Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакций и принцип линейности свободных энергий

    Современное состояние квантовой химии и возможности вычислительной техники предопределили два подхода к теоретическому исследо ванию реакционной способности. Как видно из предыдущей главы, первый из их, связанный с расчетом потенциальных поверхностей и энергии активации, применим лишь к реакциям относительно небольших молекулярных систем преимущественно в газовой фазе. Однако повседневная химическая практика требует рассмотрения значительно более сложных реакций, причем проходящих, в основном, в растворах. Именно эта практическая необходимость и привела к появлению так называемого метода индексов реакционной способности. Существует определенная аналогия между расчетами потенциальных поверхностей и методом индексов реакционной способности, с одной стороны, и строгими кинетическими исследованиями простейших газофазных реакций с определением абсолютных констант скоростей отдельных элементарных стадий и относительными исследованиями реакционной способности, использующими различные корреляционные соотношения, принятые в органической химии — с другой стороны. Эта аналогия еще более углубляется, если учесть то обстоятельство, что в основе как метода индексов реакционной способности, так и корреляционных уравнений органической химии лежит чисто эмпирический принцип линейности свободных энергий. Этот принцип является отражением качественного правила, на котором с самого начала основывалась органическая химия подобные вещества реагируют сходно, а сходные изменения в строении приводят к сходным изменениям в реакционной способности. Он устанавливает линейную связь между изменениями свободных энергий активации л свободными энергиями, определяю- [c.206]


    Г. у. не является строгим. Известны многочисленные отклонения от него, обусловленные явлением сопряжения, стерическими факторами и др. причинами. Г. у. позволяет рассчитывать константы равновесия и константы скорости разнообразных реакций многих важнейших ароматич. соединений. В последние годы сделаны многочисленные и большей частью успешные попытки распространения принципа линейности свободной энергии на органич. соединения других классов алифатич. к-т, "аминов, фосфорорганич. соединений и др. [c.403]

    XIV. 6. Скорость реакций и принцип линейности свободных энергий (ЛСЭ) [c.339]

    КдК свидетельствуют данные таблицы 3 и рис. I логарифмы констант скоростей хорошо коррелируют с -константами заместителей, значения которых взяты из литературы 5. Наблюдаемая для исследуемой реакции линейная связь -константами заместителей является конкретным выражением принципа линейности свободных энергий (ЖЭ).  [c.316]

    Применение принципа линейности свободных энергий в форме уравнения Гаммета позволяет исследовать поведение молекул, содержащих произвольно выбранный реакционный центр X и фрагмент, не подвергающийся превращениям в ходе реакции, но отдельные структурные элементы которого оказывают влияние на скорость или равновесие реакции с участием X. Так, например, изменения природы заместителей в ароматическом ядре или в алифатической цепи могут линейно коррелировать с изменениями константы скорости или равновесия реакции с участием данного реакционного центра. [c.166]

    Гаммет предложил уравнение lg(k/ko)=pa, где а = =-- g K Ko), связывающее константу скорости реакции к с константой равновесия К в зависимости от заместителя (для ароматических соединений). Уравнение Гаммета положило начало корреляционным соотношениям в химической кинетике (принцип линейного соотношения свободных энергий). [c.372]

    Предлагалось рассматривать два вида электронных влияний поляризацию, которая определяет положение равновесия, и поляризуемость, которая оказывает дополнительное влияние на скорость реакций [16]. Однако теория переходного состояния в принципе не дает оснований для такого разграничения, а равная применимость принципа линейной зависимости свободных энергий к скоростям и равновесиям показывает, что оно не является необходимым. [c.457]

    Сложнее обстоит вопрос с количественной характеристикой реакционной способности алифатических соединений. Далеко не всегда здесь наблюдается линейная зависимость между логарифмами констант скорости реакции и констант ионизации кислот соответствуюш его строения. Здесь несравненно большую роль играют стерические факторы, и поэтому принцип линейной зависимости свободной энергии часто нарушается. Тем не менее для многих реакций и здесь предложены эмпирические уравнения, связывающие фрагменты строения с константой скорости реакции. Я имею в виду известное уравнение Тафта [8], выведенное для скорости гидролиза эфиров карбоновых кислот. Оно пишется так же, как и уравнение Гамметта [c.27]


