Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос массы как поток вещества

    Скорость переноса массы реагирующего вещества А из потока к поверхности катализатора определяется уравнением (III, 189) [c.267]

    Рассмотрим двухкомпонентную систему, состоящую из растворителя (1) и растворенного вещества (2). Из феноменологического уравнения потока (10.39) следует уравнение для скорости переноса массы растворенного вещества через поверхность в точке х при центрифугировании  [c.227]


    В определенных геометрических и гидравлических условиях можно рассчитать скорость переноса массы с помощью диффузии. Если реакция протекает в области внешней диффузии, то ее скорость должна соответствовать рассчитанной скорости диффузии. Если скорость реакции много меньше этой величины — это значит, что реакция протекает в кинетической области. Очевидно, что скорость реакции не может превышать скорость диффузии. Если условия не позволяют точно рассчитать перенос массы, а эксперимент указывает на увеличение скорости реакции с увеличением скорости потока, то можно считать, что на скорость реакции влияет перенос вещества. Сильное влияние температуры свидетельствует о том, что процесс идет в кинетической области. [c.96]

    Влияние поверхностного потока на процесс разделения определяется избирательностью сорбционного процесса, и, как показано выше, в основном противоположно эффекту разделения за счет эффузии. При сорбции газа поверхностная концентрация компонентов с большей молекулярной массой заметно больше, что влечет уменьшение a ij и даже изменение результата процесса состав проникшего потока обогащается газами с большей молекулярной массой. По-существу, практически почти всегда имеют дело с сорбционно-диффузионными мембранами, поскольку даже для гелия Тс Т) доля поверхностного потока, по данным [3], достигает 13—25%. Газодиффузионный механизм переноса в пористых мембранах является определяющим для легких газов при низких давлениях Р РуС и высоких температурах Т>Тс- Разделение смесей паров углеводородов и других веществ с большой молекулярной массой всегда сопряжено с поверхностными явлениями, вклад которых в общий перенос массы соизмерим с диффузионным [3, 16]. [c.65]

    Обобщенный технологический оператор Т является совокупностью простейших операторов, соответствующих различным типам процессов химического производства. К ним следует отнести операторы смешения, деления, изменения энтальпии, изменения давления, химического превращения. Оператор деления может быть двух типов простой делитель потоков и выделение отдельных чистых веществ (или фракций). На основании физико-химических и технологических свойств процессов при разработке технологической схемы необходимо выбрать для каждого из них соответствующий оператор Т. Поскольку основные процессы химической технологии базируются на явлениях переноса массы, энергии, кинетики реакций в условиях относительного движения фаз, определяющих гидродинамическую обстановку в аппарате, то математическое описание технологического оператора будет основываться на законах сохранения массы, энергии и импульса, законах термодинамики многофазных систем, законах тепломассопереноса и т. д. На этапе расчета технологической схемы каждому технологическому оператору необходимо сопоставить адекватный в смысле воспроизведения реальных условий оператор математического описания процесса, такой, что [c.76]


    При переносе потока вещества в химическом аппарате происходит изменение его концентрации, температуры за счет химических реакций, тепло-и массопереноса. Поэтому при переходе к моделям расчета соответствующих аппаратов необходимо уравнения описывающие гидродинамическую структуру потоков, дополнить членами, учитывающими источники и стоки массы и тепла потоков (в зависимости от того, образуется или расходуется масса или энергия), т. е. учитывать соответственно диффузионные, химические, термокинетические составляющие. [c.125]

    Длина пути слияния вихрей может быть определена по модели турбулентности Тейлора [71. Длина пути слияния или смешения будет равна среднему пути движущегося вихря до его исчезновения и потери им индивидуальности. Этот вихрь отдает потоку свою энергию, а при наличии массообмена переносит массу вещества.  [c.115]

    При молекулярном переносе (ламинарный поток) наблюдается лишь продольный перенос количества энергии, а также массы вещества, в то время как в турбулентном потоке существует не только продольный перенос, но и поперечный, что и приводит к возникновению дополнительного касательного напряжения и соответственно дополни- [c.116]

