Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Катализаторы цеолитсодержащие

    Применение в качестве носителей высококремнеземистого цеолита типа V различных катионных форм, а также шарикового цеолитсодержащего катализатора крекинга позволило получить более активные никелевые, платиновые и палладиевые катализаторы [182— 184]. [c.81]

    Катализаторами этого направления гидрокрекинга также являются цеолитсодержащие и аморфные системы. Подавляющее больщинство цеолитсодержащих катализаторов содержит цеолиты типа фожазита. Описаны также катализаторы на основе морденита, цеолита типа L, Т, альфа, омега. Наиболее эффективны катализаторы на основе поливалентных форм (кадмий, кобальт, никель, цинк, РЗЭ) цеолита V и смешанных катион-декатионированных форм [267]. [c.252]


    Кроме процесса деароматизации керосиновых фракций в нефтеперерабатывающей промышленности большой интерес вызывают процессы гидроочистки жидких и твердых парафинов и масляных фракций. Жидкие и твердые парафины, выделяемые из среднедистиллятных фракций нефти, используются в микробиологической, нефтехимической и пищевой промышленности. К ним предъявляют весьма жесткие требования по остаточному содержанию ароматических углеводородов, которое не должно превышать 0,05%. В пищевом парафине ароматические углеводороды, особенно полициклические, должны практически отсутствовать [194]. Для гидроочистки жидких и твердых парафинов предложен катализатор ГО-115 при температуре 250 °С, давлении 4—5 МПа и объемной скорости подачи сырья 0,5 ч [195], а также Pd-цеолитсодержащий катализатор при температуре [c.80]

    На установках крекинга широко применяют высокоактивные цеолитсодержащие катализаторы, в которых от 10 до 25 % (масс.) кристаллических алюмосиликатов в массе аморфной матрицы. Это позволяет значительно увеличить выход бензина и повысить его октановое число до 82—84 (моторный метод) или 92—94 (исследовательский метод), а также уменьшить время контакта. Катализатор должен иметь определенный гранулометрический состав, развитую поверхность, высокие пористость и механическую прочность. [c.37]

    Для гидрокрекинга наибольшее распространение получили алюмокобальтмолибденовые катализаторы, а также на первой ступени — оксиды или сульфиды никеля, кобальта, вольфрама и на второй ступени — цеолитсодержащие катализаторы с платиной. [c.47]

    Реакции диспропорционирования катализируются некоторыми формами цеолитов и цеолитсодержащих катализаторов [45], но протекают с низкой селективностью из-за протекания реакций крекинга, циклизации и др. Из н-парафинов Се—Сю, получают значительные количества метана, бутана и изобутана,, а также высокомолекулярные насыщенные соединения. В какой-то степени это согласуется с данными термодинамического анализа (см. табл. 48), из которых следует, что наиболее вероятными продуктами диспропорционирования могут быть метан,, бутан, но не этан. [c.218]

    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]


    В оптимальных условиях процесса выхода бензина на цеолитсодержащих катализаторах на 12—14 вес. % выше, чем на стандартном катализаторе, также выше селективность их действия, определяемая отношением выхода бензина к глубине превращения сырья [34]. [c.24]

    В цеолитсодержащем катализаторе от 5 до 15% цеолита распределено в матрице — аморфном алюмосиликате. Чтобы полнее использовать преимущество таких катализаторов, следует обеспечить доступ реагирующих веществ к цеолитам, который при отложениях кокса или металлов и разрушении пористой структуры матрицы затрудняется. Поэтому необходимо, чтобы содержание кокса на катализаторе было минимальным, а при проектировании предусматривать такой реакторный блок, в котором выход кокса при выбранной глубине конверсии также был бы минимальным. [c.119]

