Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение фосфора титане

    Определение железа и алюминия. При анализе силикатов, известняков, некоторых руд и других горных пород эти элементы часто определяют гравимеФрическим методом в смеси с титаном, марганцем и фосфатом как сумму так называемых полуторных оксидов. Обычно после отделения кремниевой кислоты в кислом растворе приводят осаждение сульфидов (меди и других элементов) и в. фильтрате после удаления сероводорода осаждают сумму полуторных оксидов аммиаком в аммиачном буферном растворе. Осадок гидроксидов промывают декантацией и переосаждают, после чего фильтруют, промывают и прокаливают. Прокаленный осадок содержит оксиды ЕегОз, АЬОз, ТЮг, МпОг. Иногда анализ на этом заканчивается, так как бывает достаточным определить только сумму оксидов и не требуется устанавливать содержание каждого компонента. При необходимости более детального анализа прокаленный осадок сплавляют с пиросульфатом калия для перевода оксидов в растворимые сульфаты и после растворения плава определяют в растворе отдельные компоненты — железо титриметрическим или гравиметрическим методом, титан и марганец — фотометрическим и фосфор — гравиметрическим (марганец и фосфор анализируются обычно из отдельной навески). Содержание алюминия рассчитывают по разности. Прямое гравиметрическое определение же- [c.165]


    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    Мешающие вещества. Имеется много различных данных о влиянии посторонних элементов на определение фосфора, кремния и Мыщьяка в виде ГПК. Методы устранения влияния железа и меди указаны выше. Мешают определению ниобий и титан, которые образуют более сложные соединения, содержащие наряду с фосфором, кремнием или мышьяком также ниобий или титан. Эти комплексы сильнее поглощают свет в видимой части спектра, чем простые ГПК- Влияние титана и ниобия не удается устранить [c.76]

    Главными представителями сплавов железа являются чугуны и стали. При анализе простых чугунов и сталей обычно определяют содержание в них углерода, кремния, серы, фосфора и марганца. Для придания сплавам железа определенных технических свойств в них вводят легирующие компоненты, из которых чаще всего приходится определять никель и хром (также ванадий, медь, титан, молибден и др.). [c.454]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    Титан. Ферротитан растворяют в смеси сериой, соляной и азотной кислот. Для определения кремния растворение проводят в смеси кислот 600 мл сериой (1 1), 150 мл концентрированной азотной и 300 мл кон> центрированной соляной или в смесн соляной и азотной кислот (3 1) с добавлением сульфата аммония. Для определения титана ферротитан растворяют в смеси кислот 300 мл концентрированной соляной, 150 мл концентрированной азотной и 150 мл серной (1 1). Растворение проводят также в концентрированной соляной кислоте и в смеси азотной и фтористоводородной кислот. Для определения фосфора проводят сплавление с карбонатом натрия с добавкой нитрата калия (20 1) при 1000 °С в течение 50—60 мин. [c.13]


    Фотометрический д етод (см. стр. 85) определения фосфора в титане может быть применен и для анализа этого элемента в вольфраме, но со следующими изменениями. [c.214]

    Многие методы определения фосфора в природных и промышленных материалах известны давно. Однако в материалах, содержащих такие элементы, как титан, цирконий, ниобий, тантал и вольфрам, определение фосфора представляет трудную задачу, не решенную достаточно удовлетворительно до настоящего времени. [c.5]

    Определение фосфора в титане и его сплавах производят с использованием метода фракционной дистилляции [18, 216, 243, 245]. Применяя зффект фракционного испарения, благодаря которому на спектрограмме отсутствует сложный спектр титана и других компонентов сплава, можно существенно повысить чувствительность определения. Анализируемый порошок или стружку титана переводят в окись нагреванием в атмосфере воздуха при температуре 1000—1100° С. При необходимости ускорить этот процесс и при обработке некоторых трудноокисляемых образцов окисление производят в токе кислорода при температуре 900—1000° С. Как показывает опыт, ни в том, ни в другом случае не наблюдается потерь. Полученные окислы растирают в плексигласовой ступке. [c.147]

