Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Различные реакции азотсодержащих соединений

    Различные реакции азотсодержащих соединений [c.294]

    Цеолитные катализаторы в различных поливалентных катионных (или декатионированных) формах используют для проведения реакций органического и неорганического цикла крекинг, гидрокрекинг, изомеризация, алкилирование, гидрирование, дегидрирование, окисление и т. д. [209—214]. В некоторых случаях они проявляют высокую активность без добавок промоторов, а в других— при нанесении на них активных компонентов. Цеолитные катализаторы термически стабильны, устойчивы по отношению к таким контактным ядам, как сернистые и азотсодержащие соединения, металлы, не вызывают коррозии аппаратуры. Развитая поверхность (до 800 м /г), способность к катионообмену и высокая механическая прочность цеолитов позволяют использовать их в качестве носителей каталитически активной массы.  [c.171]


    Алифатические азотсодержащие соединения. К синтезу Ганча весьма близко примыкают родственные реакции, в которых в качестве исходных веществ используются алифатические азотсодержащие соединения типа аминокротонового эфира. Такое разделение носит отчасти искусственный характер и обусловлено главным образом целями классификации. Как было указано в предыдущем разделе, 3-аминокротоновый эфир является, вероятно, промежуточным продуктом в синтезе Ганча. Если р-аминокротоновый эфир выделить, а затем ввести в реакцию с альдегидом и эфиром р-кетокислоты, то это фактически приводит к результатам обычного синтеза Ганча, проведенного по стадиям. Этот способ проведения реакции имеет, однако, вполне определенные преимущества, главным из которых является возможность применения эфиров двух различных р-кетокислот и получения таким путем несимметричных производных пиридина.  [c.361]

    Работы по катализу Сабатье начал с изучения реакций присоединения водорода к непредельным соединениям вскоре он распространил гидрогенизационный катализ на ароматические углеводороды, кислород- и азотсодержащие соединения. Известно, каким большим количеством методов восстановления располагала органическая химия до работ Сабатье и в то же время как ограничены были возможности этих методов. Восстановление амальгамой натрия, натрием и спиртом, цинком в кислой и щелочной средах, йодистым водородом и другими реагентами требовало соблюдения большого числа различных условий и все-таки, как правило, сопровождалось многими побочными реакциями. Реагентов, восстанавливающих только одну систему и не затрагивающих другие системы, не существовало. Техника проведения реакций была сложной. Процесс восстановления часто требовал затраты дефицитных реактивов (олово, хлористое олово, иод и др.). После исследований Сабатье возможности восстановления или гидрогенизации органических соединений стали неизмеримо шире. Реакции Сабатье отличались удивительной простотой. Методика выполнения экспериментов заключалась по существу в пропускании смеси паров органического вещества с водородом через трубку, содержащую мелко раздробленный металл в качестве катализатора. [c.27]

    Гидрогенолизу подвергались сераорганические соединения различного строения, относящиеся к различным классам тиолы, сульфид, алкилтиофены и тионафтены. Во всех случаях единственной реакцией, изменяющей характер углеводородных осколков, является реакция гидрирования ароматических колец. Авторы указывают на возможность распространения данного метода на кислород-и азотсодержащие соединения. [c.390]


    Из минеральных соединений азота в сточных водах чаще всего встречаются азотная кислста и ее соли, соли азотистой кислоты, аммиак и его производные, циан-содержащие соединения и др., из органических — амины, нитросоединения и нитрильные соединения. При обезвреживании сточных вод, содержащих эти соединения, возможно появление в отходящих дымовых газах сверхравновесных концентраций окислов азота и чрезвычайно токсических веществ — циана и цианистого водорода, образующихся за счет термической диссоциации азотсодержащих соединений и радикальных реакций различных промежуточных веществ, образующихся в процессах окисления органических соединений азота, с атомарным азотом. [c.109]

    Обычно применение этих зависимостей несколько ограничено из-за необходимости получения значений всех потенциалов при одинаковых условиях и требованиях идентичности электродных механизмов при всех измерениях (одни и те же коэффициенты перехода а и число электронов и протонов). Если эти условия не выполнены, выводы являются лишь приблизительными. В полярографии азотсодержащих гетероциклов появляется кроме того другое осложнение [276], которое, по-видимому, не всегда учитывается. Фактически все азотсодержащие соединения сильно адсорбируются на поверхности капельного ртутного электрода. В таком состоянии они влияют на скорость электродной реакции, и это приводит либо к значительным сдвигам потенциалов полуволн, либо к изменениям высоты кинетических волн. Вследствие этого гетероциклические азотсодержащие соединения часто действуют одновременно и как поверхностно-активные вещества, и как деполяризаторы. Измененные таким образом потенциалы полуволн соединений не являются точной мерой факторов в уравнениях (27) и (42). Однако, картина, по-видимому, упрощается сходной адсорбционной способностью различных соединений, и таким образом в одной реакционной серии можно наблюдать нормальное влияние заместителей на скорости реакций у занятой поверхности электрода. [c.272]