    Особенностью структуры уравнений (1.76)—(1.79) является то, что члены, учитывающие межфазные потоки субстанций, входят не в граничные условия, а в сами уравнения. Так, четвертые и пятые члены справа в уравнениях (1.76) и (1.77) учитывают перенос тепла из фазы в фазу. Кроме того, эти уравнения содержат члены, учитывающие диссипацию энергии механического взаимодействия фаз в тепло (первые члены справа). В уравнениях баланса массы (1.78) и (1.79) вторые и третьи члены справа учитывают изменение концентрации к-то компонента за счет его притока в элементарный объем или удаления из объема рассматриваемой фазы последние члены этих уравнений отражают изменение концентрации к-го компонента из-за изменения массы рассматриваемой фазы, происходящего за счет действия суммарных потоков вещества через границу раздела фаз. [c.67]

    Из соотношений (1.183) и (1.187) следует, что стефановский поток влияет на общий перенос массы, но молекулярный перенос вещества диффузией не влияет на силу сопротивления. [c.66]

    Соотношения для движущих сил массопереноса вещества внутри сплошной (несущей) фазы (1.169) (прямой эффект) и через границу раздела фаз (1.198) существенно отличаются друг от друга. Достаточно сказать, что соотношение (1.198) не содержит перекрестных эффектов, а является прямым эффектом в общем потоке переноса массы через поверхность раздела фаз, в то время как наличие градиента температур в сплошной фазе служит появлению перекрестного эффекта в потоке массопереноса внутри сплошной фазы (1.181). [c.68]

    Таким образом, существование аналогии между переносом механической энергии (трением), тепла и массы ограничено следующими условиями она соблюдается в условиях внутренней задачи при Рг = Ргс=1, а также при отсутствии поперечного потока вещества. [c.155]

    Расчеты температурных и концентрированных полей в адиабатическом слое катализатора выполнялись по двум. моделям а) двухфазная модель адиабатического слоя, учитывающая процессы конвективного переноса тепла и массы газовым потоком, массо- и теплообмен между наружной поверхностью зерен катализатора и газовым потокам, продольный перенос тепла по скелету слоя [5] б) модель, учитывающая процессы переноса тепла и вещества внутри пористого зерна катализатора (3.22). [c.212]

    В процессах переноса распределяемого вещества (массы) из одной фазы в другую надлежит различать два случая 1) перенос из потока жидкости в поток жидкости, или массообмен между потоками жидкости, и 2) перенос из твердого тола в поток я идкости (или перенос в обратном направлении), т. е. массообмен ме кду твердой фазой, содержащей внутри пор или капилляров распределяемое вещество, и потоком жидкости. [c.262]

    Скорость химического процесса зависит от скорости самой химической реакции и от скорости переноса массы (диффузии) между потоком и зоной реакции. Скорость реакции г измеряется изменением мольной концентрации одного из реагирующих веществ в единицу времени [c.684]

    Механизм процесса переноса массы сводится к молекулярной и турбулентной диффузии. При молекулярной диффузии, происходящей в неподвижной фазе и ламинарном потоке, перенос массы характеризуется коэффициентом диффузии ), который рассчитывают по формулам (631)—для газов и (633)—для жидкости. При турбулентной диффузии перенос вещества осуществляется движущимися частицами среды и определяется гидродинамическим состоянием потока. Механизм переноса вещества через поверхность раздела фаз является кардинальным вопросом теории массопередачи и окончательно не решен. Предполагая, что диффузионные сопротивления в жидкой и газообразной фазах обладают свойством аддитивности, можно записать основное уравнение массопередачи  [c.336]


    На поверхности тангенциального разрыва в связи с ее неустойчивостью возникают вихри, беспорядочно движущиеся вдоль и поперек потока вследствие этого между соседними струями происходит обмен конечными массами (молями) вещества, т. е. поперечный перенос количества движения, тепла и примесей. В результате на границе двух струй формируется область конечной толщины с непрерывным распределением скорости, температуры и концентрации примеси эта область называется струйным турбулентным пограничным слоем. Нри очень малых значениях числа Рейнольдса струйный пограничный слой может быть ламинарным, но на этом сравнительно редком случае течения мы пе останавливаемся. [c.361]

