Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роль полидисперсности

    Сравнение реакционной способности ступенчатых поверхностей кристалла с реакционной способностью нанесенных Р1-катализаторов показывает, что структура полидисперсных частиц Р1 в катализаторе может быть с успехом воспроизведена ступенчатыми поверхностями. Установлено, что атомарные ступени играют определяющую роль при превращениях углеводородов, а также при диссоциации Н2 и других двухатомных молекул с большой энергией связи [237]. Показано, что реакция дегидрирования циклогексана до циклогексена не зависит от структуры поверхности монокристалла Р1 (структурно-нечувствительная реакция). В то же время реакции дегидрирования циклогексена и гидрогенолиза циклогексана структурно-чувствительны. В свете полученных результатов предложена [238] расширенная классификация реакций, зависящих от структуры поверхности металла. А именно, предложено отнести к особому классу реакции, скорость которых зависит от размера активных частиц катализатора или от плотности атомарных ступенек и выступов на них, и реакции, скорость которых зависит от вторичных изменений структуры поверхности катализатора (например, из-за образования в ходе реакции углеродистых отложений, а также других эффектов самоотравления). На основе проведенного анализа предложена модель каталитически активной поверхности Р1, учитывающая атомную структуру поверх- [c.165]


    Описанное явление сепарации играет существенную роль в ряде технологических процессов, в частности при приготовлении песчаных фильтров для воды. В случае систем твердые частицы — жидкость степень и качество сепарации могут быть оценены наиболее точно. Применительно же к системам твердые частицы — газ, наиболее распространенным и рассматриваемым в данной главе, не предложено согласованных корреляций для расчета сепарации в полидисперсном слое зернистого материала. [c.548]

    Значительный интерес представляет распространение статистических методов неравновесной механики и термодинамики на поли-дисперсные ФХС [36]. Для этого уравнения типа (1.80), которые раньше записывались для совокупности молекул жидкости или газа, используются для описания ансамблей включений (твердых частиц, капель, пузырьков) полидисперсной ФХС. В данном случае уравнение (1.80) играет роль приближенной математической модели поведения ансамбля частиц дисперсной фазы, параметры которой должны определяться на основании обработки экспериментальных данных путем решения обратных задач. [c.71]

    Следует заметить, что набухание и растворение высокомолекулярных соединений, свойства их растворов, а также физико-механические свойства самих высокомолекулярных веществ существенным образом зависят от их полидисперсности. Поэтому определение и регулирование степени полидисперсности высокомолекулярных веществ играют в технике большую роль. [c.423]

    Коэффициент полидисперсности винилового полимера, полученного на начальной стадии процесса, равен 1,43. Рассчитайте значения среднечисловой и среднемассовой степеней полимеризации, если цепи обрываются в результате их рекомбинации, а роль передачи цепи ничтожно мала. [c.54]

    Представления Смолуховского объясняют коагуляцию монодисперсных золей. Мюллер разработал подобную же теорию дла объяснения коагуляции полидисперсных систем. Он показал, чтО частицы различных размеров агрегируются всегда скорее, чем одинаковые частицы. При этом большие частицы играют роль как бы- зародышей коагуляции такую же роль могут играть и агрегаты, образующиеся в начальной стадии коагуляций приблизительно, монодисперсного золя золота, как об этом свидетельствуют наблюдения Б. В. Дерягина и Н. М. Кудрявцевой. Впрочем, положения Мюллера полностью верны лишь тогда, когда в золе имеются частицы, существенно превосходящие по размеру малые частицы. Теория Мюллера объясняет автокаталитический характер коагуляции, скорость которой может постепенно возрастать со временем. Мюллер также показал, что коагуляция ускоряется, если частицы имеют удлиненную форму, так как на поступательное броуновское-движение налагается еще вращательное движение, увеличивающее вероятность столкновения таких частиц. [c.266]


