Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы отделения диэтилдитиокарбаминатом

    Эффективно комбинированное удаление диэтилдитиокарбаминатов и гидроокисей осаждением уротропином (подробно см. стр. 38). Метод отделения тяжелых металлов от магния с диэтил-дитиокарбаминатом натрия является наилучшим и может применяться к материалам самого разнообразного состава. [c.39]

    Диэтилдитиокарбаминат натрия чаще используется для экстракционного отделения, чем для осаждения металлов. Поэтому более подробно об условиях образования диэтилдитиокарбаминатов металлов см. в разделе Экстракционные методы отделения . [c.39]


    В ряде случаев для отделения серебра используют обменные реакции. При определении серебра в материалах металлургического производства его экстрагируют при pH 3—4 раствором диэтилдитиокарбамината свинца в хлороформе [368], затем после реэкстракции заканчивают анализ дитизоновым методом. Методика нейтронно-активационного определения примеси серебра в окиси свинца и в сульфате цинка включает субстехиометрическое выделение серебра из облученной пробы путем экстракции хлороформом в виде диэтилдитиокарбамината [190]. [c.154]

    Для определения магния в чугуне описаны фотометрические методы с эриохром черным Т [64, 1081]. По одному из них [64], магний определяют после отделения основной массы железа экстрагированием метилизобутилкетоном из 6 iV H I и осаждения А1, Ti, Сг, Са и остатков железа в виде оксалатов и маскирования тяжелых металлов цианидами. Метод не очень удобен, так как включает в себя несколько операций отделения и связан с применением токсичных цианидов. По другому методу [1081], тяжелые металлы отделяют осаждением в виде оксихинолинатов, затем следы металлов удаляют экстракцией их диэтилдитиокарбаминатов метод очень продолжительный и мало приемлем для массовых анализов. [c.209]

    При определении алюминия применяют экстракцию оксихинолином в хлороформе после отделения примесей в виде диэтилдитиокарбаминатов. Метод позволяет определять 10 % А1 в селене [1]. [c.446]

    Жидкостная экстракция значительно повышает чувствительность определения примесей. Для отделения Ге, РЬ, Си, N1, 2п, С(1, Со, В1, Ag [9—И] используется экстракция органическим растворителем диэтилдитиокарбаминатов перечисленных примесей, сорбция их на угольном порошке со спектральным окончанием. Чувствительность по отдельным элементам колеблется от 1-10 до 1-10 %. Метод имеет то преимущество, что определяется одновременно девять элементов из одной навески. [c.359]

    Методы отделения кобальта от мешающих элементов (или наоборот) перед заключительным определением здесь менее многочисленны, чем при анализе руд и сплавов кобальта на железной основе. Обычно кобальту сопутствует в значительных количествах только какой-либо один элемент, составляющий основу сплава содержание других элементов невелико. Так, при определении кобальта в никеле или в сплавах с высоким содержанием последнего применяют следующие методы предварительного отделения или маскирования посторонних элементов. Железо экстрагируют в виде хлорида изопропиловым эфиром [1188], осаждают окисью цинка [109] или маскируют цитратом аммония [1417]. Медь связывают тиомочевиной [1417]. Для отделения кобальта от большей части никеля пользуются экстракцией роданидных [775], антипирин-[1518] или дианти-пирилметанроданидных [88] комплексов кобальта, осаждением диэтилдитиокарбамината [1200] или 1-нитрозо-2-нафтолата кобальта, поглощением хлоридного комплекса кобальта анионитом [1082]. В одной из работ рекомендовано [1002] перед [c.198]