    Корреляционные уравнения. Одним из важных теоретич. достижений современной органич. химии является установление возможности коррелировать константы скорости (или равновесия) реакции одной реакционной серии. Реакционной серией наз. систему родственных реакций, отличающихся изменением к.-н. одиого параметра, напр, введением заместителя в реагирующее соединение, изменением растворителя, давления и т. д. Связь между константами в рамках одной серии устанавливается корреляционным ур-иием это дает возможность вычислить константу для к.-л. изменения в системе без экспериментального ее определения. Все корреляционные ур-ния являются частным случаем общего принципа линейной зависимости между изменениями свободных энергий. В зависимости от изменяющегося параметра реакции получаются различные типы ур-ний. Так, корреляция электронных эффектов мета- и пара-заместителей представляет собой Гаммета уравнение", для орто-замещенных ароматич. соединений и замещенных алифатич. соединений — Тафта уравнение. Известны корреляционные ур-ния для онисания скорости реакции в связи с влиянием растворителя и т. д. [c.281]

    Линейная зависимость между lg для любой пары растворителей отсутствует. Несоблюдение принципа линейности в изменении свободной энергии при варьировании природы растворителя и отсутствие компенсационного эффекта при изменении природы радикала показывают, что скорости реакций с электрофильным агентом не могут служить критерием оценки нуклеофильности радикала R, связанного с металлом. [c.153]

    Принцип линейности в изменении свободной энергии при сопоставлении структуры и реакционной способности различных соединений уже в течение нескольких десятилетий успешно применяют в органической химии для предсказания скоростей реакций и констант равновесий, а также для систематизации многих на первый взгляд независимых параметров [108—113]. В тех случаях, когда радикальные частицы обладают некоторой полярностью, эффекты заместителей в реакциях свободных радикалов описываются корреляционными уравнениями, основанными на применении величин ар [112], Однако ббльшая часть таких работ выполнена для неводных сред. Используя метод импульсного радиолиза, удается определить константы скорости реакций гидратированного электрона, ОН, -Н и других частиц с веществами в водных растворах, а также в других растворителях в условиях, не осложненных конкурентными реакциями. Из этих абсолютных значений констант скоростей можно вывести полезные и важные линейные корреляции величин свободных энергий. Хотя в работах последнего времени такие корреляции действительно были обнаружены (такие данные обсуждаются ниже), это направление исследований еще далеко не исчерпало себя. [c.134]

    Выше, на примере реакций окисления и восстановления нитробензола, нитрозобензола, фенилгидроксиламина, фенола, -нитрофенола, гидрохинона, хинона, бензойной и салициловой кислот, нитрометана были показаны возможности радиационной химии в решении задач установления механизма этих реакций. Мы убедились, что с помощью импульсного радиолиза удается определить константы скорости и константы равновесия таких процессов, для которых эти величины другими путями установить не представляется возможным. Понятно, что и многие другие процессы окисления и восстановления в органической химии можно с успехом исследовать методами радиационной химии. Таковы, например, реакции окисления алифатических и ароматических альдегидов, замещенных анилинов и нитрилов. Первое требование, — выполнение которого необходимо для начала такой работы, — это правильное представление об общем химизме системы. Далее, весьма полезно совмещать эксперименты методом импульсного радиолиза со спектрофотометрическим определением различных продуктов реакции. Желательно также направить реакцию по такому пути, чтобы можно было ожидать образования неустойчивых промежуточных продуктов с известными спектрами поглощения, установленными независимым путем, например при импульсном фотолизе. Промежуточные продукты можно пытаться предсказывать также на основании принципа линейности в изменении свободной энергии. Дальнейшее расширение применения радиационно-химических процессов будет несомненно связано с использованием методов ЭПР , полярографии и других новых методов. [c.166]

    Так как большие значения или Р имеют мягкие основания, а большие значения Н обычно, но не всегда характерны для жестких оснований, то эти результаты совершенно естественны. Они являются примерами общего принципа линейных соотношений свободной энергии [23]. Согласно этому принципу, существует линейное соотношение между логарифмами констант скоростей и логарифмами констант равновесия для ряда родственных реакций. [c.128]