    Через контрольную поверхность пространства в общем случае осуществляется перенос массы веществ а и 6 с разной интенсивностью. Количественной характеристикой таких процессов служит J — вектор, плотности потока массы смеси [импульс единицы объема смеси), который складывается из Jo и Ji — векторов плотности потоков массы компонентов а а Ь  [c.206]

    В этой связи следует еще указать на отмечавшуюся в работе [И] возможность проявления при некоторых условиях дополнительного механизма влияния поперечного потока вещества, заключающегося при испарении в турбулизации ламинарного пограничного подслоя или подслоя у поверхности раздела фаз и повышении уровня турбулентности в турбулентном пограничном слое или ядре потока смеси. Это влияние поперечного потока не должно вызывать в области малых и больших 1 нарушения аналогии между совместно протекающими в общем гидродинамическом поле процессами тепло- и массообмена, но может приводить к интенсификации обоих этих процессов и нарушению аналогии между ними и чистым теплообменом (не сопровождающимся поперечным переносом массы). Приведенные выше данные показывают, что поперечный поток вещества, незначительный по сравнению с основным продольным потоком газовой (парогазовой) среды даже при интенсивном испарении жидкости, может при определенных условиях оказывать существенное влияние на совместно протекающие процессы тепло-и массообмена и заметно нарушать аналогию между ними. Это не исключает, однако, того, что для других условий, часто встречающихся на практике, можно с достаточной для практических целей точностью принимать приближенно справедливой полную аналогию между указанными процессами. [c.128]

    Константа или коэффициент скорости процесса k — сложная величина, зависящая не только от химических свойств реагирующих веществ, но и от их физических свойств, конструкции аппарата, скоростей потоков реагирующих масс или степени перемешивания компонентов в гомогенной среде. Для гидродинамически подобных систем к в общем виде является равнодействующей констант скоростей прямой реакции k , обратной реакции йг, побочных реакций к ц, к , а также коэффициентов переноса (диффузии) исходных веществ в зону реакции Di, D2 и продуктов реакции D, D 2  [c.58]

    Там же показано, что внешнедиффузионный массообмен характерен для значений Ке<1,0. Для этой стадии наблюдается существенная зависимость коэффициента массоотдачи р от средней скорости потока и, рассчитанной иа полное сечение колонны. Отметим, что при поглощении растворенных веществ область внешнего переноса массы смещена в сторону более низких чисел Рейнольдса по сравнению с числами Рейнольдса при адсорбции газов и паров. Причина этого, по-видимому, заключается в различии соотношений толщин диффузионного и гидродинамического пограничных слоев при обтекании тел газами и капельными жидкостями [2], [c.135]

    Если бы среда, заполняющая пористую систему, не имела возможности перемещаться из одной поры в другую, то в общем случае теплопроводность совместно с лучистым теплообменом и естественной конвекцией исчерпывала бы задачу переноса тепла в капиллярно-пористом теле. Однако направленный поток вещества приводит к наличию конвективного переноса тепла, общий анализ которого обладает той же степенью сложности, что и анализ суммарного потока массы. [c.39]

    Это уравнение выводим так же, как уравнение переноса теплоты. Рассмотрим перенос массы в неразрывном потоке жидкости при условии постоянства коэффициента молекулярной диффузии D переносимого вещества и отсутствии источников массы (т. е. у = 0). [c.53]

    Отметим, что уравнение конвективной диффузии, поскольку процесс переноса массы протекает в потоке, должно быть дополнено уравнениями движения Навье-Стокса и неразрывности потока. Кроме того, перенос вещества приводит к изменению состава фаз и, следовательно, к изменению их физических свойств. Поэтому систему дифференциальных уравнений, описывающих конвективный массоперенос, следует дополнить также уравнениями, отражающими зависимость физических свойств фазы от ее состава. Расчет такой системы уравнений представляет большие трудности, и аналитическое решение этой системы уравнений оказывается практически целесообразным только в тех случаях, когда возможны существенные ее упрощения. Поэтому часто для решения этой задачи используют методы теории подобия. [c.21]