    Определение кобальта после отделения диэтилдитиокарбаминатом или его производными. Один из методов состоит в следующем [927]. 1 г циркония растворяют в 0 мл серной кислоты (1 1) с добавлением фтористоводородной кислоты (1 1). Избыток фтористоводородной кислоты удаляют выпариванием и растворяют остаток в соляной кислоте. К полученному раствору добавляют 20 мл 25%-ного раствора тартрата аммония, устанавливают pH около 3 и экстрагируют несколько раз смесью раствора пирролиди ндитиокарбамината аммония и хлороформного раствора дитизона до тех пор, пока окраска органического слоя не будет оставаться зеленой. Затем к водному слою прибавляют е N раствор гидроокиси аммония до pH 5,0 и повторяют ту же обработку, что и при pH 3, затем прибавляют 15 мл 25%-ного раствора тартрата аммония и экстрагируют таким же образом [c.205]

    Отделение мешающих элементов в виде сульфидов с но.мощью сероводорода или сульфидов аммония и натрия практически не очень удобно из-за ненрияного запаха и токсичности сероводорода к тому н<е многие металлы, осаждаемые в виде сульфидов, могут быть отделены от магния в виде диэтилдитиокарбаминатов. Поэтому осаждение сульфидов как метод отделения находит в лабораториях все меньшее и меньшее нримененпе. [c.41]

    Это наиболее важный метод отделения мешаюш их элементов от магния, который позволяет удалять одновременно большое число металлов и поэтохму широко применяется [102, 138, 207, 302, 303, 317, 365, 366, 380, 412, 546, 567, 615, 621, 684, 703, 815, 827, 828, 876, 922, 1005, 1009, 1038, 1041, 1061, 1124, 1212]. Экстракция диэтилдитиокарбаминатов — наиболее эффективный метод удаления марганца и следов других металлов, блокирующих индикатор эриохром черный Т при комплексопометрическом определении магния. После отделения примесей этим методом наблюдается очень четкий переход окраски в эквивалентной точке. Ниже приводятся оптимальные значения рП экстракции диэтилдитиокарбаминатов ]557а]. [c.45]

    У1етоды отделения. При определении магния в рудах и концентратах применяются следующие методы отделения мешающих сопутствующих элементов осаждение уротропином, смесью уротропина и диэтилдитиокарбамината натрия, смесью уротропина и NagS, смесью нитрозофенилгидроксиламина и диэтилдитиокарбамината натрия, двукратное осаждение аммиаком в присутствии (NH4),S,03. [c.196]

    Диэтилдитиокарбаминат натрия ( 2H6)2N (S)SNa как реагент известен давно [5241. Образование окрашенного комплексного соединения никеля с диэтилдитиокарбаминатом (ДДТК) было отмечено в 1939 г. Голландом и Ритке [7641, но этот реагент использован для фотометрического определения никеля лишь в 1946 г. [4041. Глен и Шваб [7081 указали, что растворы ДДТК при pH 5 и ниже быстро разлагаются. Другие исследователи [5461 также подчеркивали, что ионы никеля следует экстрагировать из щелочных растворов. Диэтилдитиокарбаминат натрия применяется при фотометрических (см. стр. 113), титриметрических методах (см. стр. 99) и методах отделения никеля. [c.39]