    Таким образом, меняя носители или модифицируя их, получают ПЭНД с различной полидисперсностью. Это связано с преимущественной ролью различных реакций ограничения цепи, что и подтверждается перераспределением макромолекулярной ненасыщенности и числа ответвлений у ПЭНД, полученного с катализаторами на, носителях и без них (см. табл. 3.1). [c.99]

    В полидисперсных аэрозолях коагуляция может происходить также и другим путем Под влиянием гравитационных или центробежных сил крупные частицы движутся быстрее мелких, и тем самым увеличивается вероятность столкновения тех и других Коагуляция за счет разности скоростей оседания (именуемая иногда ортокинетической коагуляцией ) в высокодисперсных дымах с малым интервалом размеров частиц пренебрежимо мала но она может играть важную роль в природных облаках и туманах, где разница в скоростях оседания капель значительна [c.154]

    Только у монодисперсных полимеров = Л/ . У полидисперсных полимеров эти средние значения неравны. При усреднении по среднечисловому закону, когда подсчитывается общее число макромолекул в образце X г 1 все они равноправны, а при усреднении по среднемассовому закону более тяжелые макромолекулы играют большую роль. Поэтому у полидисперсного полимера . [c.172]

    Резиновая смесь представляет собой многокомпонентную систему. Одновременно она является и полидисперсной системой здесь каучук играет роль дисперсионной среды, а сера, технический углерод и другие сыпучие и жидкие компоненты — роль дисперсной фазы. Смешение относится к технологическому процессу, целью которого является получение гомогенной смеси, т. е. такой смеси, в которой все исходные компоненты относительно равномерно распределены по объему дисперсной среды. [c.97]

    Полидисперсный зернистый слой переходит в псевдоожиженное состояние не при одной фиксированной скорости ожижающего агента, а в некотором интервале скоростей от w a до w n. При скорости Wh, называемой скоростью начала взвешивания, переходят в псевдоожиженное состояние лишь самые мелкие твердые частицы. При w > wl, в псевдоожиженное состояние постепенно переходят все более крупные частицы и, наконец, при скорости w ,, называемой скоростью полного псевдоожижения, весь слой становится псевдоожиженным. Заметим, что wa обычно выше скорости начала псевдоожижения монодисперсного слоя наиболее мелких частиц w m, а w n — ниже скорости начала псевдоожижения монодисперсного слоя наиболее крупных частиц а . Это явление объясняется тем, что крупные частицы препятствуют псевдоожижению мелких, но последние, наоборот, способствуют псевдоожижению крупных (играют как бы роль смазки ). В интервале Шн сопротивление слоя плавно растет и становится постоянным при W > w n (рис. 1-21, в). Скорости w , и w ti не поддаются теоретическому расчету и могут быть приближенно оценены по формуле (1.47а) по размерам мелких и крупных частиц. [c.85]

    Твердая фаза суспензий обычно полидисперсна и состоит из частиц различной формы. В процессах разделения играют существенную роль также физические свойства жидкой фазы, особенно ее плотность, вязкость и поверхностное натяжение. [c.197]

    Большую роль в процессе фильтрования играют природа и структура осадка и фильтровальной перегородки. От этих факторов зависят их порозность, способность сохранять форму и размеры пор в процессе фильтрования. Под действием перепада давлений осадки, особенно состоящие из очень мелких частиц, становятся сжимаемыми. Процесс еще больше осложняется при большой степени полидисперсности твердой фазы суспензии вследствие отложения мелких частиц в просветах между более крупными. Разумеется, при способности твердых частиц деформироваться под действием давления входы в поры фильтровальной перегородки могут оказаться полностью закупоренными. Заметим, наконец, что несжимаемыми являются осадки монодисперсные и состоящие нз не очень мелких частиц. Большинство реальных осадков обладает свойством сжимаемости, степень которой увеличивается с уменьшением размера частиц. Сжимаемой может оказаться и фильтровальная перегородка. В связи с этим при теоретическом анализе различают процессы фильтрования при наличии [c.227]