    Важнейшей проблемой большинства химико-технологи-ческих процессов (ХТП) является перенос субстанции — количества движения (импульса), теплоты, вещества. В химикотехнологических аппаратах (ХТА) теплота, например, может переноситься из одной точки рабочей зоны в другую или к стенкам аппарата вещество, скажем, — от входа к выходу или между различными потоками. Различают продольный (в направлении движения потока) и поперечный переносы субстанции. К первой разновидности среди приведенных выше примеров относится, в частности, перенос теплоты или вещества от входа в ХТА к выходу ко второй — перенос теплоты (вещества, импульса) между потоками фаз или, например, теплоты к стенкам аппарата. Продольный и поперечный переносы связаны между собой. Так, направленное перемещение количества движения (массы, энергии) с потоком вдоль аппарата (т.е. продольный перенос импульса) сопровождается трением (т.е. поперечным переносом импульса к стенкам аппарата). [c.607]

    Существенным для рассматриваемой задачи является еще тот факт, что твердая стенка, непроницаемая для инертного компонента парогазовой смеси, служит поверхностью стоков для конденсирующейся фазы. Вследствие наличия градиента концентраций возникает перенос массы путем диффузии в направлении, перпендикулярном поверхности раздела фаз. Этот диффузионный поток активного вещества должен сопровождаться встречной диффузией инертного компонента. Но, с другой стороны, очевидно, что в силу отмеченного свойства полупроницаемости теплообменной поверхности реальное существование прп стационарных условиях постоянного видимого потока инертного компонента в направ- [c.243]

    В общем случае при моделировании процессов массоотдачи в многокомпонентных смесях необходимо использовать квадратную матрицу коэффициентов массоотдачи размером (л— 1)Х( — 1). Так, в трехкомпонентнои смеси необходимо оперировать четырьмя коэффициентами массоотдачи р,, , р, Рг i. р2 г- Нами получены соотношения для нахождения матрицы коэффициентов [p, ]. Данные расчетов, приведенные выше, показывают, что в случае разбавленных водных растворов плотность потока компонента в смеси не сильно отличается от его потока в индивидуальном водном растворе. Кроме того, турбулентный перенос в пределах диффузионного пограничного слоя не зависит от присутствия других компонентов в смеси. Все это позволяет для расчета коэффициентов внешнего переноса массы смеси веществ в водных растворах пользоваться в первом приближении при перемешивании твердой фазы соотношением (I). Особенности адсорбции вещества из смеси в этом случае определяются изотермами адсорбции смеси веществ, т. е. равновесными концентрациями компонентов на поверхности частицы адсорбента [3]. Аналогичная ситуация имеет место и при расчете внешнедиффузионной динамики адсорбции. [c.137]

    Существование в вязком подслое турбулентных пуЛ1>саи.ий и их постепенное затухание с приближением к межфазной границе имеют принципиальное эваче-, ние для проблемы массопередачн, особенно в тех случаях, когда процесс массо-пгредачи лимитируется переносом в жидкой фазе. Действительно, поскольку а жидкостях коэффициент молекулярной диффузии обычно значительно меньше коэффициента кинематической вязкости, турбулентные пульсации, несмотря на свое достаточно быстрое затухание в вязком подслое, дают заметный вклад в массовый поток вещества к границе раздела фаз. Влияние пульсаций на массоперенос становится пренебрежимо малым лишь в пределах так называемого диффузионного подслоя, толщина которого для жидкостей мала по сравнению. с толщиной вязкого подслоя. Скорость межфазного массообмена существенно зависит от характера изменения эффективного коэффициента турбулентной диффузии Pt вблизи межфазной границы. Если предположить, что функция Dt (у) достаточно хорошо описывается первым членом разложения в ряд Тейлора [c.177]