    Значительно чаще используют обратную реакцию — взаимодействие соединения, содержащего активную метиленовую группу, с различными веществами, содержащими группу С=К [327]. Эта реакция проходит гладко и, как правило, с количественным выходом. Часто процесс расщепления азотсодержащими реагентами не останавливается на образовании азометина. Последний содержит весьма реакционноспособную группировку =N, которая в водной среде расщепляется, давая соответствующее карбонильное производное и аминосоединение. Таким образом, азотсодержащий реагент — аминосоединение — регенерируется, и можно считать, что амин является в данном процессе катализатором 298, 328]. [c.327]

    Скорость реакции. Хотя скорости реакций гидрогенизации различных нефтепродуктов изучены недостаточно, некоторые закономерности все же выявлены. Как правило, кислородсодержащие соединения гидрируются легче, чем сернистые с такими же углеводородными радикалами, а эти, в свою очередь, легче, чем соответствующие азотсодержащие соединения. На активных катализаторах, если в сырье нет катализаторных ядов, обеспечивается гидрирование непредельных углеводородов. Скорость гидрирования зависит не только от режима, но и от фазового состояния, активности и структуры катализатора. [c.252]

    Органические азотсодержащие соединения не обмениваются в водном растворе или в расплаве с солями аммония. Эта стабильность азота в отношении обменных реакций позволяет широко использовать меченные им вещества в качестве индикаторов при различных биохимических и биологических исследованиях, в частности при изучении метаболизма соединений азота (см. дополнение 49 на стр. 431). [c.329]

    Начальной реакцией всех соединений, содержащих пиридиновое или пиррольное кольцо, является насыщение гетероциклического кольца. Затем происходит разрыв гидрированного кольца в различных положениях с образованием смеси первичных и вторичных аминов. После этого ариламины подвергаются дальнейшему гидрогенолизу с образованием ароматических углеводородов с короткими боковыми цепями, алканов — Сд и свободного аммиака. В присутствии гидрирующего катализатора образуются основания, первоначально отсутствовавшие в исходном сырье. Если катализатор не обладает гидрирующей активностью, например при каталитическом крекинге, то активность его не снижается азотистыми соединениями неосновного характера. При гидрокрекинге азотсодержащих нефтяных фракций в присутствии дисульфида вольфрама на алюмосиликатном носителе изомеризация частично подавляется вследствие образования] аммиака и аминов, которые дезактивируют катализатор. [c.138]

    Различная каталитическая активность азотсодержащих соединений (третичных аминов и солей четвертичных аммониевых оснований) проявляется в реакции межфазной поликонденсации фосгена с бисфенолом (табл. 1.14) [144]. Авторы считают, что эффективность катализатора в данном случае определяется растворимостью его комплекса с фосгеном в органической фазе и химической устойчивостью катализатора по отношению к фосгену. Наиболее активные катализаторы (1, 2, 3 в табл. 1.14) не разрушаются фосгеном и образуют с ним комплексы, растворимые в органической фазе (метиленхлориде). Менее активные катализаторы либо образуют с фосгеном нерастворимые комплексы (4,8 в табл. 1.14), либо разлагаются фосгеном (5, 6, 7 в табл. 1.14). [c.67]


    Реакция, аналогичная фосфонатной модификации реакции Виттига (том I 13.20), используется для получения различных ненасыщенных азотсодержащих соединений (Уэдсворт, Эммонс, 1962). Необходимый реагент, например диэтиловый эфир циклог ексиламида фосфорной кислоты 111, получают по методу Тодда (1945) взаимодействием диэтилфосфита [c.253]

    Реакция, аналогичная фосфонатной модификации реакции Виттига (том I 13.20), используется для получения различных ненасыщенных азотсодержащих соединений (Уэдсворт, Эммонс, 1962). Необходимый реагент, например диэтиловый эфир циклогексиламида фосфорной кислоты [c.245]