    Углеродные адсорбенты характеризуются полидисперсным распределением пор, включающих микро-, мезо- и макропоры. Определяющее значение в сорбционных процессах играют микропоры. Мезо- и макропоры выполняют в основном транспортную роль. Например, при очистке промышленных газов транспортные поры в количестве 0, — 0,3 см /г обеспечивают быстрое течение процесса. Большой объем круп- [c.220]

    Стоящая в правой части формулы (3.8.27) сумма — это доля площади поперечного сечения, занятого во взвеси частицами всех размеров. Она совпадает с объемной долей этих частиц. Однако это утверждение справедливо только в геометрическом смысле (если рассматривать мгновенный снимок взвеси). В гидродинамическом смысле это не так, поскольку мелкие частицы могут двигаться, как было показано выше при качественном анализе ситуации, вместе с жидкостью и фактически составлять часть жидкой (точнее сказать флюидной, т. е. текучей) фазы взвеси. Различие в гидродинамической роли крупных и мелких частиц становится очевидным, если обратиться к частному случаю полидисперсной взвеси — бидисперсной системе, где один компонент взвеси — это крупные частицы, а второй — молекулы (или мицеллы) какого-либо красителя, которые следует считать частью флюида. В системах с широким спектром размера частиц столь однозначное разделение невозможно, поэтому практические расчеты расслоения взвесей строятся на основе следующего соглашения при вычислении скорости оседания частиц к-й фракции она и более крупные частицы относятся к оседающей фазе взвеси, а все частицы меньших разме- [c.642]


    Накопленный в последние годы экспериментальный материал по влиянию среды старения гидрогеля на пористую структуру силикагеля (см. гл. 5) действительно свидетельствует, что изменение пористой структуры определяется факторами, влияющими на процесс поликонденсации кремневой кислоты. Однако нам представляется, что такой подход не исчерпывает полностью вопроса о влиянии этих факторов на пористую структуру силикагеля. С нашей точки зрения, необходимо учитывать при этом роль коллоидно-химических процессов (агрегация частиц, рост частиц полидисперсной системы вследствие частичной растворимости дисперсной фазы и др.). [c.36]

    Согласно теории полярных состояний электрические свойства полупроводниковых полимеров, которые всегда полидисперсны, обусловлены образованием комплексов с переносом заряда, состоящих из ион-радикалов с чередующимися знаками зарядов и обладающих сравнительно большой электропроводностью При этом более длинные цепи, у которых AW меньше, выступают в роли доноров (Д), а более короткие ведут себя как акцепторы (А) электронов  [c.570]

    Высказывается предположение [247], что существование критической точки на кривой С" = /(т) связано с уменьшением подвижности частиц полидисперсного слоя, если концентрация мелочи в нем падает ниже некоторой величины Ск- Так, существует мнение [725], что мелкие частицы в слое играют роль смазки , по которой перекатываются крупные частицы это повышает общую подвижность частиц в слое (трение скольжения заменяется трением качения). Если количество частиц в слое падает ниже Ск, то ощущается недостаток смазочного материала , подвижность частиц резко падает ( вязкость псевдоожиженного слоя при прочих равных условиях резко растет). О зависимости уноса от текучести слоя, определяемого его фракционным составом, имеется и другое указание [317]. [c.148]