    Определению фосфора не мешают 1000-кратное по отношению к фосфору количество кремния, а также титан, тантал, ниобий, мышьяк, сурьма, олово, свинец, бор, индий, таллий, галлий, алюминий, кальций, магний, никель, марганец, медь, железо, ртуть и серебро, если их количества не превышают 250-кратного по [c.101]

    Описан метод определения фосфора в виде желтого фосфорномолибденового комплекса в почве и растениях [62] и в водном аммиаке особой чистоты [63]. Для уменьшения диссоциации комплекса рекомендовано применять ацетоновые растворы [64]. При определении фосфора в феррониобии, ферротитане и в ниобиевой руде [65] титан и ниобий маскируют фторидом, а фосфорномолибденовую кислоту экстрагируют метилизобутилкетоном. [c.107]

    Этот метод применяют для определения фосфора в сталях, содержащих хром, вольфрам, ванадий, титан или мышьяк. [c.68]

    Ход анализа. При определении фосфора в сплавах хром—титан, хром—цирконий и хром—ванадий. [c.560]

    Потенциометрическое определение кобальта в стали после осаждения фенилтиогидантоиновой и тиогликолевой кислотами [921]. Методика рекомендована для определения кобальта в жаропрочных сплавах, содержащих алюминий, углерод, хром, медь, железо, марганец, молибден, никель, ниобий, фосфор, серу, тантал, титан, вольфрам, ванадий и цирконий. Она основана на избирательном осаждении кобальта тиогликолевой и фенилтиогидантоиновой кислотами и последующем титровании кобальта феррицианидом калия в присутствии этилендиамина. 0,05—0,3 г стали, содержащей от 6 до 50 мг Со, растворяют в смеси соляной и азотной кислот (3 1), прибавляют 5 мл 85%-ного раствора фосфорной кислоты, 20 мл серной кислоты (1 1) я 5 мл 70%-ной хлорной кислоты и выпаривают большую часть последней. Остаток растворяют в воде, прибавляют 10 г цитрата аммония и концентрированный раствор гидроокиси аммония до pH 8 и сверх того еще 10 мл и разбавляют водой до 250 мл. При высоком содержании железа прибавляют 4 мл тиогликолевой кислоты (при низком содержании железа этого делать не нужно), далее бумажную массу и вводят при перемешивании 35 мл раствора фенилтиогидантоиновой кислоты (4 г реагента на 100 мл этанола). Раствор кипятят 5 мин., перемешивают до коагуляции осадка и добавляют еще 5 мл раствора фенилтиогидантоиновой кислоты. Осадок отфильтровывают, промывают [c.194]

    Анализ стали. В стали, кроме железа, могут содержаться следуюш,ие элементы марганец, хром, никель, кобальт, ванадий, молибден, вольфрам, титан, цирконий, углерод, кремний, фосфор, сера и др. Обычно фосфор, серу и углерод в сталях не открывают, а проводят только количественное определение их. [c.454]

    В нефти В очень малых количествах присутствуют и другие элементы, главным образом металлы ванадий, хром, никель, железо, кобальт, магний, титан, натрий, кальций, германий, а также фосфор и кремний. При определении элементарного состава нефти эти элементы концентрируются в остатке, называемом золой. [c.18]

    Иногда алюминий и железо осаждают совместно и содержание алюминия находят по разности, после определения железа в аликвотной части раствора. Этот метод дает удовлетворительные результаты лишь прн анализе материалов относительно простого известного состава. При анализе материалов сложного состава вводят поправки также на титан, фосфор и некоторые другие элементы, что сильно снижает точность метода. [c.44]