    Применительно к процессам каталитического гидрооблагораживання остатков знание общих закономерностей превращения отдельных гетероатомных соединений может быть полезно только в части того, что, например, сера из любого серусодержащего соединения удаляется в виде сероводорода, азот из азотсодержащих соединений удаляется в виде аммиака, кислород из кислородсодержащих компонентов в виде воды и пр. Скорость тех или иных реакций превращения гетероатомных соединений может быть оценена лишь косвенно на основе изучения элементного состава сырья и продуктов, а также замером количества вьщелив-шегося сероводорода, аммиака, воды, высадившихся металлов на поверхность катализатора. Интенсивность реакций гидрирования может быть оценена также косвенно по изменению содержания водорода и углерода в жидких продуктах реакции. В связи с этим, для выявления эффективности процессов каталитического гидрооблагораживання нефтяных остатков может быть применен принцип оценки брутто-реакций . Однако, ввиду многообразия остатков, выделенных из различных типов нефтей, характеризующихся различным содержанием компонентов с надмолекулярной структурой (асфальтенов, смол), знание только данных по элементному составу недостаточны. Механизм превращения нефтяных остатков тесно связан со структурными изменениями сырья при нагреве и контакте с каталитической поверхностью. [c.47]

    Значительное место отведено расчету равновесий реакций синтеза важнейших мономеров и полупродуктов, являюш,ихся исходным сырьем для производства различных высокомолекулярных продуктов и пластиков в их числе ацетилен, этилен, пропилен, дивинил, изопрен ароматические углеводороды — бензол, толуол, ксилолы и другие алкилбен-золы — стирол, винилнафталин альдегиды — кетоны, кислоты, спирты, некоторые азотсодержащие соединения и др. [c.5]

    Как В приведенных выше, так и в различных других однотипных реакциях гидрогенолиз С—О- и С—Ы-связей протекает с большим тепловыделением, чем С—5-связей. При температурах технических процессов увеличение тепловыделения составляет приблизительно 14%- Поэтому при расчете теплот гидроочистки с удалением ощутимых количеств кислород- и азотсодержащих соединений можно использовать формулу (V. ), включив в нее член, учитывающий изменение содержания кислорода и азота (в долях от сырья) Дзо+м и теплоту их удаления (в расчете на 1 кг удаляемых элементов) ДЯо+ы последнюю величину оценим как 1,14АЯ5. В результате находим (в кДж/кг)  [c.155]

    Разработанные и внедренные в ряде стран процессы гидрирования масляных дистиллятов и деасфальтизатов дают возможность в одном каталитическом процессе достичь результатов, получаемых сочетанием глубокой селективной очистки и гидроочистки. Процесс обычно осуществляют под давлением 15— 30 МПа, при температуре 340—420°С, скорости подачи сырья 0,5—1,5 ч и объемном отнощении водородсодержащего газа к сырью 500— 1500. В качестве катализаторов можно применять катализаторы гидроочистки или более активные — сульфидновольфрамовый, ни-кельвольфрамовый на окисноалюминиевом носителе (алюмони-кельвольфрамовый) и др. Для повышения активности применяют промотирующие добавки, придающие катализатору кислотные свойства, — двуокись кремния, галоиды. Введение такой добавки способствует более интенсивному гидрированию азотсодержащих соединений и конденсированных ароматических углеводородов. Благодаря применению высокого давления и активных катализаторов реакции гидрирования протекают весьма глубоко — практически все компоненты, удаляемые при селективной очистке в виде экстракта, превращаются в целевые продукты. Гидрированием под высоким давлением в промышленном масштабе производят базовые высококачественные масла различного назначения индустриальные, турбинные, моторные, гидравлические, веретенные. В зависимости от вида сырья выход масел с одинаковым индексом вязкости при гидрировании равен или несколько выше, чем при селективной очистке. Вырабатываемые масла по эксплуатационным свойствам превосходят масла селективной очистки, особенно по стабильности и, следовательно, по сроку службы. [c.308]

    Включение аммиака в органические азотсодержащие соединения может происходить различными путями. Однако у большинства видов живых организмов наиболее важными в количественном отношении являются реакции, катализируемые тремя ферментами — глутаматдегидрогеназой, глутаминсинтетазой и карбамоилфосфатсинтетазой. [c.398]