    Теория адсорбции полимеров так тесно связана с собственно химией полимеров и настолько специфична, что мы ограничимся лишь самыми общими представлениями. Прежде всего следует отметить, что, поскольку нелинейные полимеры малорастворимы, исследования адсорбции из растворов проводятся в основном на линейных макромолекулах, например синтетических каучуках, различных видах целлюлозы, метакрилате, поливиниле, полистиролах и т. д, [17, 34, 35]. Чаще всего в качестве растворителей используют сильнополярные органические растворители, а в качестве адсорбента — уголь (что, по-видимому, обусловлено спецификой резиновой промышленности). Далее, полимеры, получаемые обычными способами, представляют собой полидисперсную смесь, и их адсорбцию следует рассматривать как адсорбцию многокомпонентной системы, в которой важную роль могут играть эффекты фракционирования. Авторы более поздних работ пытаются изучать адсорбцию полимеров одного молекулярного веса или хотя бы фракций с узким распределением молекул по весу. Кроме того, как и на поверхности раздела вода—воздух (разд. П1-12), на поверхности раздела твердое тело — раствор возможно большое число конфигураций макромолекул. Вероятно, поэтому адсорбционное равновесие может устанавливаться крайне медленно уровень адсорбции, как будто установившийся после одно- или двухчасовой выдержки, может медленно смещаться вверх в течение многих дней или месяцев (см. [36]). Для медленной адсорбции полимеров Геллер [37] дает уравнение [c.317]

    Если принять, что л в формуле (8) постоянно, то сила Ра будет пропорциональна с1 силы же, стремящиеся разделить частицы, пропорциональны с1 (при колебаниях) или (аэродинамические силы). Отсюда следует, что роль молекулярных сил, с учетом которых выведена формула (8), приобретает большее значение с уменьшением размера частиц. Сила адгезии зависит не только от размеров частиц, но и от физико-химических свойств, формы и плотности упаковки. Поэтому распылять полидисперсные порошки, п.лотность упаковки которых больше, чем монодисперсных, бывает весьма затруднительно. [c.14]

    По технологическим свойствам СКД-2 и СКД-3 обладают существенным преимуществом по сравнению с СКД и главным -0б 10м СКДЛ. Определенную роль в этом играет их более широкое ММР (см. табл. 3), однако и при равной полидисперсности сравниваемых каучуков указанное различие в вальцуемости резиновых смесей сохраняется. Причиной этому оказалась заметная склонность СКД-2 и СКД-3 к деструкции при обработке на холодных (25—30°С) вальцах (рис. 5). [c.193]

    Различие в размерах частиц, входящих в состав полидисперсного слоя, оказывает влияние на порозность слоя, режим псевдоожижения, однородность слоя и др. Такой слой может иметь меньшую порозность благодаря более плотной упаковке частиц и возможности размещения мелких частиц в каналах между крупными частицами. При псевдоожижении по-лидисперсного слоя скорость потока может оказаться недостаточной для взвешивания крупных частиц и значительно превысить скорость витания мелких, которые при этом выносятся из слоя. Для таких полидисперсных систем характерным показателем является диапазон изменения размеров частиц измеряемый отношением Существенную роль играет также гранулометрический состав слоя - сравнительно невысокая концентрация относительно крупных частиц допустима, особенно при наличии относительно мелких частиц. [c.465]

    Различие в размерах частиц, входящих в состав полидисперсного слоя, оказывает влияние на порозность слоя, режим псевдоожижения, однородность слоя и др. Такой слой может иметь меньшую порозность благодаря более плотной упаковке частиц и возможности размещения мелких частиц в каналах между крупными частицами. При псевдоо7Кижепии полидисперсного слоя скорость потока может оказаться недостаточной для взвешивания крупных частиц и значительно превысить скорость витания мелких, которые при этом выносятся из слоя. В этом случае важным является диапазон изменения размеров частиц, измеряемый отношением маис/ мин- Существенную роль оказывает также гранулометрический состав слоя — сравнительно невысокая концентрация относительно крупных частиц является допустимой особенно при наличии и относительно мелких частиц. В качестве примера можно привести гранулометрический состав пылевидного катализатора установок каталитического крекинга. Основной фракцией являются частицы размером 40—80 мк их содер7кание составляет 50—75% содержание частиц размером 80—200 Л1К должно быть пе более 10—20% содержание частиц размером < АО мк — порядка 20—35%. [c.607]