    Равномерность распределения кокса по радиусу гранул будет зависеть от вида сырья и условий проведения процесса, активности и макроструктуры катализатора [3]. На микросферических катализаторах процесс обычно протекает в кинетической области и следует ожидать наиболее равномерного распределения кокса по всей грануле. При переходе в диффузионную область кокс будет отлагаться в первую очередь в периферийной зоне зерна [36-39]. Так, при крекинге на алюмосиликатном катализаторе н-гексадекана и изопентенов [40] уменьшение объема пор было близко к объему отложившегося кокса, что указывает на его равномерное распределение по грануле. Аналогичные данные были получены при изучении распределения кокса по радиусу частицы цеолитсодержащего катализатора, однократно закоксованного в лабораторных условиях при его обработке парами вакуумного газойля [28]. В то же время в работе [41 ] также при крекинге вакуумного газойля получены данные, указывающие на преимущественное отложение кокса в устьях пор. [c.11]

    Алюмосиликатные катализаторы приготавливаются из природных газов или синтетическим путем. Синтетические алюмосиликатные катализаторы по своей структуре делятся на аморфные и кристаллические (цеолитсодержащие). Цеолиты имеют ряд преимуществ по сравнению с аморфными алюмосиликатами более активны, селективны, устойчивы при высоких температурах (табл. 7.22). Они отличаются также способностью к легкому обмену катионов, что позволяет без особых сложностей получать их в виде наиболее активных форм (кальциевая, магниевая, редкоземельная и др.). Однако на практике цеолиты в чистом виде как катализаторы крекинга не используются. Цеолитсодержащие катализаторы представляют собой аморфные (природные или синтетические) алюмосиликаты, в которые введено 10—25% цеолита. [c.405]

    Перспективными катализаторами являются комплексы триф-торида бора ВРз-НгО-НР и ВРз-Н2 304, а также цеолитсодержащие катализаторы. [c.264]

    Активность. При каталитическом крекинге нефтяного сырья целевым продуктом является бензин. Выходом его (в % масс, от сырья) и принято оценивать каталитич ескую активность катализатора. Часто вместо выражения" активность катализатора применяют выражение индекс активности и обозначают его цифрой, равной выходу бензина (в % масс.) при каталитическом крекинге эталонного сырья в стандартных условиях на лабораторной установке. Для синтетических алюмосиликатных катализаторов индекс активности составляет 32—42 для аморфных и 43—55 для кристаллических цеолитсодержащих. Активность катализаторов зависит от их физико-химических свойств, которые, в свою очередь, определяются структурой и химическим составом, а также технологией их производства. [c.56]

    Промышленные процессы изомеризации осуществляются в зависимости от типа катализатора при температурах О—480°С, давлении 1,4—10,5 МПа, объемной скорости подачи сырья 1—6 ч . В качестве катализаторов изомеризации применяют катализаторы Фриделя — Крафтса, бифункциональные и цеолитсодержащие катализаторы с благородными и редкими металлами (р , Р(1, КН, 1г и др.), а также комплексные катализаторы — сочетания последних с катализаторами Фриделя — Крафтса. Изомеризацию с использованием катализаторов Фриделя—Крафтса (на основе брома) можно осуществлять при 2 МПа и 40—120°С и даже при 24—50°С. В присутствии таких катализаторов, как хлористый алюминий с промоторами, изомеризацию парафинов можно осуществлять при температурах ниже комнатной. Последние исследования показали, что изомеризация парафиновых углеводородов в присутствии хлористого алюминия значительно ускоряется при наличии в реакционной смеси следов олефина. [c.314]

    Образующиеся при этом парафиновые и ароматические углеводороды менее реакционноспособны по сравнению с олефиновыми и нафтеновыми углеводородами, этим и объясняется уменьшение доли вторичных реакций крекинга бензина на цеолитах. Способность цеолитов и цеолитсодержащих катализаторов ускорять реакцию Н-переноса связывается [2, 5, 27, 44] с высоким адсорбционным потенциалом пор цеолита и большей концентрацией в нем кислотных центров по сравнению с аморфным алюмосиликатом. Возможно также наличие в цеолитах специфических кислотных участков, интенсифицирующих реак- [c.53]