    Так, например, метод количественного определения алюминия в при- утствии ионов железа и других элементов, основанный на выделении железа электролизом на ртутном катоде, состоит в следующем. Сначала выделяют железо из сернокислого раствора на ртутном катоде вместе с, железом выделяются другие элементы цинк, хром, никель, кобальт т. д. В растворе остаются ионы алюминия, бериллия, титана, фосфора и т. п. Затем определяют обычным путем ионы алюминия. Титан осаждают [c.358]


    Чувствительность метода. Пламенные спектрофотометры, собранные на основе монохроматоров УМ-2 и СФ-4, оказались достаточно простыми и универсальными приборами, позволяющими определять большое число металлов. Однако при измерении малых концентраций возникают затруднения, вызванные фоном пламени [39.4]. Прежде всего, источником фона является само пламя, в котором возбуждаются радикалы и молекулы О2, СН, Сд. Нестабильность фона пламени существенно ограничивает чувствительность и точность метода. Фон пламени смеси ацетилен—воздух мешает определению элементов, линии которых находятся в области 4000—6000 А в красной же и инфракрасной области фон ничтожно мал. Кроме того, посторонние элементы, присутствующие в растворе, часто дают излучение, спектр которого состоит из молекулярных полос или является сплошным. К числу этих элементов относятся щелочноземельные и редкоземельные металлы, бор, алюминий, медь, фосфор, молибден, ниобий, уран, цинк, бериллий, ванадий, олово, теллур и титан. Следует заметить, что при недостаточной дисперсии прибора и широких входных щелях, излучение соседних линий может привести к завышенным результатам. Экспериментальное сравнение приборов с неподвижным спектром и со сканированием показало, что при сканировании величина фона значительно меньше влияет на точность измерений и на чувствительность метода. [c.304]

    Этим методом проанализировано более 600 органических соединений, содержаш их от 1 до 76% фтора. Удовлетворительные результаты были получены таюке для некоторых веществ, содержащих фосфор, серу, титан, железо, марганец или германий. Однако вопрос об определении фтора сожжением в колбе в присутствии этих элементов требует специального исследования. Результаты определения фтора во фторорганических соединениях представлены в табл. 4. [c.209]

    Образцы пластиков режут на мелкие кусочки, по 100 мг вводят в электрод и там озоляют с помощью ручной газовой горелки. Озоляют не всю навеску сразу, а по частям. Важен при этом постепенный нагрев, чтобы образец не вспучивался и не вспенивался. При соблюдении этих условий заметных потерь определяемых примесей не бывает. Спектры возбуждают дугой постоянного тока силой 19 А, аналитический промежуток 3 мм, экспозиция 120 с без обжига. Анализ проводят в атмосфере 91% аргона-1-9% кислорода при расходе смеси газов 3 л/мин. С увеличением концентрации аргона в смеси чувствительность определения цинка и фосфора повышается, но испарение титана ухудшается. При большей концентрации кислорода титан йена-. ряется лучше, но снижается чувствительность определения цинка и фосфора. Аналитические линии и диапазоны определяемых концентраций приведены в табл. 54. [c.216]

    Обработка фильтрата. Фильтрат, полученный после осаждения по п. а , может быть сразу применен для определения кальция и магния. Фильтрат, полеченный после обработки по п. б , может содержать некоторые металлы, которые должны быть предварительно выделены. Для этого нужно сначала разрушить тартраты. Раствор выпаривают в большой платиновой чашке с 10—12 мл серной кислоты и осторожно нагревают до тех пор, пока не начнется ясное обугливание. Слегка -охлаждают, покрывают часовым стеклом и осторожно приливают 5 мл азотной кислоты (лучше дымящей) когда бурная реакция прекратится, постепенно нагревают до гех пор, пока органические вещества полностью не окислятся обработку азотной кислотой, если нужно, повторяют Чашку охлаждают, растворяют остаток в воде и прибавляют раствор аммиака, чтобы осадить алюминий, титан, цирконий, бериллий, ниобий, тантал и уран, а также фосфор и ванадий, если количество этих двух элементов не превышает того, которое может соединиться с основаниями в виде фосфатов и ванадатов. В присутствии алюминия избытка аммиака надо избегать. Если фосфор и ванадий присутствуют в количестве большем, чем то, какое может быть связано алюминием, титаном и др., то в осадке можно ожидать присутствия щелочноземельных металлов. После растворения осадка в горячей разбавленной (1 1) соляной кислоте дальнейшее разделение идет обычным путем. [c.92]