    В монодисперсной системе Кеч, К<.п, 5 см имеют одинаковые значения, а в полидисперсной системе они различны. Чем выше полидисяерсность, тем сильнее различаются эти величины. Такая закономерность обусловлена относительным возрастанием роли поверхности и еще сильнее — числа частиц ио сравнению с объемом или массой при уменьшении их размера. Поэтому часто полидисперсность систем характеризуют отношением [c.199]

    Необходимо отметить, что теория кинетики быстрой коагуляции Смолуховского была блестяще экспериментально подтверждена Зигмонди, а затем и другими учеными, несмотря на некоторые ее допущения. Теория исходит из того, что золь имеет сферические монодисперсные чястипы. хотя на практ(1ке это встречается очень редко. РСршгеГтого, делается предположение, что монодисперсность приблизительно сохраняется и во время коагуляции. Теория быстрой коагуляции полидисперсных золей была развита Мюллером, она является продолжением теории Смолуховского. Основной вывод этой теории, подтвержденный экспериментально, заключается в том, что сильно полидисперсные системы коагулируют быстрее, чем монодисперсные. Крупные частицы выступают в роли зародышей коагуляции в их присутствии маленькие частицы исчезают быстрее, чем в их отсутствие. Теория Мюллера объяснила и некоторое возрастание скорости коагуляции в моиодисперсных золях вследствие увеличения их полидисперсности в ходе коагуляции-Мюллером было также показано, что частицы в форме листочков коагулируют с такой же скоростью, что и сферические. В то же время частицы, имеющие форму палочек, должны коагулировать быстрее. [c.283]

    Вид образующегося осадка определяется физ. характеристиками дисперсной системы и условиями О. В случае грубодисперсных систем осадок получается плотным. Рыхлые гелеобразные осадки образуются прн О. полидисперсных суспензий тонко измельченных лиофильных в-в. Консоли-дадия > осадков в ряде случаев связана с прекращением броуновского движения частиц дисперсной фазы, что сопровождается образованием пространств, структуры осадка с участием дисперсионной среды и изменением энтропии. При этом большую роль играет форма частиц. Иногда для ускорения О. в суспензию добавляют флокулянты-спец. в-ва (обычно высокомол.), вызывающие образование хлопьевидных частиц-флокул. [c.414]

    Активированный уголь смешивается со сточной водой в смесителе с лопастной мешалкой. Из смесителя суспензия поДается в адсорбер насосом (центробежным НФ или Песковым). Постепенное увеличение площади сечения расширяющегося кверху аппарата приводит к падению скорости восходящего потока и обеспечивает четкую границу псевдоожиженного слоя полидисперсных частиц адсорбента. Избыток псевдоожиженного слоя перетекает через борт пирамидального (устройства и оседает в пространстве между его стенками и стенками внешнего бака, поскольку скорость в сечении внешнего бака ниже критической. Осевший уголь выводится иэ донной части внешнего бака, выполнявшего роль угле-уплотнителя, на регекерацию. [c.115]

    Полистирол при облучении сшивается [27], его чувствительность низка ( >гМа, = 5,5). но контрастность высока (табл. УП.4). Гораздо большую чувствительность имеют галогенпрованные по лимеры [99] (табл. Vn.4). Чувствительность полихлорметилсти-рола зависит от степени хлорметилирования, с ростом которой возрастает и полидисперсность полимера, в результате чего падает контрастность и, следовательно, разрешающая способность. [c.251]

    Еще одна проблема чрезвычайно усложняет решение и без того сложной системы множества уравнений кинетики коагуляции с переменными коэффициентами 5,у. Это оседание частиц (флокул). Его роль становится тем сильнее, чем дальше заходит процесс коагуляции и чем шире становится спектр размеров флокул за счет увеличения количества ьфупных флокул. Их скорость оседания и заметно больше, чем скорость оседания мелких флокул. Различие в скоростях оседания разных флокул приводит к тому, что гранулометрический состав взвеси меняется не только во времени, но и по высоте к столба коагулирующей взвеси (см. подраздел 3.8). Следует отметить, что уравнение оседания полидисперсной взвеси даже без коагуляции не может быть решено аналитическими методами. Тем более это относится ко всей системе уравнений эволюции взвеси, включающей в себя уравнения коагуляции, уравнения оседания и уравнения материального баланса (сохранения) для всех фракций. Уравнения сохранения выражают тот [c.704]

