Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепные реакции с участием радикалов

    Если образующийся из ингибитора радикал X неактивен и реакция (8) практически не имеет места, то мы имеем дело с сильным ингибитором, введение которого в достаточно большой концентрации может сколько угодно сильно тормозить цепную реакцию. Если радикал Х достаточно активен для того, чтобы продолжать цепь, то ингибитор слабый. Даже если ввести в реагирующую систему большое количество слабого ингибитора, реакция все равно будет протекать с некоторой скоростью вследствие участия радикалов X в продолжении цепи [20]. Количественным критерием силы ингибитора следует считать отношение констант — (Аг относится к реакции [c.33]


    Появление радикалов не всегда связано с возникновением цепного химического процесса. Все зависит от реакционной способности возникающих радикалов и от теплового эффекта той реакции, в которой принимает участие радикал. Папример, если к смеси хлора с водородом прибавить кислород, то цепи обрываются. В присутствии кислорода, как уже было сказано, атомы водорода вступают в реакцию [c.204]

    Следовательно, химические превращения представляют собой цепные реакции с участием свободных радикалов. Причем основными являются реакции продолжения цепи, в которых, в результате взаимодействия радикала с молекулами исходного сырья или промежуточного продукта, образуется новый активный центр. Свободные радикалы могут вступать также в обменные реакции, реакции распада и присоединения [51]. [c.159]

    Участие катализаторов в цепных реакциях представляет собой одну из сложнейших форм химического инициирования, которое состоит из двух основных стадий образования свободного радикала (с участием растворимых соединений металлов переменной валентности — при гомогенном катализе или с участием поверхности адсорбента — при гетерогенном катализе) и регенерации катализатора Подробнее см. Афанасьев В. А., Заикин Г. Е. В мире катализа. М.) Наука, 1977, с. 71—80. [c.181]

    Из электронной теории катализа иа полупроводниках вытекают представления о том, что при уходе молекулы (радикала) с поверхности в объем на поверхности остаются ненасыщенные валентности. Наличие этих поверхностных валентностей и радикалов предопределяет возможность возникновения поверхностных цепных реакций. На этой основе Н. Н. Семеновым и В. В. Воеводским была развита цепная теория гетерогенного катализа, в которой катализатор выступает как полирадикал, обеспечивающий зарождение и развитие реакционных цепей на поверхности. Можно показать, что существует возможность перехода цепей с поверхности в объем в результате десорбции радикалов. Было экспериментально показано, что в подобном случае температура в объеме оказывается выше, чем на поверхности катализатора. Радикальный механизм не может претендовать на универсальность, так как образование и выход в объем радикалов требуют значительных затрат энергии. Кроме того, большинство гетерогенно-каталитических процессов обратимы, а принцип детальной обратимости несовместим с не-стационарностью течения реакций с участием промен уточных активных продуктов — атомов и радикалов. [c.303]


    В ходе цепной реакции каждая появившаяся в системе валентно-ненасыщенная частица — свободный атом или свободный радикал — вызывает целую цепочку превращений. Такой механизм довольно типичен для реакций с участием соединений элементов первых трех периодов периодической системы, у которых преобладают двухэлектронные связи. В газовой фазе, в которой редко приходится сталкиваться с гетеролитическими процессами, идущими, как правило, с участием заряженных частиц, преобладает цепной механизм химических превращений. [c.401]

    Н. А. Шиловым (1905). Явление сопряжения реакций было названо химической индукцией. Причины его лежат в образовании промежуточных веществ, возникающих при первичной реакции и осуществляющих перенос индуктивного влияния первичной реакции на вторичную. Как правило, сопряженные реакции относятся к цепным реакциям. После образования первичного радикала под действием индуктора развивается цепь превращений молекул акцептора уже без участия молекул индуктора. [c.195]

    В цепной реакции стадией, определяющей, какой именно продукт должен образоваться, чаще всего является стадия отрыва. Под действием свободного радикала никогда не отрывается четырех- или трехвалентный атом [31] (за исключением реакций с участием напряженных систем, см. разд. 15.8) [32] и очень редко отрывается двухвалентный атом [33]. Как правило, происходит отрыв одновалентного атома, в органических соединениях это может быть водород или галоген. Например, при реакции этана с атомом хлора образуется не атом водорода, а этильный радикал  [c.62]

    В данном случае цепная реакция не реализуется, поскольку реакция с участием инициирующего радикала не приводит к образованию нового радикала. Было показано, что для этой реакции [c.303]