    Определению кобальта с нитрозо-К-солью в водном растворе мешает большее число элементов, чем при экстракции аналогичных хелатов кобальта с реагентами, не содержащими сульфогрупп, потому что экстракция в этом случае является дополнительной операцией разделения. Определению кобальта с нитрозо-К-солью мешают следующие ионы металлов Се , Сг , r i, Си, Fe , Fe , Ni, и Для устранения их влияния имеется несколько способов Fe можно экстрагировать из концентрированного солянокислого раствора метилизобутилке-топом [901], диэтиловым [1116] или диизопропиловым эфиром [769]. При точном определении кобальта не следует использовать часто рекомендуемый метод отделения железа соосаждением с ZnO [796], так как в этом случае кобальт теряется за счет окклюзии и сорбции осадком. Большие количества хрома и никеля лучше всего отделять при помощи ионообменных смол [505, 901, 2290]. Медь можно эктрагиро-вать при рН = 2,5 дитизоном, Fe (и Си)—при рН = 2,5 раствором 8-оксихинолина в хлороформе. Наконец, можно отделить кобальт от остальных сопутствующих элементов экстракцией диэтилдитиокарбамината кобальта [1660]. Не очень большие количества Си, Сг, Ni и Fe отделяют от хелата кобальта иа колонке с AI2O3, обработанной хлорной кислотой [206, 505, 1009]. Все эти методы относительно сложны. Гораздо проще маскировать мешающие элементы большим избытком фторида. Это удается сделать, если предварительно окислить и бромной водой и избыток брома удалить перед добавлением реагента кипячением [1599, 1978, 1979, 2387]. При определении кобальта в биологических объектах необходимо, однако, предварительно концентрировать кобальт пз озолеиион пробы при помощи экстракционных методов. При этом можно отделить кобальт от большинства сопутствующих веществ. Например, можно экстрагировать кобальт в присутствии цитрата при pH = 8—9 раствором дитизона в четыреххлористом углероде [59, 727, 1344, 1434] или раствором 2-нитрозонафтола-1 в хлороформе [1533, 1546] и после озоления экстрактов определять кобальт с нитрозо-К-солью. Разработаны методы определения кобальта с нитрозо-К-солью в различных технических продуктах, например медной руде [2427], алюминиевых сплавах [2101], никеле [72, 1247], цирконии [2290, 2387], цементе [827]. [c.318]


    Для отделения марганца методом распределительной хроматографии с обращенной фазой используют в качестве носителей целлюлозу [882, 1275, 1276], силикагель [1241, 1365], тефлон [1245], кизельгур [1439], политрифтормонохлорэтилен [1472]. Экстрагентами служат диэтилдитиокарбаминат цинка в СНС1з [605], триизооктиламин [750, 1245], трибутилфосфат [750], Ликс-64 (техническая смесь оксимов) [886], б ас-ди-2-этилгексилфосфорная кислота [206]. Этим методом разделяют Мп(П) и Ге(1И) [1241, 1365, 1439, 1472], Мп(П), Оа(Ш) и Аз(1П) [750]. [c.150]

    Сурьму в ниобии и пятиокиси ниобия наиболее часто определяют методами спектрального анализа. Ниобий предварительно переводят в пятиокись. Прямые методы [49, 9721 позволяют определять до 1-10- % ЗЬ. Предварительное отделение ЗЬ методом испарения снижает предел обнаружения ЗЬ до 1-10 % [379]. Метод, включающий концентрирование ЗЬ соосаждением с СиЗ [6431, и метод, в котором удаляют Nb экстракцией 60%-ным раствором ТБФ в бензоле в среде 10 М Н2304 [3781, также характеризуются высокой Чувствительностью п-10 % (5г=0,15-н 0,20). Метод инверсионной вольтамперометрии применен для определения ЗЬ > 5-10" % (5г <1 0,26) в ниобатах щелочных металлов и пятиокиси ниобия [290]. Предварительное выделение 8Ь экстракцией в виде диэтилдитиокарбамината позволяет снизить предел обнаружения ЗЬ до 1-10 % [223]. [c.142]

    Для определения молибдена в рении использован роданидный метод. Молибден(У1) предварительно выделяют экстракцией с 8-оксихинолином и диэтилдитиокарбаминатом [1322]. Разработан фотометрический метод определения молибдена по роданидной реакции без отделения рения с использованием в качестве восстановителя аскорбиновой кислоты Re(VII) в этих условиях не восстанавливается и не образует окрашенного соединения. Прп анализе не следует пользоваться роданидом калия, значительно нонижаюш им растворимость перренатов. Метод позволяет определить до 10 % Мо [1309]. [c.270]

    Предложен фотометрический метод определения ртути в продуктах селенового производства и серной кислоте [158], основанный на обесцвечивании диэтилдитиокарбамината ртути в I4 без предварительного отделения ртути от других элементов, кроме серебра (которое осаждается хлорид-ионом и отфильтровывается с нерастворимым осадком после растворения пробы в азотной и серной кислотах). [c.153]