    В работах Симхи—Фриша—Эйриха не учитывалась роль аолидис-персности полимера при адсорбции. Теоретическое рассмотрение равновесной адсорбции полидисперсных полимеров было проведено Гиллиландом и Гутофом [1071. Вывод уравнения изотермы адсорбции и в этом случае заключается в нахождении и приравнивании в равновесии парциальных свободных энергий адсорбированных и растворенных молекул. При выводе в основу положены следующие допущения. [c.114]

    В полидисперсных эмульсиях подъем относительно более крупных частиц может тормозиться более мелкими или ускоряться при их слипании. Причем коагуляция и коалесценция играют решающую роль в ускорении процесса расслаивания эмульсии. Например, в эмульсиях типа жидкость — жидкость коагуляция частиц дисперсной фазы приводит к удивительным на первый взгляд результатам сливки молока относительно быстрее и полнее отстаиваются в глубоком сосуде, чем в мелком [201 ], а увеличение вязкости дисперсной среды иногда приводит не к замедлению, а наоборот, к ускорению скорости расслоения [202]. Мельчайшие капельки жира увлекаются более грубодисперсными капельками и выносятся с ними кверху, потому что концентрация более глубокодисперсных капелек на единицу поперечного сечения вскоре становится достаточно высокой для проявления фильтрационного эффекта. При добавлении веществ, уменьшающих агрегативную устойчивость (но одновременно повышающих вязкость молока), происходит быстрая коагуляция и агрегация частиц и, следовательно, увеличение скорости расслаивания эмульсии. Поэтому не случайно внимание исследователей привлекают вопросы, связанные с изучением влияния ПАВ на гидродинамику стесненного движения капель и пузырьков [71, 190, 203, 204]. Особенно сложными становятся процессы седиментации совокупности пузырьков в полидисперс-ной газовой эмульсии при перемене внешних условий (давления, температуры, при наложении электрического или ультразвукового поля), когда изменяется их устойчивость вследствие интенсификации процессов испарения легколетучих компонентов, фазовых переходов газ — жидкость, изменения свойств межфазной поверхности и т. д. [c.102]

    Перейдем к определению характеристической функции 0 (у). Для простейших случаев возможно теоретическое определение [14]. Однако роль характеристической функции наиболее полно проявляется при анализе процессов извлечения из пористых частиц со сложной структурой, включаюп1ей полидисперсность, анизотропность, неравномерное распределение извлекаемого веш,ества по объему частицы, т. е. там, где теоретические определения сильно затруднены. В этих случаях функция 0 (у) может быть установлена путем обработки опытных данных по кинетике извлечения. В принципе, для этого можно использовать кинетическую кривую, полученную в любых экспериментальных условиях, но проще всего использовать условия периодического (замкнутого) процесса. Ниже представлены схема расчета характеристической функции  [c.117]

    Учитывая определяющую роль диффузии, можно понять зависимость скорости адсорбции от различных факторов [133, 141]. Так, скорость адсорбции молекул малого размера оказывается выше, чем больших, что обусловлено диффузией. Поэтому в растворе полидисперсного полимера адсорбированный слой оказывается обогащенным низкомолекулярной фракцией. Затем макромолекулы малого размера постепенно вытесняются медленно диффундирующими большими макромолекулами. Поэтому после установления равновесия (когда количество адсорбированного полимера уже не увеличивается) вязкость раствора продолжает снижаться [155]. Однако при очень прочной связи адсорбтива >с поверхностью адсорбента такой обмен становится невозможным, л Основной вывод, который можно сделать при рассмотрении влия-j ния молекулярного веса полимера на адсорбцию, заключается в том, что повышение молекулярного веса способствует увеличению адсорбции [133, 173], хотя обнаружены и противоположные результаты [142, 165, 174]. Адсорбция низкомолекулярных веществ, как правило, происходит с выделением тепла, а с повышением температуры уменьшается, поскольку возрастает интенсивность теплового движения и увеличивается десорбция. Адсорбция1 полимеров очень часто протекает с поглощением тепла и возрастает с повышением температуры. Однако можно наблюдать и уменьшение адсорбции с повышением температуры и даже экстремальную зависимость [142, 166]. Иногда адсорбция первого слоя полимера протекает эндотермически, а последующие слои адсорбируются экзотермически. [c.24]