    Этот метод применим в присутствии меди, кобальта, никеля, марганца, цинка, магния и ртути. Хорошие результаты получаются также в присутствии щелочноземельных металлов, алюминия, урана и кадмия, если осаждение проводить медленным добавлением ацетата аммония к горячему солянокислому раствору молибдена, содержащему небольшой избыток свинца. Соли щелочных металлов не препятствуют определению, за исключением сульфатов, которые должны быть удалены в случае наличия в растворе щелочноземельных металлов. В отсутствие последних небольшие количества сульфатов, такие, какие могут образоваться при растворении сульфида молибдена, не оказывают влияния на осаждение. При наличии в растворе сульфатов и хлоридов следует избегать введения в раствор большого избытка свинца. Свободные минеральные кислоты и винная кислота препятствуют количественному осаждению молибдена, а железо, хром (П1), алюминий, ванадий, вольфрам и кремний, если присутствуют в значительных количествах, загрязняют осадок. Фосфор, хроматы и арсенаты должны отсутствовать. К элементам, мешающим определению, относятся также олово, титан и другие элементы, соли которых легко гидролизуются. [c.366]

    Главными методами отделения железа от остальных элементов являются 1) обработка сероводородом в кислом растворе (стр. 83), в результате которой металлы группы сероводорода, например висмут или мышьяк, осаждаются, а железо остается в растворе 2) осаждение сульфидом аммония в растворе, содержащем тартрат аммония (стр. 115) нри этом железо осаждается в виде сульфида железа, а алюминий, титан и другие элементы остаются в растворе 3) осаждение едким натром (стр. 109), в результате которого железо переходит в осадок и отделяется от ванадия, вольфрама, молибдена, мышьяка, алюминия и фосфора 4) сплавление с карбонатом натрия с последующим выщелачиванием плава водой (стр. 511), дающее практически тот же результат, что и предыдущий метод, с тем лишь различием, что алюминий в этом случае обычно отделяется не полностью, хром окисляется и переходит в раствор, а уран частью остается в остатке, частью переходит в раствор 5) извлечение эфиром из разбавленного солянокислого раствора (стр. 161), которое применяется главным образом для удаления большей части железа, если оно присутствует в таких больших количествах, что создаются затруднения при определении других элементов. [c.437]

    В разделе Методы отделения (стр. 524) было указано, что в солянокислых и сернокислых растворах купферон образует нерастворимое соединение с ураном (IV). Уран (VI) при этом не осаждается. Поэтому в некоторых случаях целесообразно определять уран следующим образом. Сначала проводят осан дение купфероном из раствора, содержащего уран в шестивалентной форме. Осадок отфильтровывают и в фильтрате, после разрушения купферона и восстановления цинком, как это описано в разделе Объемное определение восстановлением цинком и титрованием перманганатом (стр. 529), осаждают уран (IV) купфероном. Таким путем железо, ванадий, титан и цирконий отделяются от урана, а затем уран в свою очередь отделяется от алюминия и фосфора. Хром (II) также частично осаждается купфероном, но его влияние можно устранить, подвергнув раствор действию воздуха, как указано выше (стр. 529). [c.531]