    Массообмен. Перенос массы в направлении поверхности соприкосновения фаз может происходить в результате молекулярной диффузии и конвекции, вызва.нной гидростатическими силами, течением потока или использованием перемешивающих устройств. Отдельный случай представляет собой движение турбулентного потока, в котором можно различить две зоны ламинарную (слой около поверхности соприкосновения фаз — пограничный слой) и турбулентную (в глубине фазы — ядро потока). В ламинарном слое вещество переносится главным образом молекулярной диффузией, а в турбулентной зоне в основном вследствие завихрений и флуктуаций локальной скорости движения потока. Считая, что в турбулентной зоне концентрация практически выравнивается, перенос массы в такой системе можно представить как молекулярную диффузию через пограничный ламинарный слой с эффективной (приведенной) толщиной. Перенос вещества до границы раздела фаз называется массоотдачей. [c.244]

    Пренмуществеииое влияние того или иного механизма определяет ся гидродинамической обстановкой процесса. Механизм переноса в пре делах каждой фазы непосредственно связан с гидродинамикой одно фазного потока, механизм же переноса через поверхность раздела фаз — с гидродинамикой двухфазного потока. Поэтому прн макропереносе вещества важное значение приобретает вихревое движение жидкости, так как вихри являются переносчиками энергии и вещества в потоке. Анализ вихревого движения жидкости объясняет механизм перемещения частиц и многие факты, наблюдаемые в процессах переноса массы. [c.90]

    Как видно из (1.63), (1.64), по сравнению с перекрестными эффектами, развивающимися в однофазных системах [42] (например, эффекты Соре, Дюфура и др.), в случае многофазных многокомпонентных систем (с химическими реакциями, фазовыми превращениями, тепло- и массообменом), подчиняющихся модели взаимопроникающих континуумов, спектр перекрестных эффектов значительно расширяется. Так, на величину диффузионных и тепловых потоков в пределах фазы оказывает влияние относительное движение фаз (коэффициенты ап зи > / 2п+зд)- Поток тепла 5,12) между фазами определяется не только разностью температур фаз, но и движущими силами межфазного переноса массы (коэффициенты i,2jv+2.....2Л42П+1) и химических превращений (коэффициенты, 121 > 2jv+i). Скорость транспорта вещества к-то компонента между фазами определяется прежде всего движущей силой межфазного массопереноса, состоящей из трех частей разности потенциалов Планка (V-ik [c.59]

    Процессы, при которых химическая реакция протекает медленнее, чем происходит перенос массы. Когда скорость химической реакции мала ио сравнению со скоростью переноса вещества между фазами, большая часть вещества А проходит через ламинарный слой, не претерпев превращения, и попадает в основную массу потока жидкой фазы. Следовательно, явления, протекающие в указанном слое, могут лимитировать процесс в целом, но только при условии, что в лалпь нарном слое реагирует относительно небольшая-доля компонента А, т. е. его концентрация во всей жидкости, включая этот слой, одинакова (рис. XIII-3, в). [c.378]

    На основании изложенного можно сформулировать исходные положения, необходимые для математического описания процесса разрушения процесс переноса массы одномерный и стационарный исходный материал представляет собой однородную композицию веществ, входящих в его состав скорость уноса массы определяется скоростью разрушения коксового остатка за счет его химического взаимодействия с газовой средой скорость химического взаимодействия обусловлена кинетикой гетерогенных химических реакций на поверхности материала и диффузией к ней окисляющих компонент из газового потока. С химически унесенной массой кокса уносится часть инертной массы наполнителя, пропорциональная его содержанию в исходном (неразло-жившемся) материале. В процессе окисления коксового остатка участвует кислород, образующийся при испарении и последующей диссоциации окислов наполнителя. Реакционноснособные газообразные продукты разложения материала взаимодействуют с углеродом и диффундируют через газовый пограничный слой независимо от соответствующих компонент внешнего потока. На поверхности материал полностью прококсован. Все тепловые эффекты (теплоты пиролиза, гетерогенных химических реакций и т. д.) отнесены к поверхности. Режим течения газового потока турбулентный. Принимается, что имеется подобие между турбулентным переносом массы, энергии и количества движенрш, а турбулентные чпсла Ье = Рг = Зс = 1. Турбулентный пограничный слой считается замороженным, а все реакции — происходящими на поверхности. [c.103]