    Стадия продолжения цепи, протекающая с участием свободного радикала, на котором происходит основной обрыв цепи, является лимитирующей стадией звена цепи и индекс I относится к лимитирующей стадии продолжения цепи. Длина цепи V цепной неразветвленной реакции равняется скорости цепной реакции, деленной на скорость обрыва цепи (или на скорость зарождения цепи) Поэтому для линейного обрыва цепи [c.418]

    Цепная радикальная реакция реализуется, если превращение реагентов происходит через активные промежуточные частицы - атомы и радикалы, а реакции с их участием образуют замкнутый цикл превращений и продолжение цепи осуществляется быстрее, чем обрыв. Цепная реакция является разветвленной, если в ней протекает такая стадия, в которой один радикал или атом генерирует образование нескольких атомов и радикалов. В результате при благоприятных условиях в ходе реакции нарастает концентрация активных центров и, соответственно, увеличивается скорость реакции. Это часто приводит к воспламенению или взрыву. Если разветвление происходит в результате взаимодействия атома (радикала) с молекулой, то в силу сохранения числа электронов в системе из одной возникают 3 частицы с неспаренным электроном (в [c.418]

    По представлениям Лаврова [92, с. 186], в результате протекания цепных реакций и термической диссоциации образуются атомный кислород, атомный водород и радикал ОН, которые принимают активное участие в окислении углерода. Углерод-кис-лородный комплекс образуется как в результате взаимодействия с молекулярным кислородом, так и в результате взаимодействия с частицами О и 0Н  [c.212]

    При низких температурах (<250°) происходит образование гидроперекисей, которые могут быть выделены протекающие в этих условиях реакции в основном аналогичны реакциям олефинов. При температуре 300—400 кинетика процесса становится более сложной, что связано с протеканием цепных реакций с участием альдегидов и гидроксильных радикалов [118] выше 400° эти реакции становятся определяющими. При таких высоких температурах гидроперекиси весьма не стабильны, а радикал КОз-, если он вообще образуется, должен немедленно разлагаться. Это коренное изменение механизма процесса выражается, например, в сложном характере зависимости скорость — температура в области промежуточных температур. Рис. 76 [119] показывает, что максимальная скорость окисления метилэтилкетона может уменьшаться при повышении температуры. Другое очень важное различие между высоко-и низкотемпературными реакциями заключается в почти полном отсутствии влияния строения окисляемого соединения на скорость процесса при высоких температурах, проявляющегося очень резко при низких температурах. При высоких температурах большинство полимеров претерпевает значительную термическую деструкцию и сильно деформируется, что приводит к потере ими свойств, ценных с точки зрения практического использования. Поэтому достаточно рассмотреть только низкотемпературный механизм окисления модельных соединений. [c.177]


    Индуцированные цепные реакции. В качестве примера индуцированной цепной реакции рассмотрим окисление двухвалентного железа перекисью водорода, которое индуцирует цепную реакцию разложения перекиси. Обычно считается, что основная реакция протекает по механизму Габера — Вейсса с участием свободного радикала гидроксила  [c.506]

    Для разветвленного цепного механизма реакции водорода с кислородом Кондратьев [18] и другие авторы [39, 78, 79], учитывая только реакции [0), (а) — (с), (/), (— ) и пренебрегая всеми процессами второго порядка по активным центрам, получили систему линейных уравнений с постоянными коэффициентами для концентраций активных частиц. Эта система справедлива до тех пор, пока не изменяются начальные условия. После очень короткой стадии инициирования скорость цепной реакции нарастает экспоненциально с характеристической константой экспоненциального роста ф, являющейся единственным положительным корнем векового уравнения. Исключая все реакции с участием радикала НОа, к которым вернемся позже, для Ф получим кубическое уравнение [c.161]

    Частица А может в дальнейшем перейти в объем и принять участие в гомогенной радикальной или цепной реакции. В этом случае роль поверхности сводится только к генерированию активных частиц в последующих стадиях реакции твердый катализатор участия не принимает. Атом или радикал, образовавшийся на поверхности, может также физически адсорбироваться, сохраняя при этом в значительной мере свою активность. Такой поверхностный радикал [обозначим его (А)] может вступить в дальнейшие реакции на поверхности твердого тела, например, [c.149]