    Мешающие вещества. Мешающее влияние окрашенных ионов устраняют экстракцией, влияние кремния — регулированием кислотности образования желтого фосфорнрмолибденового комплекса. Мышьяк предварительно удаляют выпариванием хлористоводородных растворов в присутствии бромистоводородной кислоты. Иногда ограничиваются восстановлением мышьяка(V) до мышьяка(III). Вольфрам обычно отделяют перед определением фосфора. Титан и некоторые другие металлы связывают аскорбиновой кислотой. Определению мешают различные комплексанты [34], которые связывают молибден, а также окислители. [c.94]

    Оба фотометрических лтетода определения фосфора в титане, описанные в этом разделе, основаны на реакции образования фосфорно-ванадомолибдатного комплекса, имеющего желтую окраску в слабокислом растворе s8-oo Прямой метод применяют для определения 0,02—0,1% фосфора. Метод, включающий экстракцию окрашенного комплекса изоамиловым спиртом, применяют для определения менее 0,02% фосфора. [c.84]

    Титан(1У) и цирконий(1 ) ухудшают отделение фосфора. Германий не влияет на определение фосфора или мышьяка, но мешает опреде.теш5Ю кремния. [c.468]

    Зесовые методы одновременного определения углерода, водорода и других элементов в одной навеске (мг) разработаны на основе пиролитич. сожжения в пустой трубке (Коршун и сотр.). Для раздельного поглощения нек-рых мешающих соединений в трубку для сожжения помещают взвешиваемые контейнеры (пробирки, гильзы, лодочки). По весу несгорающего остатка определяют а) в виде окисла — бор, алюминий, кремний, фосфор, титан, железо, германий, цирконий, олово, сурьму, вольфрам, таллий, свинец и др. б) в виде металла — серебро, золото, палладий, платину, ртуть (последнюю — в виде амальгамы золота пли серебра). По изменению веса металлич. серебра определяют летучие элементы и окислы, реагирующие с серебром с образованием солей хлор, бром и иод — в виде галогенидов серебра, окислы серы — в виде сульфата серебра, окислы рения — в виде перрената серебра и т. д. Возможно определение четырех или пяти элементов из одной навески, напр, углерода, водорода, серы и фосфора или углерода, водорода, ртути, хлора и железа и т. д. Разработан метод определения углерода, водорода и фтора в одной навеске, применимый к анализу твердых, жидких и газообразных веществ. Вещество сжигают в контейнере, наполненном окисью магния углерод и водород определяют по весу СО2 и Н2О, а фтор, задержавшийся в виде фторида магния, определяют после разложения последнего перегретым водяным наром. Выделяющийся нри этом НГ поглощают водой и определяют фторид-ион методами неорганического анализа. [c.159]

    Объемные методы онределення фосфора применяются как маркировочные для онределенпя выше 0,02% фосфора. Определению фосфора весовыми и объемными методами мешают соляная (>10%), серная (>10%) и фтористоводородная (>5%) к-ты, а также титан, цирконий, четырехвалеитный ванадий, большие количества кремния, вольфрама, ниобия, мышьяка п органич. соединения. [c.251]

    Затем остаток обрабатывают соляной кислотой и переводят в раствор обычным методом осаждают элементы группы полуторных окислов вместе с марганцем (пользуясь бромом). Тогда R2O3 может быть исправлено на количество марганца, прибавленного в виде перманганата калия при определении FeO. Прокаленные R2O3 после взвешивания сплавляют с пиросульфатом и в полученном растворе определяют железо и титан. Определение фосфора из аликвотной части этого раствора не рекомендуется делать по причине, указанной на стр. 175. Нецелесообразно также определять марганец колориметрически в аликвотной части этого раствора, вычитая добавленный для титрования FeO перманганат, и таким образом по разности получать содержание марганца в самом образце. [c.178]

    Фосфор присутствует в стали и чугуне всех марок. Мешающими при определении фосфора элементами являются кремний, вольфрам, титан, мышьяк и ванадий. Ниже, при описании медов анализа, ук аэаны их влияние и методы отделбНия. Присутствие больших количеств хрома изменяет только способ разложения навески. - [c.68]