    Метод с применением дитизоната серебра [1051]. Этот метод основан на взаимодействии т/)ис-(диэтилдитиокарбамината) мышь-яка(П1) (получаемого при экстракционном отделении мышьяка от других элементов) с однозамещенным дитизонатом серебра с образованием смешанного комплекса мышьяка(П1) с диэтилдитиокарбаминатом и дитизоном и одновременным образованием диэтилдитиокарбамината серебра с освобождением эквивалентного количества дитизона. Концентрация выделившегося свободного дитизона пропорциональна содержанию мышьяка. [c.73]

    Наиболее удобный и чаще всего использующийся метод концентрирования кобальта (а иногда одновременно и его отделения от мешающих элементов) заключается в извлечении дитизоната кобальта хлороформом или четыреххлористым углеродом [403, 422, 438, 491—493, 496, 652, 827, 1037, 1267, 1369, 1389, 1464] или эфиром [1092]. Применяется и экстракция диэтилдитиокарбамината [1185, 1186], пирролидиндитиокарбамината (637, 1365] или нитрозонафтолатов 428, 575, 1138] кобальта толуолом, изоамилацетатом и другими органическими растворителями. Роданидные комплексы кобальта экстрагируют амиловым спиртом и диэтиловым эфиром [538]. Кобальт осаждают 8-оксихинолином [1294] или рубеановодородной кислотой 184]. Из других методов концентрирования и разделения следует упомянуть ионообменные методы, основанные на поглощении хлоридного комплекса кобальта анионитом [796, 1378, 1407], и методы хроматографии на бумаге [491, 493, [c.209]

    Микроколичества серебра отделяют от ряда элементов и концентрируют их нередко другими методами. Известны методы выделения серебра соосаждением с металлическими никелем, свинцом, алюминием, палладием, элементным теллуром. В качестве коллекторов служат осадки карбоната кальция или фосфата кальция, иодид таллия и др. Для концентрирования серебра и его отделения от мешающих элементов рекомендуется применять многие органические соосадители. Описаны методы соосаждения серебра с применением в качестве коллектора дитизона, диэтилдитиокарбамината меди, га-диметиламинобензилиденроданина, ок-сихинолина, тионалида и некоторых других органических соединений. [c.138]

    Определяют примеси после отделения их от основного компонента описанными способами различными физическими или химическими методами. В металлическом серебре рекомендуется определять следы палладия методом атомно-абсорбционной спектрофо-тометрии после экстракции диэтилдитиокарбамината палладия метилизобутилкетоном [381] из фильтрата от осадка Ag l следы Си, Аз, ЗЬ и Аи [488], а также платиновых металлов [122] — радиоактивационным методом [333] после химического разделения микропримесей с помощью изотопных носителей. [c.215]

    В жаропрочных сталях на хлоридно-аммиачном фоне кадмий определяют после отделения его экстракцией раствором диэтилдитиокарбамината в СНС1з при pH 8,5. Вместе с кадмием в экстракт переходят В1, Си и РЬ, которые не мешают определению. Влияние А1, Сг, Ре, МЬ, Та, Т1, и Zr устраняют добавлением винной кислоты или ее солей. Ошибка метода 10—15%. Большие количества Сг О 10%) удаляют отгонкой в виде СГО2С12 [284]. [c.108]

    При определении магния в мартеновских шлаках с высоким содержанием фосфора мешающие элементы (Fe, Al, Mn и V) осаждают в виде оксихинолинатов нри pH 6,2 [214]. При онределении магния в ферромарганцевых шлаках марганец осаждают в виде МпОз добавлением КСЮд к кипящему азотнокислому раствору шлака. В фильтрате маскируют Fe, Al, Ti и следы Мп триэтаноламином и в различных аликвотных частях титруют сумму Mg и Са с тимолфталексоном и Са с флуорексоном [974]. Онисан комплексонометрический метод определения магния в вагранковых шлаках после отделения мешающих элементов экстрагированием купферонатов и диэтилдитиокарбаминатов [624]. Об определении магния в доменных и мартеновских шлаках см. также в [134], а об определении в шлаках производства металлического урана — в [952а]. [c.202]