    Катализаторы гидрокрекинга полифункциональ-ны, т.к.- обеспечивают одноврем. протекание р-ций крекинга, гидрирования, изомеризации, гидрообессеривания. В зависимости от целевой направленности процесса, технологии и вида сырья применяют один полифункциональный катализатор или систему катализаторов. Для гидрокрекинга вакуумного газойля с преимуществ, получением бензиновых фракций иаиб. эффективны катализаторы на основе поливалентных катионных форм цеолита типа V со степенями декатионированИЯ 45-60% и катионного обмена с РЗЭ 40-45%. Гидрирующую ф-цию в таких катализаторах выполняют металлы Р1-группы или оксиды Н1(Со) и Мо для усиления крекирующей ф-ции в катализатор вводят галогениды или оксиды металлов, а также проводят деалюминирование цеолита. Для получения реактивных и дизельных топлив наиб, эффективны цеолитсодержащие катализаторы на основе декатионир. форм фожазитов с РЗЭ в сочетании с оксидами N1, Мо и А1, а также катализаторы на основе гидросиликатов N1, Со и М . Для гидрокрекинга прямогонных бензинов применяют катализатор, содержащий до 60% по массе цеолита типа У с РЗЭ в сочетании с оксидами N1 и Мо, нанесенными на А12О3 (см. Гидрокрекинг). [c.342]

    Для получения реактивных и дизельных топлив наибольший эффект проявляют цеолитсодержащие катализаторы на освове декатионированных форм фожазитов с редкоземельвыми элементами в сочетании с окидами N1, Мо и А1, а также катализаторы на основе гидросиликатов №, Со, М . [c.815]

    Из приведенных данных видно, что при замене аморфного катализатора цеолитсодержащим выход авиакомпонента (фракция С5— 165 °С) увеличивается в 1,6 раза возрастает также сортность авиакомпонента. При этом расход катализатора снизился более чем на 30 отн.%. [c.84]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    Внедрение в промышленность цеолитсодержащих катализаторов внесло значительные изменения в устройство реакторного блока. Высокая активность цеолитов заставила отказаться от традиционного псевдоожижениого слоя и использовать реакторы лифт-ного типа или комбинации их с псевдоожиженным слоем. Например, отечественная установка 1-А, запроектированная как установка с псевдоожиженным слоем катализатора (рис. 18), характеризовалась разновысотным расположением реактора и регенератора, наличием трубчатой нагревательной печи и змеевиков-холодильников в регенераторе улавливание катализатора осуществлялось в циклонах и электрофильтрах. В результате опыта эксплуатации такой установки, а также в связи с внедрением цеолитных катализаторов установка подверглась поэтапной реконструкции [9]. [c.55]

    Приведены сведения об основных типах промышленных катализаторов и силикагелей, их свойства и предъявляемые к ним требования. Описаны основные технологические процессы производства катализаторов и адсорбентов приготовление водных растворов и процессы формования, мокрой обработки и обезвоживания. Рассмотрены технологические схемы катализаторных фабрик по производству природных катализаторов пз бентонитовых глин (ханларит) и синтетических каталпзаторов алюмосилпкат-ных (АС), алюмомагнийсиликатных (АМС), цеолитных (ЫаХ, СаХ) и цеолитсодержащих (ЦАС), а также высокоактивных силикагелей (АД, СД) и цеолитов. Освещены лабораторный контроль производства, контрольно-измерительные приборы, автоматизация процессов и вопросы техники безопасности в производстве катализаторов. [c.2]

    В последние годы широко применяются неоднородно-пористые катализаторы, имеющие, кроме большого числа мелких пор, ограниченное число крупных транопортных пор. Также нашли широкое распространение катализаторы, содержащие крапления высокоактивного компонента. К таким катализаторам оггносятся, например, цеолитсодержащие катализаторы крекинга, гидрокрекинга, гидроизомеризации и др. Это ставит задачу расчета химических процеосов в неоднородно-пористом зерне слож ного катализатора. [c.39]