    Следовательно, у полидисперсного слоя имеется переходный режим между состоянием фильтрации газа через неподвижный слой и полным псевдоожижением всего слоя. На протяжении этого переходного режима происходит по мере повышения скорости газового потока псевдоожижение все более крупных частиц. Определенную роль в этом последовательном псевдоожижении все новых фракций играет энергообмен между газом и твердыми частицами, а также между еще неподвижными крупными частицами и более мелкими, приведенными уже в псевдоожиженное состояние [58]. На рис. 7 приведен в логарифмической анаморфозе график зависимости потери напора в полидисперсном слое железной руды (в мм, вод. ст). от скорости псевдоожижающего потока азота (в см1сек) [58]. [c.41]

    Из результатов расчетов видно, какое большое влияние на скорость коагуляции системы оказывает распределение частиц по размерам. Забегая несколько вперед, отметим, что особенно велика роль степени нолидисперсности системы при коагуляции в условиях турбулентного перемешивания. Так, Самыгин и др. [30] установили, что скорость объединения относительно мелких (7—11 мкм) частиц с более крупными (- 60 мкм) в турбулентном потоке может быть па несколько порядков выше, чем скорость объединения только мелких. Авторы объясняют это различием в механизме встречи частиц — инерционном в случае полидисперсной системы и диффузионном в случае монодиснерсной. [c.131]

    Больщую роль играет в процессе пневмотранспорта разномерных материалов удельное количество транспортируемого материала. При -больших концентрациях проходное сечение пневмотранспортной трубы несколько уменьшается, что ведет к повышению истинной скорости пневмотранспорта и подъему более крупных фракций. При движении частиц различных форм (за исключением шаровой формы частиц) имеют место две критические скорости малая и большая, в зависимости от того, каким сечением частица расположена по направлению движения воздушного потока. Вследствие этого при установившемся потоке частицы находятся в постоянном вращательном движении, т. е. имеет место эффект закручивания. Последнее обстоятельство понижает поступательную скорость движения частиц, что ведет к скольжению и выпадению отдельных частиц из газоконтактной среды. Таким образом, рассматривая пневмотранспорт разномерных (полидисперсных) материалов с точки зрения сепарации (выпадения) крупных фракций из общего потока, можно заметить, что сепарация крупных фракций при пневмотранспорте, в основном, зависит от трех факторов 1) скорости воздушного потока, [c.192]

    Видно, что Ххар И В уравнениях (VI.24, VI.26) играют для полидисперсных образцов ту же роль, что X я М для монодисперсных в уравнениях (VI.7, VI.И). Поэтому можно ожидать, что для полидисперсного образца существует связанный с Ххар параметр, аналогичный п для монодисперсных образцов [c.237]


Смотреть страницы где упоминается термин Роль полидисперсности: [c.111]    [c.111]    [c.235]    [c.237]    [c.104]    [c.147]    [c.61]    [c.124]    [c.78]    [c.17]    [c.428]   
Смотреть главы в:

Структура макромолекул в растворах -> Роль полидисперсности




ПОИСК





Смотрите так же термины и статьи:

Полидисперсность

Полидисперсность роль вблизи критических точе

Роль степени полимеризации и полидисперсности исходного полимера



© 2025 chem21.info Реклама на сайте