    Разработаны методы определения сульфидной серы в солях никеля [80], в четыреххлористом титане [41] сероводорода — в атмосферном воздухе [1445], 10 % S — в треххлорсилапе, 10 % S — в воде [501], 8-10 % S — в фосфоре [523]. [c.121]

    Определепию фосфора методом фосфорномолибденовой сини мешают прежде всего мышьяк(У), кремний и германий, также образующие с молибденом гетероноликислоты, восстанавливающиеся до соответствующих синей. Мышьяк(У) после восстановления сульфидом или тиомочевиной до А8(1И) не мешает. Ионы легко гидролизующихся элементов (КЬ, Та, Т1, Ъп, Зп , Ш, В ) при осаждении их гидроокисей захватывают фосфаты. При получении фосфорномолибденовой сини титан и цирконий катализируют восстановление молибдата [26[. В присутствии ванадия(У) образуется фосфорнованадие-во.молибденовая кислота. При определении фосфора в присутствии больших количеств ванадия(У) его восстанавливают солью Мора до ванадия(У1), после чего добавляют молибдат, экстрагируют фосфорномолибденовую кислоту и в экстракте восстанавливают ее до фосфорномолибденовой сини [32]. [c.428]

    В старой статье было напечатано, но затем при редактировании опущено Д. И. Так напр, ванадию, судя по исследованиям Роско, должно быть дано место в ряду азота, его атомный вес (51) заставляет его поместить между фосфором и мышьяком. Физические свойства оказываются ведущими к тому же самому определению положения ванадия так, хлорокись ванадия У0С1 представляет жидкость, имеющую при 14° удельный вес 1,841 и кипящую при 127°, что и приближает ее, а именно ставит выше соответственного соединения фосфора... Титан относится к кремнию и олову но этой системе совершенно точно так, как ванадий к фосфору и сурьме... хром будет относиться к сере и теллуру совершенно так, как титан относится к углероду и олову... Сверх того... ниобий, КЬ = 94, представляющий аналогию с ванадием и с сурьмою (стр. 12—13 оттиска). [c.502]

    Другая важная проблема — разработка методов обнаружения и определения микроколичеств элементов. Физические и химические свойства материалов часто зависят от присутствия именно микрокомпонен-тов. Титан и хром долгое время считали хрупкими металлами, которые нельзя ковать и прокатывать, однако недавно было установлено, что эти металлы в очищенном состоянии пластичны и что их хрупкость обусловлена незначительными примесями посторонних элементов. Германий является одним из основных материалов для изготовления полупроводниковых приборов в радиотехнической промышленности, однако он утрачивает свои полупроводниковые свойства, если на десять миллионов атомов германия приходится более одного атома фосфора, мышьяка или сурьмы. Самая незначительная примесь гафния в металлическом цирконии делает последний непригодным для использования в атомной промышленности. Ничтожные примеси титана, ванадия, висмута и некоторых других металлов в сталях значительно изменяют их механические и электрические свойства. Почти все элементы периодической системы входят в очень небольших количествах в состав тканей растений и живых организмов, причем каждый элемент играет впол- [c.16]

    После отделения кремниевой кислоты фильтрат используют для определения компонентов, которые осаждаются аммиаком алюминий, железо, титан, марганец и фосфор. Чтобы полностью осадить содержащийся в пробе марганец, необходимо окислить его до Mn(IV), который в этом состоянии осаждается в виде марганцевой кислоты (НзМпОз) или, точнее, в виде МпОг-лИгО. Окисление Мп 11) до Mn(IV) чаще всего осуществляют в слабоаммиачной среде бромной водой. Осаждение аммиаком приводит обычно к соосаждению небольших количеств кальция и магния с осадком гидроксида, вследствие чего после фильтрования осадок растворяют в НС1 и снова осаждают аммиаком. Осадок фильтруют, промывают разбавленным раствором NH4 I и после прокаливания взвешивают сумму оксидов, обозначаемую обычно как R2O3. [c.459]