    Принцип линейности свободных энергий основаи на линейной корреляции логарифма константы скорости или константы равновесия) одной реакции с соответствующими константами других реакций, отличающихся от первой однотипными иэмекепиями структуры реагентов или условиями ггроведенпя. Как иоказапо в обзоре [6], такие корреляции позволяют описывать изменения реакционной среды (уравнепие Уинстейна — Грюнвальда см. табл, 9), изменения в структуре субстрата (уравнения Гаммета и Тафта) или изменения в структуре реагента уравнение катализа Бренстеда, уравнения Свена —Скотта и Эдвардса). [c.166]

    Л. Гаммет явился одним из пионеров новой отрасли науки, возникщей в 20—30-е годы нащего века, — физической органической химии. С его именем связаны три фундаментальных открытия создание функции кислотности, установление связи между скоростью катализируемых кислотами реакций и функцией кислотности, а также введение в химию корреляционных уравнений типа gk —а и тем самым принципа линейности свободных энергий. Ныне ясно, что даже одного из этих открытий было бы достаточно для того, чтобы оставить свой след в науке. Естественно, что профессор Гаммет отмечен многочисленными научными премиями и медалями Никольса (1957), Норриса (1960, 1966), Пристли (1961), Гиббса (1961), Льюиса (1967), Чендлера (1968), Национальной научной медалью (1968). Он является членом Национальной академии наук (США) и почетным членом Химического общества (Лондон). [c.5]

    Одной из наиболее интересных проблем нуклеофильных реакций замещения является задача понять, какие свойства реагентов определяют их эффективность. Имеется несколько попыток связать экстракинетические свойства реагентов с их реакционной способностью, и некоторые из них были довольно успешными. Все эти попытки основывались на принципе линейности свободной энергии (ПЛСЭ) [80]. Предельно ясно, что так же как нет единой шкалы кислотно-основных свойств, так нет и единой шкалы нуклеофильной реакционной снособности [81]. Природа комплекса наиболее важна, и в любом обсуждении следует учитывать относительный порядок способности реагентов к нуклеофильному замещению. К счастью, возможны хотя и качественные, но полезные обобщения [82]. Имеющиеся кинетические данные для многих различных комплексов показывают, что мягкие, легко поляризующиеся нуклеофильные реагенты наиболее эффективны по отношению к мягким комплексам. Аналогично жесткие нуклеофильные реагенты, такие, как ОН , наиболее эффективны по отношению к жестким комплексам. Кроме того, существует правило, согласно которому поляризуемость нуклеофильного реагента всегда имеет большее влияние на скорость достижения равновесия, чем на равновесные данные. [c.346]

    Энергии активации (Ед) закономерно меняются с введением замеотителей в сульфамидный (I) и эфирный (II) компоненты и также как логарифмы констант скоростей хорошо кор-релируются с (э -константами Гаммета-Тафта (табл. 3). Наблюдаемая для исследуемой реакции линейная связь К и Ед с 6 -константами Гаммета-Тафта является конкретным выражением принципа линейности свободных энергий (ЛСЭ) 9,10 Исследуя изучаемую реакцию с помощью принципа ЛСЭ было также установлено, что реакционные серии являются изокинети- [c.808]

    Этот общий принцип, воплощенный качественно в подходе ЖМКО и количественно в различных соотношениях линейности свободных энергий, из которых наиболее хорошо известно уравнение Свэна — Эдвардса, должен рассматриваться скорее как общая направляющая концепция, чем как способ параметрического расчета реакционной способности. В настоящее время нет возможности вывести удовлетворительное уравнение для нуклеофильности, так как это неизбежно требует расчета разницы скоростей реакций. Некоторые ограниченные соотношения, как, например, уравнения Свэна и Брёнстеда, можно использовать для ограниченного круга реакций. Рассмотрение отклонений от этих основных уравнений может привести к важным выводам о структуре переходного состояния. Концепция ЖМКО имеет широкое практическое применение и дает качественное понимание селективности реагентов, особенно для конкурирующих реакций. [c.255]

    Линейные корреляции формулируются как принцип линейных соотношений свободной энергии (ЛССЭ), который применяется для создания количественной теории органических реакций [29, 30]. Эта теория базируется на трех известных уравнениях уравнении Бренстеда, связывающем скорость каталитической реакции с константой диссоциации катализирующей кислоты (основания) уравнении Гаммета — Тафта, связывающем скорости однотипных реакций с индуктивными, стерическими и другими эффектами заместителей в гомологическом ряду соединений уравнении Поляни—Воеводского—Семенова, связывающем энергию активации взаимодействия радикала и молекулы с тепловым эффектом этой реакции в ряду однотипных превращений. [c.158]