    При более высоких давлениях (выше второго предела взрыва—примерно от 10 до 100 мм рт. ст.) увеличивается вероятность тройных столкновений и приобретает значение реакция (13), которая, по-видимому, требует участия третьего тела для отвода части выделенной энергии. В дальнейшем, как видно, возможны различные пути исчезновения образовавшегося таким образом радикала НОа точно так же, как и различные пути возникновения и разложения перекиси водорода. При некотором давлении, лежащим между вторым и третьим пределами, рост температуры благоприятствует увеличению роли реакций (6) и (7), способствующих разветвлению цепей, по сравнению с нормальными цепными реакциями, которые рассмотрены выше. Имеющихся в настоящее время экспериментальных данных пока недостаточно для того, чтобы для любого ряда условий точно указать относительное значение различных комбинаций этих реакций. Однако очевидно, что при более высоких давлениях (приближающихся к третьему пределу взрыва—приблизительно выше 400 мм рт. ст.) продолжает возрастать значение реакции (13), а роль реакций, для которых имеет значение диффузия к поверхности сосуда, падает по сравнению с реакциями, включающими прямые столкновения. Способ инициирования термической реакции продолжает оставаться предметом умозрительных рассуждений. Хиншелвуд считает, что инициирование происходит за счет небольшого количества атомарного водорода, образовавшегося путем столкновений молекул тогда как Льюис и фон-Эльбе предполагают, что это инициирование обусловлено разложением перекиси водорода, образовавшейся каким-то не известным еще путем. С другой стороны, изменение энтальпии в реакции (4) позволяет считать ее возможной ступенью инициирования. [c.40]

    Большинство процессов органического самоокисления протекает по механизму с участием свободных радикалов. Это подтверждается, например, тем, что реакции часто предшествует индукционный период и скорость ее может быть сильно увеличена или уменьшена при наличии следов других веществ. Первичным продуктом самоокисления органической молекулы является пер-оксосоединение. Предельные и непредельные углеводороды дают гидроперекись, альдегид образует пероксокислоту. Первой стадией, по-видимому, является образование свободного радикала R, который затем реагирует с кислородом по цепной реакции, состоящей из следующих стадий  [c.66]

    Важно отметить, что в любой реакции радикала с нейтральной молекулой продуктом реакции также является радикал (ср. разд. 11.3) тем самым развивается цепная реакция, для поддержания которой потом уже не нужно участия инициатора радикалов. В относительно редких случаях такая цепная реакция может оборваться путем взаимодействия двух радикалов друг с другом (концентрации радикалов обычно очень малы). Такое взаимодействие ведет к димеризации или диспропорционированию (ср. разд. 11.2.2), новый радикал при этом не образуется. [c.351]

    Благодаря наличию у радикалов свободных валентностей энергия активации процессов, протекающих с их участием, имеет порядок величины энергии активации атомных реакций, и, следовательно, они идут с такой же большой скоростью, как и реакции, в которых участвуют атомы. Особенно интересны радикалы, имеющие две свободные валентности. К таким радикалам относятся двухвалентные атомы О, 8, 8е и радикал метилен СНг , получающиеся в результате термического или фотохимического разложения диазометана (СНгМг- СНз- + N2) или фотохимического разложения кетена (СН2 = С0— СНз +С0). Устойчивые органические бирадикалы могут быть получены путем отрыва двух атомов водорода от молекул углеводородов. Активные бирадикалы имеют большое значение в химических процессах, так как способствуют возникновению так называемых разветвленных цепных реакций. [c.85]

    Обобщенная схема процесса приведена в табл. 6.1. [177], где ВСНО — eтилaкpoлeин, М — аллильный полиперикисный радикал. Цепные реакции, протекающие в растворе в условиях отсутствия ингибирующих и катализирующих добавок, представлены стадиями (1) —(10) и (14) для окисления альдегидной группы и стадиями (16)—(18), (20) и (22) для реакций с участием двойной связи. Для увеличения скорости окисления метилакролеина применялся гетерогенный катализатор ЛВг. [c.166]

    Второй вариант отличается от первого тем, что при обмене между адсорбционно-сольватными слоями ССЕ и дисперсионной средой топлива происходят самопроизвольные химические изменения (автоокисление). Химические превращения в процессе горения топлив представляют собой цепные реакции с участием свободных радикалов. Причем основными реакциями являются реакции продолжения цепи, в результате которых прн взаимодействии радикала с молекулами дисперсионной срсды или промежуточного продукта образуется новый активный центр. Свободные радикалы наиболее легко возникают в адсорбционно-сольватном слое ССЕ под воздействием адсорбционного поля, чему способствуют и другие внешние воздействия (термические и фотохимические и др.). Свободные радикалы могут вступать также в обменные реакции, реакции распада и присоединения. Глубина этих реакций зависит от температуры, степени дисперсности пузырьков кислорода, состава и структуры углеводородов, времени и других факторов. Углеводороды, в первую очередь попадающие в адсорбционно-сольватньп слой, имеют наиболее высокие значения сил ММВ и наиболее склонны к образованию радикалов. [c.214]