    Увеличение производства дизельных топлив (табл. VII. ) при задаипом объеме переработки нефти может быть достигнуто прежде всего путем более широкого использования газойлей вторичного происхождения, в частности, легкого газойля каталитического крекинга. Однако при использовании на установках ККФ современных цеолитсодержащих катализаторов (предназначенных для производства максимального количества бензина) выход и цетановое число крекинг-газойля крайне невелики (табл. УП.2). Для улучшения этих показателей необходимо значительно снизить жесткость режима процесса и использовать сравнительно малоактивные катализаторы. Наряду с разработкой новых специальных катализаторов, характеризующихся низкими скоростями реакций с переносом водорода и обеспечивающих получение газойля со сравнительно невысоким содержанием ароматических соединений (и высоким цетановым числом), в США рассматривается также возможность перехода с современных цеолитсодержащих катализаторов обратно на малоактивные аморфные катализаторы 50— 60-х годов. Значительного повышения це-танового числа крекинг-газойля можно достигнуть путем его гидроочистки в жестких условиях (см. табл. УП.2), Однако часто этот процесс сопряжен с очень высоким расходом водорода и чрезмерно большими эксплуатационными расходами. В этом случае экономичнее может оказаться экстрактивное удаление ароматических соединений или применение присадок, повышающих цетановое число. [c.165]

    За рубежом мощность установок каталитического крекинга с циркулирующим микросферическим катализатором составляет 500—3000 тыс. т в год по сырью. Созданы и действуют также несколько установок по каталитическому крекингу мазута на ми-кросферическом цеолитсодержащем катализаторе мощностью 800—2500 тыс. т в год по сырью. [c.119]

    Пригодность уравнений (4.4), (4.5) и (4.6) подтверждена нами также в процессах каталитического риформинга на платиновом и полиметаллических катализаторах, в процессах гидроочистки, гидрокрекинга на оксидных катализатсграх, изомеризации и алкилирования на высококремнеземных цеолитсодержащих катализаторах. [c.100]

    В отечественной промышленности применяют цеолитсодержащие катализаторы нескольких типов. Для систем с движущимся слоем катализатора используют катализаторы АШНЦ-3 (разработан во ВНИИ НП) и цеокар-2 (разработан в ГрозНИИ). Для установок с кипящим слоем катализатора предложен катализатор РСГ-2Ц (разработан во ВНИИ НП). В качестве наполнителей катализаторов применяют цеолит типа V в декатионированной форме, за исключением цеокара-2, в котором цеолит находится в смешанной катион-декатионированпой форме с редкоземельными элементами. Качество этих катализаторов, а также микросфериче- [c.23]

    СОг к СО находится в пределах 0,5—0,8. Для цеолитсодержащих катализаторов характерны более низкие значения. В газах регенерации наряду с окисью и двуокисью углерода обнаружены также двуокись и трехокись серы. Содержание трехокиси серы составляет от 10 до 40% от суммы окислов серы [159]. Кроме того, в газах регенерации обнаружены сероводород, меркаптаны, серо-окись углерода и сероуглерод, а также углеводороды (метан и зтан). Концентрации их меняются так, содержание сероокиси углерода колебалось от 9 до 190 млн. . Из общего содержания сернистых соединений не менее 70% составляют двух- и трехокись серы [158]. [c.122]

    Обследования значительного числа установок флюид в США и Канаде показали, что в период с 1960 по 1965 г. содержание ванадия и никеля в равновесных аморфных катализаторах было на уровне 300 и 140 млн.- после 1965 г., когда широкое распространение нашли цеолитсодержащие катализаторы, содержание в них указанных металлов возросло соответственно до 500 и 300 млн.- . За этот же период микроактивность катализатора увеличилась с 55—60 (что типично для катализатора с высоким содержанием алюминия) до 81. Эти данные также подтверждают меньшее отравление цеолитсодержащих катализаторов металлами. [c.153]