    Однако все эти методы связаны с использованием токсичного реагента — цианида,— поэтому более приемлемы методы определения и отделения без его применения. Лучшим и наиболее удобным методом комплексонометрического определения мапшя можно считать титрование его после оса>5,"дения мешающих элементов в виде диэтилдитиокарбаминатов [57]. Метод включен в ГОСТ 11746-66. [c.211]

    Бусевым с сотр. [93] (предложен простой и надежный метод эффективного отделения галлия от индия, основанный на экстракции диэтилдитиокарбамината индия этилацетатом при pH 3—5 в присутствии избытка оксалата. Диэтилдитиокарбаминат галлия количественно экстрагируется этилацетатом при pH 1,5—5, однако щавелевая кислота мешает извлечению. Для концентрирования галлия использована способность пирроли-диндитиокарбампната галлия экстрагироваться при pH 4,8 хлороформом [1357]. [c.58]

    Весовое определение. Для весового определения галлия в технических продуктах предложен метод осаждения его пирролидиндитиокарба-матом [837. Путем эфирной экстракции т 6 N H l в присутствии Ti ls и последующей экстракции диэтилдитиокарбаминатов из водного раствора при pH 8—9 четыреххлористым углеродом достигают отделения всех элементов, кроме As3+, Sn2+, Sn , Se + и Mo (VI), которые выделяют в виде сульфидов. [c.184]

    При определении валовых форы микроэлементов по К.В. Веригиной образец почвы обрабатывают смесью плавиковой и серной кислот (после прокаливания в муфеле для удаления органических веществ). Остаток после разложения почвы переводят в солянокислый раствор и извлекают из него в виде комплексных дитизонатов медь (при pH 2), смесь цинка и кобальта (при pH 8,2). Разрушив дитизонат, определяют медь фотометрически в виде комплекса с диэтилдитиокарбаминатом. Поскольку дитизонат цинка легко разлагается разбавленной хлороводородной кислотой, его отделяют от кобальта и определяют фотометрически с дитизоном. Содержание кобальта определяют также фотометрически в виде оранжево-красного комплекса с нитрозо-К-сояью (после разрушшия дитизоната). Таким образом, метод К.В. Веригиной позволяет определять фотометрически три микроэлемента из одной порции раствора. Однако, извлекая медь дитизоном, приходится строго выдерживать pH 2, так как при pH 3 уже возможно частичное соизвлечение цинка, а при pH 6 — даже кобальта. Помимо э гого длительные операции извлечения цинка и кобальта в виде дитизонатов, последующее разрушение дитизоната цинка для отделения от кобальта, повторная экстракция дитизоном, разрушение дитизоната кобальта смесью неорганических кислот — все это сильно усложняет анализ, делает его громоздким. В этом случае также целесообразнее отделять кобальт от цинка методом ионообменной хроматографии. [c.356]

    Метод основан на цветной реакции четырехвалентного олова с п-нит-рофенилфлуороном в кислом растворе. Отделение олова от мешающих элементов производят экстракцией его из сильно сернокислого раствора в виде диэтилдитиокарбамината [4]. [c.145]

