подход запрещен по симметрии, и на больших расстояниях (г>0,25 нм) молекула карбена ориентируется своей вакантной р-орбиталью на один из атомов углерода кратной связи [так называемый я-подход б на схеме (2.5)] [20, 415, 417, 492]. На этой стадии на карбе-новом атоме углерода накапливается избыточный отрицательный заряд (до 0,65 е), соответствующий электрофильной атаке р-орбитали карбена на я-ВЗМО олефина [20, 415, 456, 492]. Характерно, что при расчете реакций с участием дифторкарбена 456, 492] перенос электронной плотности на карбен меньше, чем в случае СНг [20, 415, 417, 492]. При этом в системе изобутилен— Ср2 оптимальной оказывается антиперипланарный подход карбена к наименее замещенному атому углерода олефина [492] в на схеме (2.5)], а три альтернативных варианта сближения менее выгодны. [c.70]

    Механизм SeI (substitution ele trophili unimole ular — замещение электрофильное мономолекулярное) встречается редко. Такой механизм возможен лишь тогда, когда уходящий атом —это атом углерода (см. реакции 11-40 и 11-41), или в присутствии очень сильного основания (см. реакции 11-1, 11-12 и 11-45) [31]. Он включает две стадии с промежуточным образованием карбаниона  [c.312]

    В случае ртутьорганических субстратов обращения конфигурации не наблюдалось. Возможно, имеются и другие случаи атаки с тыла [13], которые не удалось идентифицировать из-за трудностей получения соединений с конфигурационно устойчивой связью углерод — металл. Соединения, хиральность которых обусловлена асимметрическим атомом углерода, входящего в связь углерод — металл, обычно трудно разделить на оптические антиподы, а будучи разделенными, такие соединения зачастую легко рацемизуются. Чаще всего удается разделить ртутьорганические соединения [14], поэтому больщая часть сте-реохимических исследований была выполнена именно на этих субстратах. Известно лишь несколько оптически активных реактивов Гриньяра [15], в которых единственным асимметрическим центром был бы атом углерода, связанный с магнием. Поэтому стереохимия электрофильного замещения при связи С—Жg установлена далеко не во всех случаях. Для одной из таких реакций, а именно для взаимодействия экэо- и эн(5о-изомеров 2-норборнильного реактива Гриньяра с НдВг2, приводящего к 2-нор-борнилмеркурбромиду, показано, что она происходит с сохранением конфигурации [16]. Вполне вероятно, что обращение конфигурации имеет место только в тех случаях, когда стерические затруднения препятствуют фронтальной атаке и когда электрр-фил не несет группу Ъ (см. выше). [c.411]

    I. 2 — менее электроотрицательная группа, чем соседний атом углерода, и не имеет свободной пары электронов на атоме. связанном с бензольным кольцом. В этом случае заместитель 2 может стабилизировать структуру XVIII или XXIV только за счет индуктивного перемещения электронов к соседнему атому углерода (XXV). В результате этого взаимодействия резонансный карбокатион, возникающий при орто- и пара-замещении, образуется легче, чем соответствующий интермедиат при л ега-замещении, где такое взаимодействие исключено. Таким образом, рассматриваемый тип заместителей приводит при электрофильном замещении преимущественно к образованию орто- и лара-продуктов. [c.56]

    Активирующее или дезактивирующее влияние заместителя обусловлено индукционным эффектом, который может действовать в двух направлениях. Группа, в которой ключевой атом, непосредственно связанный с кольцом, аряжен положительно или положительно поляризован, отталкивает атакующую электрофильную частицу и таким образом уменьшает способность к замещению. Группа, которая не несет положительного заряда, но которая является электронопритягивающей, также обладает дезактивирующим индукционным эффектом. Поскольку нитрогруппа содержит семиполярную связь, атом азота в ней несет положительный заряд, что делает эту группу в сильной степени электронопритягивающей. Так, нитрогруппа оттягивает электроны и таким образом уменьшает электронную плотность во всех положениях кольца и делает их менее восприимчивыми к атаке Вг+, N0 и т. д. Положительный полюс триметиламмониевой группы—К+(СНз)з обладает наиболее сильным дезактивирующим действием. В сульфогруппе положительно заряженный ключевой атом примыкает к кольцу и также является сильно дезактивирующим. В карбонильных группах кетонов и эфиров атом углерода частично поляризован и обладает дезактивирующим индукционным эффектом, который, однако, не является столь сильным,. как у нитрогруппы. [c.138]