    Нами исследовались изменения структуры пор и удельной поверхности цеолитсодержащих катализаторов крекинга при закоксовании, а также характеристики кокса, вьщеленного с поверхности катализатора [28, 29]. Как установлено, преобладающая часть кокса на катализаторах крекинга представляет собой сферообразные частицы. Их размер достигает 30 нм и мало зависит от содержания образующегося кокса при его изменении в пределах 0,4 до 7,0% (масс.). Возможность образования крупных глобул получает логическое объяснение, если допустить, что углеводороды и продукты их уплотнения могут мигрировать по поверхности катализатора. Такое допущение основывается на том, что для миграции требуется существенно меньшая энергия, чем для перехода из адсорбированного состояния в газообразное (примерно на величину, равную теплоте испарения). Поскольку промежуточные продукты реакций уплотнения способны частично десорбироваться в газовую фазу, естественно, они способны и к диффузии по поверхности. Определенным подтверждением этого является ранее отмеченный факт пла-сти>шого состояния кокса, выделенного из катализатора крекинга, при температурах 450-500 °С. Предположение о диффузии было подтверждено также исследованиями по изучению влияния термообработки в токе гелия на распределение кокса по грануле аморфного алюмосиликатного катализатора крекинга. Как установлено, после прогрева наблюдается выравнивание распределения кокса. [c.10]

    Синтез этилбензола на цеолитсодержащих катализаторах. Катализаторами алкилирования могут служить декатионированные цеолиты и цеолиты, содержащие металлы I группы. Для повышения активности в цеолиты вводят палладий н другие металлы. Каталитическая активность цеолитов зависит от их кислотности, которая определяется соотношением SiOj/AljOa. Наиболее активными являются цеолиты типа М и Y, нанменее активными — цеолиты типа X. Активность цеолитов возрастает с увеличением степени обмена и валентности катиона, однако цеолиты с трехвалентными катионами менее стабильны, чем с двухвалентными. Активность цеолитов зависит также от величины ионного радиуса катионов. Так, для реакции пропилирования бензола установлен ряд активности BaY < SrY < aY< [c.105]

    Цеолиты обладают исключительно большой активностью. Поэтому их применяют в смеси с аморфными катализаторами. В цеолитсодержащих катализаторах крекинга обычно содержится 15— 20% (масс.) цеолиМв. Но даже и в таком виде они значительно превосходят (по показателям работы установки) аморфные катализаторы, и применение их дает значительный экономический эффект. В промышленной практике применяют алюмосиликатные катализаторы. (в основном цеолитсодержащие) — микросферические или размолотые — порошкообразные — для процессов флюид или шарообразные размером 3—5 мм — для процессов с движущимся слоем катализатора. Учитывая непрочность, высокие стоимость и активность цеолитов, а также для обеспечения легкого проникновения молекул сырья к зернам цеолита и отвода продуктов крекинга и подачи воздуха к коксу, отложившемуся на катализаторе (с целью его окислительной регенерации), в цеолит вводят механически прочную матрицу. Хорошими матрицами служат синтетические аморфные алюмосиликаты, структура которых характеризуется широким диапазоном размеров пор. [c.55]

    Температура регенерации катализатора составляет 600—7i60° . Повышение температуры при регенерации стало возможным с применением цеолитсодержащих катализаторов. Тенденция повышения температуры наметилась в последнее время с целью дожига окисп углерода в самом регенераторе. Это необходимо также.для снижения содержания кокса в регенерированном катализаторе, особенно в цеолитсодержащем, где содержание кокса лимитируется в пределах 0,15—0,05% (масс.). Давление в отстойной зоне регенератора обычно поддерживают в пределах 0,03—0,27 МПа. Кратность циркуляции катализатора к сырью зависит от типа системы и составляет от 3 1 до 10 1. [c.68]