    Для определения малых количеств мышьяка применяют колориметрический метод, основанный на получении синего мышьяково-молибденового комплекса. Описан [15] чувствительный метод определения мышьяка в сере, основанный на сжигании ее, улавливании мышьяка азотной кислотой, отгонке из кислого раствора АзНз, поглощении его слабым раствором иода и последующем фотометрическом определении в виде синего молибденового комплекса, восстановление до которого проводили Sn b. Позднее [42] в качестве восстановителя был применен гидразин-сульфат, что позволило повысить чувствительность метода до 10 %. Недостатком колориметрического метода является необходимость отделения фосфора во избежание искажения результатов. Для определения мышьяка в сере используется отделение мышьяка в виде арсина и определение последнего по Гутцайту [4]. В большинстве случаев мышьяк определяют улавливанием фильтровальной бумагой, пропитанной раствором хлорида или бромида ртути. Применяя принцип фильтрования газа через горизонтально закрепленные бумажки, в значительной степени удается повысить чувствительность метода. Для повышения чувствительности и точности определения мышьяка в сере с успехом может быть использовано конечное определение арсина в виде окрашенного соединения с диэтилдитиокарбаминатом серебра в пиридиновом растворе [43]. Чувствительность метода 2- 10 доопределение хлора в сере проводят нефелометрически в водной вытяжке, полученной при длительном кипячении серы в бидистилляте [4] или при взбалтывании в течение 2 час. на механической мешалке [44]. Для устранения мешающего действия следов коллоидной и сульфидной (НгЗ) серы проводят окисление [4], либо осаждение в виде Ag2S. Чувствительность метода 5-10- %. Показана возможность применения колориметрического определения хлора методом, основанным на связывании иона хлора двухвалентной ртутью в малодиссоциированное соединение и цветной реакции ртути с дифенилкарбазоном с чувствительностью [c.424]

    Для отделения мышьяка и олова используют метод дистилляции из хлорнокислого раствора. Мышьяк в дистилляте восстанавливают до трехвалентного и экстраг ируют хлороформом комплекс с диэтилдитиокарбаминатом диэтиламмония. Мышьяк окончательно определяют в виде синего мышьяково-молибденового комплекса, а олово определяют фотометрически фенилфлуороном [16]. Этим методом можно определить 10" % Аз и 5п в образцах металлического теллура. [c.447]

    Заслуживает внимания прием, позволяющий косвенно определять фотометрическим методом элементы, дающие с данным реагентом бесцветные комплексы- При этом измеряют поглощение окрашенного комплекса этого реагента, образующегося с другим элементом в результате реакции обмена. Кадмий, например, дает с ДЭДТК неокрашенное соединение, этот элемент можно экстрагировать в виде диэтилдитиокарбамината хлороформом из щелочного раствора, затем отделенный экстракт встряхнуть с водным раствором сульфата меди, взятой в избытке. Проходит обменная реакция, медь вытесняет кадмий, экстракт окрашивается в коричневый цвет диэтилдитиокарбамината меди интенсивность окраски пропорциональна содержанию кадмия [529]. Аналогичным способом находят содержание свинца [530]. [c.175]

    Методы извлечения широко применимы и имеется немного металлов, кроме щелочных и щелочноземельных, которые не удается экстрагировать в виде внутрикомплексного соединения с каким-либо органическим реактивом. Замечательным реактивом для отделения металлов посредством извлечения является дифе-нилтиокарбазон (дитизон), который подробно рассматривается в гл. IV (стр. 91). Другими реактивами, которые дают соединения с металлами, извлекаемые органическими растворителями, являются купферон (для железа и других металлов), о-оксихинолин (для алюминия, железа, галлия, ванадия и др.), диэтилдитиокарбаминат натрия (для меди, свинца, цинка и др.), [c.42]

    При компл0ксонометрическом методе определения больших количеств висмута в материалах, содержащих титан, необходимо предварительное отделение висмута от основы. Ранее нами было найдено, что диэтилдитиокарбаминат (ДДК) может быть использован в качестве рабочего раствора для объемного определения висмута, свинца, кадмия и цинка [1]. Было изучено влияние pH, концентрации органического растворителя, мешающее влияние ряда катионов и анионов на определение висмута предлагаемым методом. Титан, цирконий, торий, ниобий и тантал не мешают прямому определению висмута. Не мешают тысячекратные количества щелочных и щелочноземельных элементов, алюминия, бора, цинка, марганца, бериллия, р. з. э., кобальта стократные количества кадмия, свинца, ванадия, хрома, никеля и других. Мешают определению медь, ртуть и золото. Точность метода 0,25% относительных. [c.174]