    Формальдегид окисляется далее по цепному механизму с участием радикала НО2. Перекись водорода образуется, вероятно, при реакции НОо с этиденом. Взаимодействие перекиси водорода с формальдегидом приводит к образованию диоксиметилперекисп  [c.369]

    Результаты наблюдений за изменением концентрации отдельных парамагнитных центров во времени представляют собой ценную кинетическую информацию. Использование струевой методики, позволяющей в течение длительного времени поддерживать концентрацию короткоживу-щих промежуточных продуктов на достаточном для измерения уровне, позволяет не только непосредственно наблюдать продукты, участие которых в ряде реакций до сих пор только постулировалось, но и в итоге получать константы скорости отдельных элементарных стадий реакции. В качестве примера укажем на идентификацию и изучение кинетического поведения Н, О, ОН, Р, С1, Вг в цепных реакциях, протекающих в смесях Нг- Ог, Рг + СаСЦ, р2 + СНзВг (газовая фаза). В жидкой фазе метод ЭПР был применен для изучения цепного окисления углеводородов, реакций радикала ОН с различными спиртами и т. д. [c.109]

    Как показал анализ стадий продолжения цепи в разнообразных цепных реакциях, в основе их осуществленрш в природе лежат два принципа. Во-первых, принцип неуничтожимоети свободной валентности в реакциях с участием одного свободного атома или радикала. Если радикал изомеризуется или распадается, то в продуктах реакции всегда присутствует атом или радикал. Если радикал реагирует с молекулой - отрывает атом, группу или присоединяется по кратной связи, то и в этих случаях свободная валентность сохраняется, так как сохраняется характерное для реагентов нечетное число электронов на [c.345]

    С. Хиншельвуд изучал в 20-х годах реакцию окисления водорода кислородом. Для протекания этой реакции также характерны пределы по давлению (нижний и верхний), внутри которых и наблюдается воспламенение смеси. В 1928 г. Хиншельвуд предложил цепную разветвленную схему процесса, где разветвление осущестляют возбужденные молекулы воды и кислорода. Детальное изучение реакции водорода с кислородом в лабораториях Хиншельвуда и Семенова привело к построению и обоснованию механизма этой цепной разветвленной реакции с участием в ней атомов водорода и кислорода и радикалов гидроксила. Важную роль в становлении теории разветвленных цепных реакций сыграли исследования В.Н. Кондратьева, который обнаружил гидроксильный радикал в горящем водороде и изучил его поведение и реакционную способность. [c.418]

    Пероксильные радикалы спиртов обладают способностью как окислять, так и восстанавливать. Поэтому они реагаруют как с хинонами, так и с нитросоединениями, что приводит к торможению цепного окисления спирта. Пероксильные радикалы углеводородов и других соединений такой способностью не обладают. В силу этого в условиях сопряженного окисления спирта HR OH и углеводорода RH хинон тормозит только тот цепной процесс окисления, который ведут гидроксипероксильные радикалы спирта. Это обстоятельство положено в основу метода (Е.Т.Денисов, РЛ.Варданян,. 1972 г.). Проводят соокисление спирта и углеводорода в присутствии инициатора и селективного ингабитора (хинона, нитроксильного радикала, I нитросоединения). Ингабитор вводят в такой концентрации, чтобы перехватить все гидроксипероксильные радикалы до того, как они примут участие в продолжении цепи. Как показал опыт, для смеси циклогексен - циклогексанол достаточно ввести 3 Ю З моль/л бензохинона (333 К). Цепная реакция в этих условиях состоит из следующих ключевых стадий (где Q - хинон)  [c.465]

    По сравнению с хлорированием реакции отщепления атома водорода алкоксильными радикалами сравнительно малочувствительны к составу среды [160, 222, 223]. Результаты изучения инициируемой азобисизобутиронитрилом цепной реакции хлорирования 2,3-диметилбутана грег-бутилгипохлоритом показывают, что растворители в меньшей степени влияют на реакции с участием грег-бутоксильного радикала, но в ароматических растворителях достигается более высокая селективность [222, 223]. Более слабое влияние растворителей на эту реакцию отщепления атома водорода объяснялось пространственными эффектами действительно, объемные метильные группы, окружающие электрофильный атом кислорода, могут затруднять сольватацию активированного комплекса. [c.265]

    В условиях гидропиролиза кинетические цепи развиваются не только с участием, например, метильных радикалов, но и более активных атомов водорода. Реакция метильного радикала с водородом конкурирует с реакциями метильного радикала с молекулами углеводородов. При соизмеримых концентрациях водорода и з глеводорода метильный радикал вступает в реакцию замещения в основном с водородом. Реакции атома водорода с углеводородами протекают с константами скорости примерно иа два-три порядка большивш, чем с метильным радикалом. Поэтому в присутствии водорода растет скорость цепного процесса. [c.285]