    Из этих соотношений наиболее широко применяется ураенение Гаи мета, относящееся К скоростям и равновесиям многих реакции органических соединений, содержащих фенильную и замещенные фенильные группы. В 1930 годах обратили внимание на то, что существует связь между кислотностью замешенных бензойных кислот и рядом химических реакций, например скоростью гвдролиза замещенных этилбёвзоа-тов. Эту корреляцию нллйстрирует рис. 4.2, где графически показана зависимость цк/ко от Ig К/Кс, где ко — константа, скорости гидролиза этилбензоата, к — константы скоростей гидролиза замещенных этилбен-зоатов /(о и /( соответствующие константы кислотной диссоциации. Аналогичные диаграммы для многих других реакций ароматических соединений обнаруживают такую же линейную зависимость от констант кислотной диссоциации замещенных бензойной кислоты. Ни принципы термодинамики, ни кинетические теории не требуют существования таких линейных соотношений, Фактйческн, существуют многочисленные реакции, для которых не удалось обнаружить подобных корреляций. Некоторого понимания природы корреляции можно достичь путем рассмотрения зависимости между линейной корреляцией н изменениями свободной энергии, происходящими в двух процессах. Прямая линия на рис. 4.2 выражается уравнением (т —наклон прямой  [c.130]

    Другой путь использования принципа линейности соотношения свободных энергий заключается в изучении влияния заместителей на скорость электрофильного замещения. Для семи 2-замещенных фуранов была получена гамметовская зависимость между скоростями трифторацетилирования в положение 5 и константами заместителей о+, известными для производных бензола [14]. Фурановый цикл оказался более чувствительным к влиянию заместителей, чем тиофеновый полученные для этой реакции значения р соответственно равны —10,7 и —7,4. Аналогичная обработка данных [c.119]

    Уравнение (IV.13) вполне аналогично известным уравнениям Бренстеда, Гаммета — Тафта и Поляни — Воеводского — Семенова и так же, как и они, приложимо только в условиях названных выше ограничений. Уравнения такого типа лежат в основе принципа линейных соотношений свободных энергий (ЛССЭ), на базе которого строится одно из современных направлений количественной теории органических соединений [1]. В более общем виде использование ioro принципа будет изложено в следующей главе, здесь же мы ограничимся только рассмотрением зависимостей между скоростью и энергетикой гетерогенно-каталитических реакций. [c.78]

    Прогнозирование скорости и направления химических реакций методом линейных корреляций в настоящее время широко применяется в синтетической органической химии [1, 2]. Являясь по сути полуэмпирическим методом, он, однако, базируется на ряде теоретически обоснованных положений. Основой применяемых в настоящее время вариантов метода линейных корреляций является принцип линейных соотношений свободных энергий (ЛССЭ), о котором уже упоминалось в предыдущей главе. В общем виде принцип ЛССЭ подразумевает сзтцествование линейных корреляций между термодинамическими величинами, характеризующими равновесие системы такими, как свободная энергия, энтальпия, энтропия, и параметрами, определяющими скорость реакции (энергия активации, предэкспоненциальный множитель). Поскольку, однако, в химических взаимодействиях термодинамические величины в конечном счете определяются энергетикой и вероятностями перехода электронов, то в современном представлении принцип ЛССЭ подразумевает существование линейных корреляций кинетических констант как с чисто термодинамическими параметрами рекции, так и с квантовохимическими характеристиками участников реакции. В основе реакций, протекающих на поверхности гетерогенных катализаторов, лежат общехимические закономерности отсюда следует, что принципы, вполне обоснованные для гомогенных жидкофазных реакций, должны быть также справедливы для гетерогенных каталитических систем даже при высоких температурах. [c.85]

    Как мы уже установили, уравнение Тафта является линейной корреляцией той части свободной энергии реакции, которая обязана своим происхождением чисто индукционному механизму. В то же время известно не. 1ало реакций, скорость (или положение равновесия) которых зависит не только от индукционного взаимодействия реакционного центра с заместителем, но и от их пространственных взаимоотношений. Принцип аддитивности и независимости свободных энергий (П1.1) с очевидностью указывает на возможность количественной интерпретации пространственных эффектов заместителей S в таких реакциях, как отклонения от уравнения Тафта [c.325]