    Методика основана на отделении железа от примесей экстракцией диэтиловым эфиром [1] с последующим определением меди, свинца, кадмия, висмута и цинка методом амальгамной полярографии с накоплением (АПН) на ртутном пленочном электроде. При содержании больших количеств меди ее отделяют после определения с помощью диэтилдитнотикар-бамината натрия в хлороформной среде [2]. Железо и медь экстрагируются практически полностые цинк, кадмий, свинец и висмут — в количествах менее 1% с учетом реэкстракции кадмия, после применения диэтилдитиокарбамината натрия из органической фазы, и использованием 9—10 М соляной кислоты. [c.73]

    Определение мышьяка можно легко выполнить колориметри-ческимн методами, если при разложении анализируемого об-ра. ца не происходит его потери вследствие улетучивания. Перед определением мышьяк во всех случаях предварительно выделяют из большой навески сплава, чаще всего сероводородом или гипо-фосфитом кальция [147, 148]. Иногда отделение производят методом отгонки треххлористого мышьяка [149], что также дает хорошие результаты. Способы отделения мышьяка фракционной экстракцией по Алексееву [150] и экстракцией хлороформным раствором диэтилдитиокарбаминовой кислоты или диэтилдитиокарбаминатом аммония [151, 152] широкого практического распространения пока не получили. [c.61]

    Заслуженное признание метод получил только при измененном ходе аналива, предусматривающем одновременное отделение железа, меди, марганца и некоторых других компонентов сплава Осаждением их диэтилдитиокарбаминатом натрия [18.3]. В этом случае трилонометрический метод позволяет выполнить определение магния всего за 45—50 мин. [c.78]

    При малом содержании магния в сплаве (<0,1 %) определение может быть закончено фотометрическим методом с при.мене-нием реагентов феназо [45] или титанового желтого (см. стр. 22) из раствора, подготовленного таким же способом, как и для объемного определения. Отделение мешающих определению магния элементов диэтилдитиокарбаминатом имеет несомненные преимущества перед описанными в литературе способами, основанными на применении тиоацетамида и цианида калпя [182, 184]. [c.78]

    Внутрикомплексные соединения (дитизонаты [6, 8, 14, 19, 20, 22, 29, 30], оксихинолинаты [6, 8, 14, 18, 20, 22, 26], купферонаты [6, 14, 19, 20, 30, 31 ], диэтилдитиокарбаминаты [6, 8, 14, 19, 20, 30, 32, 33] и др.). Эти соединения применяШся для полного отделения и разделения небольших количеств элементов. Для растворения внутрикомплексных соединений и извлечения их из водной фазы чаще всего используются хлороформ или четыреххлористый углерод. Дитизон, 8-оксихинолин, купферон и диэтилдитио-карбаминат натрия являются групповыми реагентами, которые позволяют определять как группу интересующих аналитика примесей, так и отдельные примеси (меняя pH исходного раствора, добавляя другие комплексообразующие вещества и т. д.). Внутрикомплексные соединения многих металлов интенсивно окрашены и имеют значения молярных коэффициентов погашения в органических растворителях до 1 10 . Это обстоятельство позволило разработать большое количество экстракционно-фотометрических методов определения малых количеств (до 1-10 %) ионов меди, серебра, цинка, железа, алюминия, никеля, кобальта и других в самых разнообразных образцах [6, 14, 15, 17—24, 29—33], а также стр. 107, 109. [c.32]

    В настоящее вредля для определения содержания меди в почвах и золе растений применяют главным образом метод спектрального анализа. В литературе имеются указания на возможность определения содержания меди в почвах и золе растений колори метричским путем с применением диэтилдитиокарбамината натрия [1, 2, 3]. Основным недостатком этого метода является необходимость отделения меди от всех сопутствующих элементов или введения маскирующих агентов, что затрудняет его применение в случае массовых анализов. [c.162]


Смотреть страницы где упоминается термин Методы отделения диэтилдитиокарбаминатом: [c.112]    [c.57]    [c.76]    [c.205]    [c.212]    [c.307]    [c.20]    [c.154]    [c.99]   
Аналитическая химия хрома (1979) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Методы отделения



© 2025 chem21.info Реклама на сайте