    Изменяя кратность циркуляции катализатора, можно регулировать температуру в реакторе, длительность пребывания катализатора в реакционном объеме и регенераторе, а также закоксо-ванность его в этих аппаратах. При прочих равных условиях с увеличением кратности катализатора глубина превращения и выход кокса на сырье увеличиваются, а закоксованность катализатора уменьшается. Это объясняется тем, что образующийся кокс распределяется на больший объем циркулирующего катализатора. Кратность циркуляции катализатора влияет не только на другие параметры технологического режима, но и на мощности и размеры (при проектировании) воздуходувок, компрессоров, катализа-торопроводов, внутренних деталей регенератора и некоторых других устройств. Увеличение кратности циркуляции катализатора, особенно сверх необходимой, вызывает удорожание Процесса в связи с большей затратой энергии на циркуляцию. С переходом на цеолитсодержащие катализаторы для получения тех же и даже лучших показателей работы установки кратность циркуляции катализатора может быть меньшей. [c.70]

    В качестве катализаторов помимо фосфорной кислоты для полимеризации олефиновых углеводородов применяют сернистую кислоту, хлористый алюминий, фтористый бор, пирофосфат меди, металлорганические соединения и др. Наряду с этим продолжаются совершенствование фосфорнокислотного катализатора, а также разработка новых катализаторов, в том числе и цеолитсодержащих. Так, механическую прочность и активность ортофосфорной кислоты на кизельгуре повышают добавлением 5% цеолита. Последний вначале смешивают с кизельгуром, а затем к смеси добавляют ортофосфорную кислоту и далее приготавливают катализатор обычным образом. Эффективность такого катализатора следующая в продукте, полученном на обычном катализаторе, содержится 85,2% моноолефиновых углеводородов, в том числе 36,5% тетрамера С12Н24, а на катализаторе, содержащем 5% цеолита NaX, — соответственно 96,9 и 83,4%- [c.311]

    Перевод установок на работу с цеолитсодержащими катализаторами типа АШНЦ-1 и АШНЦ-3 и повышение температуры на 150—200 °С способствует большей глубине превращення сырья, увеличению выхода бутан-бутиленовой фр.-зкции, а также выхода бензина за счет снижения выхода керосино-газойлевых фракций. Это приведет к резкому снижению ресурсов сырья для производства нефтяного углерода при одновременном улучшении качества газойлей каталитического крекинга по содержанию ароматических углеводородов. По предварительным данным, выход газойлей каталитического крекинга снизится более чем в 2 раза. [c.225]

    Подавать рециркулят в зону реакции можно совместно с сырьем или отдельно. В последнем случае используется самостоятельный лифт-реактор или рециркулят подается в псевдоожиженный слой катализатора. Предложено также [94, 95] крекинг рециркулята проводить в отдельном реакторе, иыеющем самостоятельную отстойную зону, с последующей раздельной ректификацией продуктов. При работе установок крекинга с высокой конверсией сырья количество рециркулята газойлевых фракций не превышает 15—20% (масс.), и его целесообразно крекировать в смеси с сырьем, так как при раздельном крекинге практически не улучшается селективность процесса [97]. В работе [96] рекомендуется отказаться от рециркулята, включая даже возврат катализаторного шлама, но крекинг предлагается проводить на высокоактивных и износостойких цеолитсодержащих катализаторах с применением усовершенствованных систем пылеулавливания. [c.139]


Смотреть страницы где упоминается термин также Катализаторы цеолитсодержащие: [c.897]    [c.864]    [c.876]    [c.89]    [c.152]    [c.209]    [c.114]    [c.105]    [c.108]    [c.213]    [c.101]    [c.204]    [c.92]   
Технология катализаторов (1989) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте