Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение излучения во времени

    Термин изменение излучения во времени обозначает в его узком смысле изменение за очень короткий период (мкс — мс). Эти изменения можно наблюдать при искровом возбуждении, особенно для колебательных разрядов. В таких случаях за время очень короткого (10- —10 с) одиночного разряда от конденсатора сила тока изменяется от нуля до максимальной величины (10—10 А) и затем снова уменьшается до нуля (разд. 2.6.5 в [1]). При сильно затухающем разряде интенсивность последовательных колебательных разрядов уменьшается до нуля. Практически р разряде может быть не более 100 полупериодов колебания. Одновременно с этими колебаниями в плазме происходят очень важные изменения. Все эти быстро протекающие процессы [c.270]


    Излучение искры претерпевает сушественные изменения за время пробоя искрового промежутка до полного угасания разряда, так как меняются состав и температура газов, находя- [c.214]

    Наряду с быстрыми изменениями излучения искры за время одного периода существуют также медленные изменения, связанные с установлением стационарного состояния поверхности и температуры электродов под действием разряда. Время установления такого стационарного состояния зависит от теплопроводности и размеров электродов, а также от параметров разряда. При анализе металлов обычно предпочитают начинать [c.215]

    Химические процессы, происходящие под действием ионизирующих излучений, изучает радиационная химия. В настоящее время радиационно-химические реакции широко используются для синтеза высокомолекулярных органических веществ и для изменения их структуры. По мере освоения атомной энергетики радиационная химия все шире проникает в химическую промышленность. [c.203]

    Характерной особенностью фотохимических реакций является слабая зависимость их скорости от начальной температуры смеси. Изменение в широких пределах начальной температуры смеси не оказывает существенного влияния на интенсивность излучения. Соответственно этому, как показывает опыт, в предпламенной зоне не происходит возрастания скорости предпламенных процессов, что, в свою очередь, не отражается и на скорости распространения пламени (скорости горения). Так, например, изменение начальной температуры метано-воз-душной смеси с 20 до 680°С приводит к возрастанию скорости распространения пламени всего в 10 раз (с 30 до 300 см/с [144], в то время как согласно правилу Вант-Гоффа скорость большинства химических реакций с повышением температуры только на 10 градусов возрастает в 2—4 раза. Ни тепловая , ни диф- [c.124]

    В то же время изменение в поглощении растворов под влиянием указанных факторов говорит о сдвиге реакции комплексообразования. Изучая поглощающие свойства растворов комплексов в варьируемых условиях, можно по уравнениям закона действующих масс и закона поглощения электромагнитных излучений найти связь константы равновесия с поглощающими свойствами данной системы и рассчитать эту константу. Следовательно, метод абсорбционной спектроскопии может быть использован также для изучения гидролиза и полимеризации в растворах, определения состава комплексных соединений и их констант устойчивости, так как в результате смещения равновесия изменяются спектральные свойства изучаемой системы. [c.46]


    При когерентном рассеянии света молекулами, описываемом законом Рэлея (см. уравнение (467)), часть энергии излучения переходит в энергии вращательного и колебательного состояния молекул. Поэтому в спектре рассеянного света наряду с частотой линии возбуждающего света наблюдаются линии с большими и меньшими частотами, соответствующие выделению и поглощению энергии молекулами. Поскольку при комнатной температуре преобладает основное колебательное состояние, происходит только поглощение энергии. Линии получаемого таким образол спектра комбинационного рассеяния (КР) часто значительно сдвинуты по сравнению с линиями падающего на вещество света в сторону больших длин волн. В то время как ИК-спектр связан с изменением дипольного момента молекул, появление линий в КР-спектре связано с изменением поляризуемости молекул. Поэтому линии спектра [c.354]

    В то же время любая электрохимическая реакция приводит к изменению заряда реагирующих частиц и, следовательно, вызывает перераспределение диполей растворителя, окружающих эти частицы. Такая реорганизация растворителя, как показывают теоретические расчеты, также сопровождается значительным изменением потенциальной энергии, а потому может служить основой для построения кривых потенциальной энергии, в которых путь реакции представляет собой некоторую обобщенную координату (у), характеризующую распределение диполей растворителя. По современным представлениям реорганизация растворителя является определяющим фактором в ходе элементарного акта разряда, хотя в общем случае необходимо рассматривать также энергию растяжения химических связей в реагирующих частицах. Концепция реорганизации растворителя приводит к следующему механизму элементарного акта в стадии разряда — ионизации. Согласно принципу Франка — Кондона, переход электрона без излучения или поглощения квантов энергии возможен лишь при условии, что полные энергии электрона в начальном и конечном состояниях приблизительно одинаковы. Выравнивание электронных уровней начального и конечного состояний происходит под действием тепловых флуктуаций растворителя. Когда в результате этих флуктуаций распределение диполей растворителя в зоне реакции оказывается таким, что оно одновременно соответствует и начальному, и конечному состояниям (см. точку А на рис. 79), то появляется вероятность квантовомеханического (туннельного) перехода электрона из металла на реагирующую частицу. Если такой переход осуществляется, то система переходит на потенциальную кривую конечного состояния и релаксирует по ней до равновесной координаты г/у. Таким образом, в наиболее простых электродных процессах энергия активации обусловлена реорганизацией диполей растворителя, необходимой для квантовомеханического перехода электрона из начального в конечное состояние. Напомним, что точно такой же механизм имеют и простейшие ионные реакции в объеме раствора (см. гл. IV). Характерной особенностью электродных процессов является то, что в них начальный уровень [c.186]

    Релаксационным методом или по форме линии излучения измеряется время релаксации разницы населенностей рабочих уровней и осциллирующей магнитной поляризации при столкновениях атомов водорода с исследуемыми молекулами в газовой фазе. Соответствующие константы скорости процессов изменения сверхтонкого состояния атома водорода при его взаимодействии с молекулой М и потери атомом когерентности при этом взаимодействии Л, связаны с характеристическими временами релаксации [c.303]

    Ядерные реакции встречаются и в природе. Такие реакции могут протекать как под влиянием различного рода излучений радиоактивных ядер, находящихся в верхних геосферах Земли, так и при взаимодействии различных ядер с нейтронами, образуемыми космическим излучением в атмосфере. Эти процессы могут приводить к образованию радиоактивных ядер с короткими периодами полураспада, а также создавать стабильные ядра. Распад радиоактивных элементов и образование стабильных ядер является единственной причиной наблюдаемых изменений в распространенности ряда элементов, а также причиной локальных изменений изотопного состава элементов в природе. Например, распространенность урана и калия все время снижается, а их изотопный состав с течением времени изменяется. [c.22]

    Излучение искры существенно изменяется за время от пробоя искрового промежутка до полного его исчезновения. Это связано с изменением состава и температуры газа, находящегося в искровом промежутке. [c.51]

    Продолжавшийся на протяжении многих миллионов лет постепенный вывод углерода из атмосферы привел к тому, что теперь она содержит у земной поверхности в среднем только 0,03 объемн.% СОз. Так как углекислый газ (и водяной пар) свободно пропускает на Землю тепловое излучение Солнца и сильно задерживает обратное излучение Земли, уменьшение содержания СОз в атмосфере явилось одной из причин изменения климата земной поверхности. Было вычислено, что при полном исчезновении СО2 из атмосферы средняя температура земной поверхности понизилась бы по сравнению с современной на 21 град. Напротив, при удвоении содержания СОа она повысилась бы на 4 град (что повело бы к усиленному таянию льдов и резкому повышению уровня мирового океана). Так как в минувшие геологические эпохи атмосфера содержала больше углекислого газа (и водяных паров), средняя годовая температура на Земле была выше, чем в настоящее время (+14°С). [c.581]


    Появление излучения при ускоренном движении электрического заряда можно наглядно представить на рисунке, изобразив силовые линии покоящегося заряда и заряда, движущегося равномерно и ускоренно (рис. 1.1). Силовые линии покоящегося заряда направлены радиально если заряд движется с постоянной скоростью,, силовые линии движутся вместе с ним. Представим, что движение ускорилось. На распространение происшедшего возмущения требуется определенное время. Это важнейшее обстоятельство есть следствие принципа близкодействия оно приводит к изгибу силовых линий в области, близкой к заряду, в то время как в более далеких областях они еще сохраняют прежний вид. Искривление выражается в изменении числа силовых линий, проходящих через элементарную площадку, выделенную на поверхности сферы, описанной вокруг заряда, а именно это должно приводить к возникновению электромагнитного импульса, т. е. к излучению. [c.14]

    В результате действия ионизирующих излучений на некоторые, вещества и смеси веществ могут протекать реакции, ведущие к -образованию технически важных продуктов. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров в результате сшивания, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окислов азота из воздуха и ряд других процессов. Особый интерес представляют цепные реакции под действием ионизирующего излучения. К таким реакциям относятся окисление углеводородов, их галоидирование, сульфоокисление, сульфохлорирование, полимеризация и др. [c.597]

    Термин фотохимия используется достаточно широко. Хотя фотохимия в основном рассматривает химические превращения при поглощении света, ряд физических процессов, не включающих каких-либо суммарных химических изменений, также относятся к области фотохимии например, такие процессы, как флуоресценция (когда свет испускается образцом, поглотившим излучение) или хемилюминесценция (когда продуктом химической реакции является излучение света), должны рассматриваться как фотохимические. Слово свет также используется достаточно произвольно, поскольку в процессах, идентифицируемых как фотохимические, участвует излучение гораздо более широкого диапазона длин волн, чем видимая область. Длинноволновый предел, видимо, располагается в ближней инфракрасной области (около 2000 нм), а рассматриваемый диапазон простирается далеко в вакуумный ультрафиолет (см. примечание на с. 179) и лишь формально ограничивается длинами волн, при которых излучение становится заметно проникающим (рентгеновское излучение). Важным вопросом фотохимии является механизм участия возбужденных состояний атомов и молекул в изучаемых процессах. Очевидно, что изучение процессов поглощения или испускания света является делом спектроскописта в той же мере, что и фотохимика, и последний должен иметь по крайней мере общие знания в области спектроскопии. В то же время фотохимику [c.11]

    Идея многоквантовых процессов на первый взгляд кажется противоречащей основам квантовой теории. Эйнштейн показал, что наблюдающийся фотоэлектрический эффект согласуется с представлением об излучении как о потоке фотонов, чья энергия определена частотой или длиной волны интенсивность излучения измеряется числом фотонов (в единицу времени), но не влияет на энергию каждого отдельного фотона. Подобные рассуждения применимы и к фотохимическим изменениям. Приведенный в разд. 1.2 закон Штарка — Эйнштейна служил следующим подтверждением идей квантования. Только один фотон необходимо поглотить частице, чтобы вызвать ее различные фотохимические превращения. Следовательно, фотоны с энергией меньшей, чем необходимо для какого-то определенного превращения, например диссоциации, не могут быть эффективны, как бы ни была высока их интенсивность. Очевидно, что если частота излучения не соответствует разнице между двумя энергетическими уровнями молекулы или атома, то поглощение и, следовательно, реакция не могут произойти. Однако в последнее время выполнено большое число экспериментов, [c.73]

    Необходимо отметить различие спонтанного и вынужденного комбинационного рассеяния. Интенсивность линий спонтанного КР на несколько порядков меньше интенсивности линий накачки, в то время как интенсивность вынужденного стоксового (или антистоксового) излучения сравнима с интенсивностью луча накачки. Вынужденное комбинационное рассеяние наблюдается только при интенсивности накачки выше пороговой , которая определяется коэффициентом поглощения среды и изменением поляризуемости изучаемых молекул. [c.773]

    Под термином температура имеют в виду величину, характеризующую степень нагретости вещества. Непосредственно можно лишь весьма приблизительно оценивать температуру тела (холодное, теплое, горячее, раскаленное), поэтому приходится прибегать к косвенным методам измерения температуры — к измерению таких физических свойств тел, которые однозначно связаны с их температурой и в то же время могут быть сравнительно просто и с большой точностью измерены. Для этой цели используют объемное или линейное расширение тел при нагревании (дилатометрические термометры — ртутные и манометрические), изменение их электрического сопротивления (электрические термометры сопротивления), изменение развиваемой ими (в паре с другим телом) термоэлектродвижущей силы (термопары), изменение количества излучаемой ими энергии (пирометры излучения). [c.24]

    В области радиационных технологических процессов, проводимых в присутствии катализаторов, существуют в общем два основных направления во-нервых, можно подвергнуть катализаторы действию радиации перед их применением во-вторых, можно облучать непосредственно реакционный объем во время протекания каталитической реакции. Во втором случае не только происходят изменения (возникают дефекты) в структуре катализатора,, но и сырье само поглощает излучение, что приводит к образованию высокоактивных форм, рассмотренных выше. Совершенно очевидно, что близость твердой поверхности гетерогенного катализатора оказывает сильное влияние на дальнейшую судьбу активных форм независимо от того, будут ли это радикалы, ионы или возбужденные молекулы. Фактически положение оказывается еще более сложным, так как облучение может изменять химический состав как реагирующих веществ, так и катализатора. [c.120]

    Промышленное внедрение в ближайшем будуш ем во многом зависит от перспектив изменения стоимости энергии радиоактивных излучений. Разумеется, если но той или иной причине в удобной для промышленного применения форме станет доступной весьма дешевая энергия радиоактивных излучений, то перспективы окажутся благоприятными и накапливаемые в настоящее время сведения удастся использовать для промышленного внедрения. Однако, даже если не останавливаться на вопросе о стоимости радиоактивных излучений, то имеющиеся предварительные результаты требуют дополнительного углубленного рассмотрения перспектив радиационных процессов с учетом четырех основных задач. [c.166]

    Пострадиационная убыль клеток вследствие их гибели в интерфазе, а также утрата репродуктивной способности части клеток особенно серьезны для тех непрерывно обновляющихся клеточных популяций, зрелые формы которых имеют физиологически ограниченное время жизни, после чего они отмирают. Чем короче цикл созревания и средний срок жизни зрелых клеток какой-либо системы, тем выраженнее и чаще бывают нарушения этой системы в период после облучения. Те важные органы и системы, выход из строя которых приводит к гибели организма, называются критическими. Так, к основному тканевому поражению в диапазоне доз (на все тело) 1—10 Гр относится нарушение кроветворной функции, получившее название костномозгового синдрома. Доза, при которой выживает 37% стволовых кроветворных клеток (До) у мышей, составляет 1 Гр. При костномозговом синдроме возникают серьезные нарушения репродуктивной способности гемо-поэза. Эти нарушения с течением времени после облучения определяют изменения в периферической крови в зависимости от среднего времени жизни форменных элементов крови и дозы излучения. [c.18]

    Когда речь идет о чувствительности организма к ионизирующему излучению, рассматривается, как правило, диапазон доз, вызывающих гибель при проявлениях костномозгового синдрома. Пострадиационные изменения в других (не критических) тканях могут оказать значительное воздействие на важные функции организма (зрение, репродуктивные функции), в то же время не оказывая решающего влияния на жизненный исход. В связи с нарушением нервно-гуморальной регуляции в пострадиационный патогенетический механизм вовлекаются все органы и ткани. Радиочувствительность же всего организма у млекопитающих приравнивается к радиочувствительности кроветворных клеток, так как их аплазия, возникающая после общего облучения в минимальных абсолютно смертельных дозах, приводит к гибели организма. [c.20]

    Интересующие нас квантовые системы, как мы видели, обладают свойством изменять частоту излучения, вообще трансформировать энергию. Их внутренняя энергия складывается из электронной и вибрационной (тепловой) энергии, причем запас ее может пополняться или уменьщаться при взаимодействии, с излучением и с соприкасающимися веществами — другими квантовыми системами. Изменение уровня электронной энергии сопровождается изменением уровня вибрационной энергии и, наоборот, увеличение или уменьшение запаса последней влечет за собой соответствующее изменение электронной энергии. Дело в том, что упругие силы, действующие между атомами, зависят от энергетического состояния электронов в то же время шругие колебания атомов деформируют электронные оболочки, т. е. изменяют уровень энергии электронов. Другими словами, в твердом веществе существует электронно-фононное взаимодействие, причем передача и трансформация энергии происходят путем столкновения электронов с фононами. Представляя собой систему большого числа взаимосвязанных вибраторов, твердое вещество имеет сплошные спектры поглощения. Благодаря этому соударение с твердым телом возбужденных молекул или комплексов, в частности продуктов экзотермических реакций, позволяет им освобождаться от избыточной энергии, прежде чем наступает их диссоциация. Твердое тело может вместе с тем легко передавать из своих запасов дополнительную энергию адсорбированным молекулам или атомам и таким путем активировать их, что при определенных условиях позволяет ему служить катализатором химических реакций. [c.132]

    Люминесценция характеризуется длительностью возбужденного состояния, которая у различных веществ имеет определенную среднюю величину. Поглощенная энергия некоторое время остается в возбужденной частице. Это время — средняя длительность возбужденного состояния (т) — определяется свойствами возбужденной частицы и действием иа нее внещней окружающей среды. В отличие от температурного излучения люминесценция — неравновесный процесс, Люми-несцирующая молекула, потерявшая избыточную энергию возбуждения, при комнатной температуре не может восстановить ее при соударениях с невозбуждеиными молекулами. Таким образом, возбужденное электронное состояние молекулы при комнатной температуре не находится в равновесии с тепловым полем и с энергией движения частиц вещества. При возбуждении энергия поглощенного кванта частично расходуется на изменение конфигурации электронного облака молекулы, на колебание ее ядер и на изменение ее вращения. Поэтому квант люминесценции в целом меньше поглощенного кванта и представляет собой сложную комбинацию кванта электронного перехода и квантов измергения колебательного и вращательного состояний молекулы. [c.88]

    Согласно правилу отбора спина А5 = 0, дальнодействующий кулоновский перенос энергии невозможен для любых процессов, протекающих с изменениями мультиплетности, и поэтому дальнодействующий триплет-триплетный перенос энергии должен быть исключен. Однако, поскольку спин-орбитальное взаимодействие допускает электрические дипольные оптические переходы с Д8 0 в сложных молекулах, кулоновский перенос может происходить по с1с1-механизму. Похоже, что этот перенос является более медленным, чем обменные процессы, в которых переходы для донора и акцептора полностью разрешены, но, так как реальное излучательное время жизни триплетных состояний также велико, дальнодействующий перенос энергии может все еще иметь значение наряду с излучением. Отсюда следует, что дальнодействующее взаимодействие, видимо, осуществляется только в системах, в которых тушение или интеркомбинационная конверсия не являются основными процессами потери три-плетпой энергии донора. Интересно, что процесс типа [c.131]

    Наше краткое изучение фотохимии полимеров заканчивается двумя темами, касающимися долговечности полимеров вне помещений. Большинство органических полимеров претерпевает химическое изменение, или фотодеструкцию, под действием видимого или УФ-излучения, особенно в присутствии атмосферного кислорода. В результате механические свойства полимера в объеме ухудшаются. Для некоторых приложений долговечность является важным параметром, например в строительстве или автомобилестроении. Поэтому желательно продлить полезную продолжительность жизни материала с помощью фотостабилизации. В то же время существуют также экологические проблемы, связанные с устойчивостью пластиков, применяемых в сельском хозяйстве, и пластиковых упаковочных материалов после их использования. Следовательно, полимеры могут быть намеренно сделаны светочувствительными. Использование фотодеструктирующих пластмасс позволяет сделать предметы типа пластмассовых кружек очень недолговечными — под действием света они рассыпаются в тонкий порошок и развеиваются. [c.262]

    Частица в состоянии может перейти в основное электронное состояние путем испускания кванта электромагнитного излучения. Возникающее излучение, происходящее без изменения мультиплет-1ГОСТИ, называется флуоресценцией. Согласно принципу Франка— Кондона при расположении кривых потенциальной энергии, изображенном на рис. 47, переход преимущественно происходит на возбужденные колебательные уровни. Поэтому частота испускаемого излучения существенно ниже частоты поглощаемого (возбуждающего) излучения. Избыточная колебательная энергия рассеивается в виде теплоты. Флуоресценция является мономолекулярным фотофнзическим процессом с константой скорости порядка 10- Поэтому время жизни возбужденных синглетных состояний имеет порядок 10 с. В связи с этим сииглетные возбужденные состояния могут участвовать лишь в очень быстро протекающих фотохимических процессах—мономолекулярных превращениях с константой скорости порядка 10 с или выше, и в бимолекуляр1 ых реакциях, если тот же порядок имеет произведение константы скорости этой реакции на концентрацию второго компонента (см. гл. IV, 2). Поскольку константа скорости бимолекулярной реакции ие может превышать фактор соударений, т. е. быть выше 10 M то бимолекулярные реакции с участием синглетных возбужденных состояний могут идти лишь при довольно значительных концентрациях второго компонента реакции. Благоприятным обстоятельством для протекания таких реакций является предварительное образование комплекса между реагирующими частицами. [c.156]