    Общий механизм электрофильного замещения предполагает, что можно заместить не только водород, если электрофил атакует уже замешенный атом углерода. Замещение у атома, уже имеющего заместитель, названо /гсо-замещением и наблюдалось а ряде случаев. Легкость ухода заместителя зависит от его способностн принять чоложН тельный заряд. Этот фактор определяет, какая частица удаляется из (Т-комплекса лри ароматизации уже имевшийся в кольце заместитель нли вновь вступающий э.чектрофил  [c.368]

    Нетрудно применить подход Дьюара на основе первого порядка теории возмущений для определения энергии локализации, Промежуточный продукт Уэланда в электрофильном замещении можно рассматривать как отдельный атом углерода К (с,3 =1) и катион пентациеиила 5. Поэтому затрата энергии при локализации двух я-электронов на одном атоме дается формулой [c.320]

    Реакция Реймера — Тимана включает стадию электрофильного замещения в очень активном кольце фенолят-иона. Электрофильным реагентом является дихлорметилен lg, генерируемый из хлороформа действием щелочи. Хотя дихлорметилен электрически нейтрален, он содержит атом углерода, несущий лишь секстет электронов и потому являющийся сильным электрофилом. [c.769]

    Гидроборирование олефннов дибораном и моно- или диалкил-боранами [63] представляет собой электрофильное присоединение, которое, однако, во многом отличается от реакций, рассмотренных выше. Во всех случаях происходит сггн-присоединение, причем атом бора связывается с менее замещенным атомом углерода (уравнение 112). В эту реакцию вступают все олефины, даже сильно пространственно-затрудненные, однако три- и тетраметилэтилены, быстро присоединяя диборан, дают соответственно только диалкил-или моноалкилбораны (уравнения 113 и 114) [c.206]

    При взаимодействии тиамина с карбонильными соединениями идет реакция электрофильного замещения по атому углерода положения 2 тиазолне-вого цикла с образованием соответствующих производных. Так, в водном или водно-спиртовом растворе с 2 молями едкого натра из тиамина и ацетальдегида образуется 2-а-оксиэтилтиамин (XI), а из тиамина и пировиног-радной кислоты—соединение XII [42]. [c.379]

    При рассмотрении реакций ароматического электрофильного замещения следует разделить гетероциклические соединения на две группы к первой группе относятся те, которые проявляют свойства оснований, ко второй — те, которые не проявляют основных свойств. Для представителей первой группы характерно взаимодействие неподеленной пары электронов атома азота с электрофильными реагентами (разд. 2.1), присутствующими в реакционной смеси (протон в случае нитрующей смеси, хлорид алюминия в случае реакции Фриделя — Краф-тса), которое проходит быстрее, чем какое-либо замещение при атоме углерода, И превращает субстрат в положительно заряженный катион, склонность которого к взаимодействию с электрофильной частицей Х+ существенно понижена. Стоит вспомнить понижение скорости реакции электрофильного замещения при переходе от незамещенного бензола к катиону N,N,N-тpимeтилaнилиния (РЬЫ Мез) в 10 раз, хотя в этом случае фрагмент, несущий положительный заряд, лишь присоединен к ароматической системе, а не является ее частью. Таким образом, все гетероциклические соединения, содержащие атом азота пиридинового типа (т. е. фрагмент С=Н), с трудом вступают в реакции электрофильного замещения, если (а) в молекуле отсутствуют заместители, активирующие кольцо к атаке электрофилами, (б) в молекуле нет конденсированного бензольного кольца, в котором могут проходить реакции электрофильного [c.35]