    Процессы электрохимического замещения и присоединения в последние годы, по-видимому, изучались наиболее интенсивно. Большое количество работ выполнено по исследованию процессов электрохимического галоидирования, среди которых первое место занимает электрофторирование органических соединений различных классов — углеводородов [127—137], карбоновых кислот, эфиров, спиртов, ангидридов [138—148], гетероциклических соединений [149—151], аминов и некоторых других азотсодержащих соединений [152—156], а также сульфонов [157]. В некоторых работах приводятся сведения о конструкциях электролизеров, в том числе и укрупненных [132, 152], рассматривается поведение никелевого анода [158, 159], являющегося лучшим среди всех других анодов. Отмечается, что износ никелевых анодов связан с наличием во фтористом водороде (основном электролите в процессах фторирования) примесей фторида натрия. Уменьшения коррозии анода можно добиться путем проведения процесса при непрерывном протоке электролита через электролизер [160]. Несомненно, для более свободной ориентации в довольно значительном количестве исследований весьма ценным пособием является общая сводка работ по электрофторированию, составленная Ватанабэ за 1955— 1967 гг. [161, 162], а также обзор Шмейзера и Губера по электрохимическому фторированию азотсодержащих соединений [163]. Рассмотрим некоторые характерные реакции электрохимического фторирования, описанные в публикациях последних лет. [c.21]

    Много работ опубликовано по хроматографии углеводов, особенно В. В. Рачинским, Б. Н. Степаненко. Установив зависимость между структурой и величиной Rf, можно оценить степень полимеризации олигосахаридов, влияние положения оксигрупп. На бумаге из стеклянных волокон, предварительно забуференной, можно четко разделять различные монозы, биозы, триозы, галактуровую и глюкуроновую кислоты. В микроорганизмах можно определять связанные углеводы, свободные MOHO- и дисахариды в растительном материале, также свободные олигосахариды, свободные углеводы в крови и моче, молоке, наблюдать гидролиз и синтез олиго- и полисахаридов, энзиматические превращения моносахаридов в связи с процессами окисления, восстановления, изомеризации, реакции углеводов с азотсодержащими соединениями, контролировать чистоту углеводов и идентифицировать их, определять кислоты и ла-ктоны, уроновые кислоты, кетокислоты, метилированные сахара, дезоксисахара, аминосахара, полисахариды, инозит, сорбит, эфиры фосфорной кислоты, структуру галактоманнана, эремурана, новых галактозидов, проследить превращение сахарозы, синтез олигосахаридов в растущей культуре. Бумажная хроматография применяется в сахарной промышленности, в пивоварении. Мало еще разработана теория распределительной хроматографии углеводов, мало изучены возможности разделения оптических изомеров и антиподов. [c.201]

    Несмотря на то, что отверждение в присутствии комплексов трехфтористого бора протекает значительно быстрее, чем отверждение под действием аминных отвердителей, достигнуть полного отверждения при температурах около 30°С не удается [139]. При отверждении комплексом ВРз количество прореагировавших эпоксидных групп ди-глицидилового эфцра дифенилолпропана через 30 мин после начала реакции составляет только 58% (рис. 1.37). Дальнейшее нагревание при 120 °С в течение 30 мин приводит к увеличению числа прореагировавших эпоксидных групп до 90%. Комплексы кислот Льюиса с азотсодержащими соединениями, в особенности с алифатическими аминами, обладают различной отверждающей способностью. Изменение их активности может быть достигнуто также сочетанием комплекса трехфтористый [c.126]

    Теорией горения азотсодержащих соединений занимались меньше, чем горением углеводородов и других типов горючих. Поэтому спектроскопические исследования не пошли дальше установления существования в пламени радикалов СК, КН и КНз- Спектр СК очень интенсивен в таких пламенах, в которых азот входит в состав одной из молекул горючей смеси в присутствии молекулярного азота этот спектр возбуждается только в очень горячих пламенах. Поскольку эти полосы очень интенсивны, как при горении таких смесей, как смесь окиси углерода с аммиаком, так и в спектрах пламен азотсодержащих органических соединений, то можно сделать вывод о том, что радикалы СК образуются не в ходе первичного процесса, а при реакциях различных атомов и радикалов, имеющихся в системе, на болерТпоздних стадиях горения. [c.119]

    Окисление при контролируемом потенциале представляет собой весьма полезный метод прямого введения цианогрупп в азотсодержащие соединения, простые эфиры фенолов и протяженные я-электронные системы. Обычно при этом протекают три типа различных реакций 1) замещение водорода в ароматическом ядре или метоксигруппы цианогруппой, 2) присоединение цианогруппы к ароматическому кольцу и 3) введение цианогруппы в -положение третичных аминов. Метанол как растворитель пригоден для проведения замещения атомов водорода ароматической системы, тогда как система цианидная соль — ацетонитрил предпочтительно используется для замещения связанных с ароматическим кольцом метоксигрупп на цианогруппы. Если окислительные потенциалы первичных продуктов окисления относительно низки, они претерпевают дальнейшее цианирование. Продукты изоцианирования обычно не получаются. [c.130]