    Образование цистина (или убыль цистеина) в аэрируемых растворах изменяется сложным образом в зависимости от pH, с минимумом при pH 4 и ясно выраженным максимумом при pH 9 [50]. Обеими группами исследователей показано увеличение выхода цистина при новышении содержания цистеина, в особенности в присутствии кислорода, хотя незначительные количества цистина образуются и в неаэрируемых растворах. Сваллоу [49] наблюдал высокие ионные выходы (до 24) при низких pH в 0,051 М цистеинхлориде без добавления буфера. Уитчер с сотрудниками [50] наблюдал близкие выходы при еще более низких концентрациях (0,0005 М) при pH 8. Эти выходы слишком высоки, чтобы их можно было объяснить совокупностью простых реакций по-видимому, они указывают на наличие цепной реакции, протекающей с участием радикала Н02-. Сваллоу предложил следующую схему цепной реакции  [c.222]

    В ранних работах по химической кинетике и теории цепных реакций, в которые H.H. Семенов внес столь значительный вклад, предполагалось участие свободных радикалов в реакции. Получить прямое экспериментальное подтверждение их существования чрезвычайно трудно, так как концентрация активных центров из-за их высокой реакционной способности обычно невелика. Спектры испускания некоторых двухатомных (ОН, g, СН) и трехатомных радикалов (СНО, Hg) наблюдаются в горячих пламенах [1] в то же время единственный радикал, идентифицируемый но спектру поглощения,— это ОН-радикал. Следует отметить, что сравнительно недавно Гейдоп, Сноукс и Ван-Захтелеп [2], используя с целью увеличения оптической длины пути систему многократного отражения, заметили в спектре пламен нри низком давлении полосы, которые, как полагают, относятся к радикалам СНд и .jHj. Однако многие радикалы не удается обнаружить спектроскопически даже в пламенах. [c.140]

    Как было показано на стр. 95, два атома в газовой фазе не могут при столкновении соединиться друг с другом без участия третьего тела. Точно так же мало вероятно соединение атома или радикала с каким-либо другим атомом или радикалом с образованием одного устойчивого продукта, если тепло, выделяющееся при химической реакции, не может быть удалено каким-либо способом, так как и в этом случае должен соблюдаться закон сохранения момента и квантование внутренней энергии. Поэтому такие газовые реакции, как Нг-f-СЬ = 2H , которые инициируются электрическими разрядами, идут через свободные атомы и являются не простыми процессами соединения, а в основном реакциями замещения в газовой фазе, а также более сложными процессами, включающими тройные сго-лкновения или реакции на поверхности. Действительно, почти все газовые реакции представляют сложные цепные процессы с последовательными замещениями атомов. Данные о кинетике этих цепных реакций можно найти в других книгах . Мы коснемся только вопроса о доказательстве их атомного механизма. [c.98]

    Полиприсоединение, согласно Карозерсу, рассматривают как цепную реакцию, протекающую с участием агента передачи цепи, функцию которого может выполнять ион или радикал (т. 1, стр. 65). При этом полимер образуется из би- или полифункционального исходного вещества (мономера) путем соединения его молекул без отщепления каких-либо атомов. Типичными представителями таких полимеров являются продукты, получаемые из винильных мономеров. Примером реакции полиприсоединения может служить полимеризация метилметакрилата в присутствии перекиси бензоила. Первая стадия процесса — инициирование цепи за счет термического распада перекисного инициатора на свободные радикалы. Эти радикалы реагируют далее с метилметакрилатом, разрывая его двойную связь и образуя пром.ежуточное соединение с неспаренным электроном. Последнее присоединяется к следующей молекуле мономера, в результате чего получается растущая цепь. Быстрый рост цепи происходит до тех пор, пока не наступает ее обрыв, обычно [c.233]


Смотреть страницы где упоминается термин Цепные реакции с участием радикалов: [c.389]    [c.249]    [c.411]    [c.411]    [c.576]    [c.66]    [c.271]    [c.354]    [c.371]    [c.36]    [c.112]    [c.47]   
Смотреть главы в:

Химия технология и расчет процессов синтеза моторных топлив -> Цепные реакции с участием радикалов




ПОИСК





Смотрите так же термины и статьи:

Реакции радикалов

Цепные реакции

Цепные реакции Реакции цепные



© 2025 chem21.info Реклама на сайте