    Главным элементом радиоизотопных детекторов является ионизационная камера, в которой происходит ионизация анализируемого газа излучением радиоактивного источника. Для получения высокой разрешающей способности камера должна обладать возможно меньшим объемом. В то же время сопротивление изоляции между обоими электродами камеры, а также между измерительным электродом и заземленным корпусом детектора должно быть существенно больше величины измерительного сопротивления электрометра, применяемого для регистрации изменений понизационного тока. Наконец, число ионизирующих частиц в ионизационной камере должно быть настолько велико, чтобы можно было определить очень малые [c.140]

    В трехэлектродном аргоновом ионизационном детекторе Лавлока (1960), представленном на рис. 38, между анодом и катодом располагается кольцевой электрод таким образом, что на нем измеряется в основном только ионный ток, возникающий в результате ионизации детектируемого вещества метастабильными атомами аргона, в то время как основная масса ионов, образовавшихся при ионизации аргона иод действием излучения, притягивается к катоду. В связи с этим на кольцевом электроде удается регистрировать изменения ионного тока, вызванные присутствием детектируемого вещества, отдельно от фонового тока, подверженного статистическим колебаниям. [c.148]

    С целью ускорения коррозионных испытаний питтинговую коррозию стимулировали ультрафиолетовым облучением. Коррозионные испытания длительностью 60 сут проводили в универсальной коррозионной камере в атмосфере солевого тумана, получаемого распылением 3%-ного Na l, 10 ч в сутки, температуру поддерживали равной 45° С и влажность 100%. Одновременно с этим образцы подвергали инфракрасному и ультрафиолетовому облучению. Источником инфракрасного излучения являлся силитовый стержень, ультрафиолетового — ртутно-кварцевая лампа. Интегральная интенсивность радиации составляла 7.9-10 Дж/(м -с). В остальное время облучение не проводили, темпе-)атура медленно снижалась до 20—22° С, влажность понижалась незначительно. 1ервые питтинги полусферического типа появились через 30 сут, и далее их число увеличивалось без заметных изменений размеров и формы (глубина в пределах 60—70 мкм). [c.87]

    И. Г. Половченко [1] предложил радиометрический метод для контроля качества материала доменной шихты. Исследования, проведенные им на заводе им. Ф. Э. Дзержинского, преследовали цель непрерывного контроля движения шихтовых материалов в шахте доменной печи с помощью радиоактивных индикаторов. Для этого были необходимы сведения о свойстве шихтовых материалов, которые в то время отсутствовали. Характеристики ослабления потока у-квантов снимали в слое шихты на различном расстоянии между источником у-излучения (Со ° активностью от 9 до 280 мКи) и детектором (галогенным счетчиком типа СТС-5). В частности, получены характеристики и для кокса. Удаление из кокса фракции >80 мм резко изменяло ослабление и сокращало расстояние, при котором наступало значительное ослабление потока ионизирующего излучения. Для кокса без фракции ниже 40 мм ослабление снижалось еще более значительно. На основании проведенных исследований И. Г. Половченко приходит к выводу, что коэффициент ослабления весьма чувствителен к изменению ситового состава. [c.65]


Смотреть страницы где упоминается термин Изменение излучения во времени: [c.149]    [c.64]    [c.172]    [c.263]    [c.78]    [c.159]    [c.162]    [c.29]    [c.141]    [c.35]    [c.162]    [c.243]    [c.56]    [c.18]    [c.141]    [c.15]    [c.157]    [c.517]    [c.725]   
Смотреть главы в:

Эмиссионный спектральный анализ Том 1 -> Изменение излучения во времени




ПОИСК





Смотрите так же термины и статьи:

Излучение времени



© 2025 chem21.info Реклама на сайте