    Химическое отделение Заведующий J. D. Donald Направление научных исследований радиационная химия окисление платины в водной среде коррозия металлов реакции различных азотсодержащих соединений с ионами переходных металлов и галогенидами непереходных металлов каталитические свойства кислот Льюиса в неводных растворах механизм каталитического гидролиза эфиров и ангидридов микробиологическое гидроксилирование стероидов. [c.253]

    Главные химические элементы, атомы которых образуют молекулы органических соединений, углерод, водород, кислород и азот называются органогенами. При изучении различных классов органических соединений, образованных атомами этих элементов (углеводородов, кислородсодержащих и азотсодержащих), многократно обращалось внимание на химические реакции, в которых принимают участие органические производные, содержащие атомы галогенов, фосфора, серы, различных металлов и других элементов. Их можно объединить под общим названием э.гементорганических соединений. Многие из этих соединений имеют очень важное физиологическое значение, а многие широко применяются в народном хозяйстве для получения разнообразных веществ с очень ценными свойствами. [c.451]

    С2Н5)зА1. Фториды щелочных металлов разлагают также устойчивые комплексы других триалкилалюминиев с эфирами, тиоэфирами и аминами [29]. Реакции образования комплексов триэтилалюминия с эфирами, третичными аминами и гетероциклическими азотсодержащими соединениями экзотермичны. Измерены теплоты смешения триэтилалюминия с эфирами, а также с различными азотистыми основаниями [50]. Эфират, триэтилалюминия образует комплекс с пиридином хинолин и изохинолин реагируют с самим триэтилалюминием [51]. [c.344]

    Изучены реакции присоединения трихлорсилана, ал кил (а рил) хлорсиланов к органоциклосилоксанам, содержащим винильную группу у кремния [343—346]. Много работ посвящено присоединению трихлорсилана и метилдихлорсилана к различным элементоорганическим соединениям, содержащим винильные или другие непредельные группы у элемента [347—350]. Описаны реакции синтеза азотсодержащих соединений, осуществленные взаимодействием непредельных азотсодержащих органических соединений с алкилгидридсиланами и другими соединениями, содержащими активный водород у кремния [351—356]. [c.144]

    Можно применять также ароматические и алифатические диамиды. Типичным представителем этого ряда является продукт реакции и-фенилендиамина с избытком олеиновой кислоты [31]. Высшие жирные ацильные производные гипотетического метилендиамина получают из 2 молей амида стеариновой кислоты и 1 моля формальдегида [32]. Описаны различные пеногасящие средства, у которых две крайние жирные ацильные группы соединены с бифункциональным амином, содержаш,им сложные амидогруппы между двумя аминогруппами [33]. При этом, по литературным данным, несимметричные диамиды или полиамиды во многих случаях не менее эффективны, чем симметричные [34]. К противопенным средствам для паровых котлов относятся также амиды [35] и гидразиды [36], обладающие также сложноэфирными промежуточными группами, высшие сульфамиды и дисульфамиды [37 и высокомолекулярные имидазолины [38]. Кроме амидов и других азотсодержащих соединений, для этой цели применяются полигликоли и их производные высокого молекулярного веса. Полигликоли должны содержать достаточное количество звеньев эфира пропиленгликоля или гликоля с более длинной цепью, чтобы быть нерастворимыми в воде. Оптимальными считаются молекулярные веса гораздо выше 1000 наиболее подходящими, по-видимому, являются соединения с молекулярным весом 5000—7000 [39]. Описаны также сложные и простые диэфиры гликолей и полигликолей [40], а также аналогичные кислородсодержащие соединения, имеющие, кроме эфирных групп, еще и ацетальную связь [41]. [c.510]


Смотреть страницы где упоминается термин Различные реакции азотсодержащих соединений: [c.296]    [c.16]    [c.59]    [c.2]    [c.21]    [c.221]    [c.87]    [c.119]    [c.2]    [c.65]    [c.89]    [c.16]    [c.212]    [c.18]   
Смотреть главы в:

Органический синтез в электрических разрядах -> Различные реакции азотсодержащих соединений




ПОИСК





Смотрите так же термины и статьи:

Г. Различные азотсодержащие соединения

Различные соединения



© 2025 chem21.info Реклама на сайте