    Таким образом, изучение органических реакций, показавшее принципиальную недостаточность чисто физических представлений теории соударений, оказало свое контролирующее действие для проверки и другой общекинетической теории элементарных актов химических превращений — теории абсолютных скоростей реакций. Именно изучение органических реакций положило начало рас-простапению принципа линейного соотношения между изменениями свободной энергии реакции (активации) — принцип ЛСЭ. Еще в 1914 г. американский ученый X. Тейлор предложил первое корреляционное соотношение между константой ионизации катализатора и константой скорости реакции. Но только с середины 1920-х годов (когда появились первые сложности в вычислении констант скоростей реакции по теории столкновений) началось систематическое изучение пропорциональности меж- [c.160]

    Все остальные используемые для корреляций параметры более или менее явно связаны либо со свободными энергиями, либо с энтальпиями. Поэтому вопрос можно поставить так корреляция влияния растворителя и заместителя на скорость химической реакции с помощью эмпирических параметров невозможна без наличия двух физических фактов, выражаемых принципом ЛСЭ и ИКС. Прошло то время, когда линейные соотношения между энтальпией и энтропией считались математическим артефактом. По этому вопросу уже опубликованы обзоры, среди них особого внимания заслуживают работы Экснера [29, 30]. Возникает ощущение, что настает время, когда следует выяснить природу или физическое обоснование эмпирических корреляций, и понимание этих явлений уже не за горами. В следующих разделах рассматриваются по отдельности принцип ЛСЭ и ИКС. [c.223]

    Прогнозирование скорости химических реакций методом линейных корреляций в настоящее время широко применяется в органической химии [16,56]. Являясь по сути полуэлширическим методом, он, однако, обосновывается рядом теоретических предположений, объединяемых как принцип линейных соотношений свободных энергий (ЛССЭ). В общем виде принцип ЛССЭ подразумевает существование линейных корреляций меладу термодинамическими величинами, характеризующими систему и параметрами, определяющими скорость реакции. Поскольку, однако, термодинамика химических взаимодействий определяется энергетикой и вероятностями перехода электронов, то принцип ЛССЭ также подразумевает линейные корреляции кинетических констант с квантовохимическими характеристиками участников реакции (см. раздел VI. 1). Ниже излагается применение к проблеме прогнозирования и подбора гетерогенных катализаторов более простых корреляционных зависимостей, аналогичных известным уравнениям Бренстеда, Гамметта — Тафта и Поляни—Воеводского — Семенова. [c.144]

    В 1933 г. X. Пфлугер и Л. Хаммет наиболее близко подошли к установлению принципа линейных соотношений между изменениями свободной энергии реакции (активации) разных реакционных систем (принцип Л. С. Э.), показав наличие прямой пропорциональности между константами скорости реакций сложных эфиров карбоновых кислот и константами диссоциации этих кислот. [c.311]

    Для количественного исследования взаимодействия заместителей с той или иной ароматической системой в последнее время часто применяется метод установления корреляций между разностями логарифмов констант равновесия или скорости реакции в исследуемой реакционной серии и константами (Г , являщимися разностями логарифмов констант равновесия или скорости реакции в некоторой стандартной реакционной серии, т.е. тем самым сравнивается влияние заместителей на реакционную способность в исследуемой реакционной серии с-влиянием тех же заместителей в некоторых стандартных реакционных сериях, для которых известен характер взаимодействия между заместителями, ароматическим ядром и реакционным центром. Правомочнасть такого сравнения вытекает из принципа линейной зависимости мезд изменениями свободных энергий [c.70]


Смотреть страницы где упоминается термин Скорость реакций и принцип линейности свободных энергий: [c.435]    [c.79]    [c.79]    [c.454]    [c.162]    [c.11]    [c.345]    [c.135]    [c.330]    [c.330]    [c.136]    [c.338]    [c.36]    [c.7]   
Смотреть главы в:

Физическая химия неводных растворов -> Скорость реакций и принцип линейности свободных энергий




ПОИСК





Смотрите так же термины и статьи:

Линейность свободных энергий

Принцип линейности свободных энерги

Реакции энергия реакций

Свободная энергия

Скорость линейная



© 2025 chem21.info Реклама на сайте