    Массоперенос при адсорбции независимо от условий контакта адсорбента с адсорбирующимся веществом состоит из следующих стадий внешнего переноса молекул сорбируемого вещества из потока к поверхности частицы (массоотдача), внутренней диффузии молекул вещества от поверхности в глубь зерна по порам различного сечения (массопроводность) и стадии установления адсорбционного равновесия. Равновесие при адсорбции устанавливается практически мгновенно [1]. Поэтому общая скорость массопереиоса при адсорбции зависит от скоростей внешнего и внутреннего переносов массы и определяется (лимитируется) наиболее медленной из этих стадий. Для технологических расчетов важно установить лимитирующую стадию и оценить ее количественно. [c.112]

    При изучении динамики адсорбции в таких аппаратах, когда ожижающим агентом служила паро-газовая смесь, установлено 66], что время защитного действия псевдоожиженного слоя периодического действия практически равно пулю. Коэффициент перемешивания частиц в пссвдоожнженном слое, создаваемом газовым потоком, сильно отличается от соответствующего коэффициента в системе жидкость — твердое тело [41]. Хорошее перемешивание твердой фазы в этом случае приводит к тому, что частицы находятся примерно одинаковое время в лю-йом участке реактора. Если стадией, определяющей процесс, является внешний перенос массы, то массообмен в такой системе закапчивается на небольшой высоте (примерно 5— 10 диаметров зерна) от газораспределительной решетки. При адсорбции газов и паров характерны резкий экспоненциальный профиль распределения концентрации вещества по высоте слоя и постоянство величины адсорбции во всех точках слоя. Следствием этого и являются пренебрежимо малая потеря времени защитного действия слоя и линейиая зависимость величины /пр от 1в в системе газ — твердое тело. [c.138]

    Экспериментальные исследования капиллярного осмоса [9] проводились на установке, устройство которой ясно из рис. Х.2. Мембрана 1 из пористого стекла (средний радиус пор г 10 мкм), разделяет объемы 2 я 3, где поддерживалась различная концентрация раствора. Шунтированием растворов трубкой 4 (с большим диффузионным сопротивлением) снимался конвективный перенос под действием разности давления. Перенос массы из одного объема в другой мог происходить только в результате диффузии через мембрану и капиллярно-осмотического течения, что и учитывается уравнением, (Х.19). Для измерения потока растворенного вещества была применена радиоиндикаторнаяметодика. Количество меченых молекул, перешедших из одного объема в другой, измерялось детектором р-излучения 5, установленным над поверхностью раствора с меньшей концентрацией. Перевод измеренных значений активности раствора I в концентрацию С осуществлялся на основе предварительной тарировки. [c.294]

    Теплопередача при непосредственном контакте газа и жидкости всегда сопровождается процессами переноса массы из одной фазы в другую, т.е. это типичный процесс сопряженного тепломассо-переноса. Если жидкость при контакте с газом охлаждается, то происходит испарение части жидкости и распространение ее в газовом потоке. При этом под испарением будем понимать процесс перехода вещества из жидкого состояния в газообразное при температуре меньшей, чем температура кипения жидкости при заданном давлении. В непосредственной близости к поверхности жидкости газовая фаза насыщена паром, и при этом парциальное давление р равно давлению насыщенного пара Р при температуре жидкости. В рассматриваемом случае р < поэтому возникает поток вещества из жидкости в газовую фазу. Этот поток переносит энергию (где г-энтальпия испарения). В нашем случае в процессе испарения жидкость охлаждается, поэтому источником этой энергии является сама жидкость. Кроме того, источником энергии может быть передача теплоты жидкости или газу извне. [c.309]


Смотреть страницы где упоминается термин Перенос массы как поток вещества: [c.43]    [c.43]    [c.106]    [c.95]    [c.267]    [c.21]   
Смотреть главы в:

Биофизическая химия Т.2 -> Перенос массы как поток вещества




ПОИСК





Смотрите так же термины и статьи:

Масса вещества

Поток вещества



© 2025 chem21.info Реклама на сайте