    Для 1,2- и 1,3-азолов характерны свойства как пятичленных электроноизбыточных гетероциклических соединений, так и гетероциклических соединений, содержащих иминный атом азота. Присутствие иминного фрагмента в азолах понижает их активность в реакциях электрофильного замещения по атому углерода как в результате индуктивного, так и мезомерного влияния. Кроме того, присутствие основного атома азота способствует образованию солей азолов в кислых средах. Например, в зависимости от кислотности среды нитрование пиразола может проходить либо через предварительное образование пиразолиевого катиона [30], либо с участием свободного основания [31]. Изучение протонного обмена, катализируемого кислотой, обнаружило следующий порядок реакционной способности пиразол > изоксазол > изотиазол. Среди пятичленных гетероциклических соединений с одним гетероатомом порядок активности в реакциях протонного обмена следующий пиррол > фуран > тиофен, причем каждое из этих соединений более активно в таких превращениях, чем гетероциклические соединения, содержащие иминный атом азота. При этом азолы более активны в реакциях протонного обмена, чем бензол, парциальные факторы скоростей для реакций по положению 4 пиразола, изоксазола и изотиазола равны 6,3 10 , 2,0 10 и 4,0 10 соответственно. Нитрование тиофена проходит в 3 10 раз быстрее, чем нитрование 4-метилтиазола [32]. Относительная активность тиофенового и тиа-зольного циклов в реакциях нитрования иллюстрируется приведенной ниже реакцией [33]  [c.39]

    При взаимодействии с бромом 2-пирон образует нестабильный аддукт, который при нагревании превращается в 3-6ром-2-пирон [34]. Тетрафторборат нитрония первоначально реагирует по карбонильному атому углерода, последую-идае превращения приводят к 5-нитро-2-пирону [35]. Примеры простых реакций электрофильного замещения в 4-пироне немногочисленны, хотя известно, что бис-диметиламинометилирование незамещенного 4-пирона проходит в чрезвычайно мягких условиях [36]. [c.207]

    Диоксипироны существуют в виде 4-гидрокситаутомеров. Такие производные легко вступают в реакции электрофильного замещения по положению С(3), т. е. по атому углерода между двумя кислородными заместителями [63]. Депротонирование алкильных групп таких соединений можно осуществить при использовании двукратного избыгка сильного основания [64]. [c.212]

    Диазины — пирицазин, пиримицин и пиразин — представляют собой гетероциклические соединения, содержащие два иминных атома азота, и, следовательно, все свойства, присущие пиридину (гл. 5), в еще больщей степени проявляются у этих гетероциклических соединений. Два гетероатома оттягивают электронную плотность от атомов углерода, включенных в цикл, еще в больщей степени, чем в пиридине. Вследствие этого незамещенные диазины еще менее склонны к реакциям электрофильного замещения, чем пиридин. Понижение электронной плотности на атомах углерода гетероциклов закономерно приводит к облегчению атаки диазинов нуклеофильными реагентами по сравнению с пиридином. Диазины в меньшей степени, чем пиридин, проявляют свойства оснований, поскольку сказывается дестабилизирующее влияние второго атома азота на катион диазиния. Тем не менее, диазины образуют соответствующие соли при реакции с алкилгалогенидами и при взаимодействии с надкислотами превращаются в соответствующие N-оксиды. Электрофильное присоединение идет только по одному атому азота, поскольку возникающий при этом положительный заряд значительно понижает нуклеофильные свойства второго атома азота. [c.251]

    Индолил-анион существует в основном в двух мезомерных формах, что свидетельствует о делокализации заряда преимущественно между атомом азота и -углеродным атомом. В соответствии с этим индолил-анион вступает в реакции в качестве амбидентного нуклеофила соотнощение реакций N- и -замещения при взаимодействии с электрофилами зависит от природы ассоциированного металла, полярности растворителя и природы электрофила. Как правило, наиболее ионные натриевые и калиевые производные индола замещаются главным образом по атому азота, тогда как индолилмагнийгало-гениды — преимущественно по -положению [109]. Однако, если реакцию с последним проводить в ГМФТА, атака идет преимущественно по атому азота, тогда как в неполярных растворителях предпочтительна атака по атому углерода [110]. Наиболее реакционноспособные электрофилы проявляют ббльщую тенденцию атаковать атом азота, чем менее электрофильные частицы. [c.431]

    Изоэлектронное замещение карбанионного атома углерода на гетероатом дает гораздо более устойчивые соединения, и такие 5,5-бициклические ароматические системы заслуживают большого внимания. В этих соединениях атом серы или кислорода может бьггь включен в полностью сопряженную систему, в противоположность 5,6-производным, где может быть использован только атом азота. Из-за многообразия таких систем трудно сказать что-то обшее об их реакционной способности, однако электрофильное замещение, которое идет по любому из циклов, наиболее широко представлено в литературе, наряду с редким упоминанием о реакциях нуклеофильного замещения и литиирования. Некоторые типичные реакции приведены ниже [69,70]  [c.620]

    Как и в случае азолов, окса- и тиадиазолы — очень слабые основания, что обусловлено индуктивными эффектами дополнительных гетероатомов, хотя их можно кватернизовать по атому азота. По тем же причинам реакции электрофильного замещения по атому углерода практически неизвестны, за исключением некоторых реакций галогенирования и меркурирования [79]. Интригующий парадокс заключается в том, что обычно меркурирующие агенты считаются слабыми элекгрофилами, и тем не менее они часто успешно реагируют с электронодефицитными гетероциклами. Другое важное отличие от азолов заключается в отсутствии N-водородных атомов, поэтому реакции, протекающие через промежуточное образование N-анионов, для этих систем невозможны. [c.634]

    Обобщенный механизм электрофильного замещения предполагает, что можно заместить не только водород, но и другую группу, если электрофильный агент атакует атом углерода, имеющий заместитель. Такие реакции получили название иисо-замещения (см. 13.6), в этом же разделе рассматриваются теоретические аспекты илсо-замещения. [c.458]

    Объяснение течения реакций замещения в ядре изохинолина автор построил на ошибочной теории резонанса. Ниже приводятся объяснения, которые могут быть приняты в настоящее время. Электрофильное замещение в ядре изохинолина происходит в результате действия положительно заряженной частицы на положительно заряженный ион изохинолиния, что сказывается иа легкости образования переходного комплекса, хотя бы из-за наличия электростатического отталкивания. Вследствие этого энергия активации в реакциях з ещения повышается и реакцяя протекает более трудно. Наиболее уязвимые для электрофильного замещения места в ядре изохиног Лина можно определить при рассмотрении структуры переходного комплекса. Принимая во внимание лишь структуры, в которых с атомом углерода изохинолинового ядра связана атакующая группа или водород (класс А), а также то, что кольцевой атом азота в переходном состоянии связан с протоном, можно установить следующую последовательность легкости электрофильного замещения (в порядке убывания) (5 или 7) > > (8, 6 или 4) >3> 1. Этот порядок совпадает с порядком электронной плотности в различных положениях. Полуколичественный расчет, сделанный для нейтрального ядра изохинолина, показывает, что плотность и-электоонов в углеродном скелете уменьшается в следующем порядке 5, 7, 8, 3, 6, 4 и 1 [290]. Если рассмотреть также структуры переходного комплекса, в которых с атомом углерода изохинолина связаны и замеща-юшая группа и водород, то реакционная способность при замещении будет уменьшаться в следующем порядке (5 или 8) > (4, 6 или 7) > 3 > 1. —Прим. перев. [c.304]

    Как уже было указано (стр. 207), атом углерода в положении 5 пиримидинового цикла, находясь в ле/ла-положении к каждому из атомов азота цикла, обладает в известной степени ароматическим характером. Это подтверждается отношением пиримидинов к таким электрофильным реагентам, как галогены, азотная и азотистая кислоты, соли диазония и др. замещение, если возможно, происходит преимущественно в положении 5. Хотя пиримидины и обладают свойством образовывать с сильными электрофильными реагентами монозамещенные продукты, их можно разделить на три группы либо по результатам более энергично протекающего взаимодействия с этими реагентами, либо по их отношению к более слабым электрофильным реагентам. [c.235]


Смотреть страницы где упоминается термин Электрофильное замещение при атоме углерода: [c.1085]    [c.240]    [c.354]    [c.190]    [c.437]    [c.1083]    [c.172]    [c.173]    [c.315]    [c.47]    [c.149]   
Смотреть главы в:

Химия гетероциклических соединений -> Электрофильное замещение при атоме углерода




ПОИСК





Смотрите так же термины и статьи:

Замещение атома на атом

Замещение электрофильное

Углерода электрофильное

Электрофильность

Электрофильные атомы



© 2025 chem21.info Реклама на сайте