    Все солянокислые фильтраты после выделения кремниевой кислоты собирают вместе и используют для определения титана, алюминия и общего содержания железа в пробе. Так как при выпаривании солянокислых растворов для отделения кремниевой кислоты обычно используют платиновые сосуды. Ре(III) может частично восстанавливаться платиной до Ре(II). Поэтому к фильтрату прибавляют несколько капель бромной воды и кипятят его, чтобы удалить излишний бром. Горячий раствор тщательно нейтрализуют аммиаком с индикатором метиловым красным (pH < <7), причем железо, алюминий и титан осаладаются в виде гидроксидов, а фосфор — в виде нерастворимых фосфатов этих элементов. Если количество образовавшегося хлорида aMMjDHHH ниже [c.464]

    Способ осаждения аммиаком зависит от элементов, которые содержатся в растворе. При осаждении алюминия, а также фосфора вместе с железом или алюминием и, вероятно, таких менее обычных элементов, как бериллий, скандий и галлий, требуется тщательное соблюдение определенной концентрации ионов водорода в растворе, и в этом случае может быть допущен только очень небольшой избыток аммиака (см. гл. Алюминий , стр. 565). Так как алюминий присутствует почти всегда, то такой способ осаясдения Применяется наиболее часто. Нужно, однако, иметь в виду, что в столь тщательной нейтрализации нет необходимости при осададении элементов, которые количественно осаждаются и при более высокой концентрации ионов водорода (железо, титан и цирконий). Тщательная нейтрализация не требуется и во всех тех случаях, когда полнота выделения алюминия, не имеет значения, например при предва )итель-ном отделении железа для его определения объемным методом. [c.103]

    Эта схема предусматривает прежде всего выделение остаточной кремнекислоты. Затем отделяют железо, титан и редкоземельные металлы, осаждая их едким натром в присутствии окислителя и карбоната натрия. В фильтрате остаются алюминий, фосфор, ванадий, хром и бериллий. Из осажденных элементов железо выделяют в виде сульфида осаждением сульфидом аммония в присутствии тартрата аммония титан определяют в фильтрате колориметрически, после разрушения винной кислоты цирконий о< аждают в растворе, содержащем перекись водорода, употребленном для определения титана, и, наконец, редкоземельные металлы осаждают вместе с гидроокисью титана в фильтрате от осаждения циркония и отделяют от титана в виде фторидов. Окраска фильтрата, после осаждения едким патром указывает па присутствие хрома или урана, если последние содержатся в количествах, достаточных, чтобы окрасить раствор. Дальше веду-т анализ следующим путем. Сначала, определяют ванадий объемным методом, затем выделяют фосфор в виде фосфоромолибдата аммония и, наконец, осадок, полученный осаждением аммиаком фильтрата от фосформолйбдата, испытывают на алюминий, бериллий и другие элементы. [c.119]

    Определение алюминия в чистых солях обычно не вызывает особых затруднений, но установление точного содержания его в таких материалах, как горные породы, минералы и керамические или металлургические продукты, является одной из наиболее сложных задач аналитической химии. В обычном ходе анализа алюминий попадает в осадок от аммиака совместно со многими другими элементами, такими, как железо, титан, цирконий, ванадий, фосфор и кремний. Содержание такой смеси часто принимают за процентное содержание КзОд , что, естественно, может ввести в заблуждение. Если состав осадка неизвестен, его следует считать как процентное содержание смешанных окислов . Неправильно также, как это часто практикуется, определять в осадке от аммиака только железо, иногда и титан, а остальное считать за алюминий. В большинстве случаев содержание алюминия целесообразно устанавливать по разности, после определения всех остальных компонентов во взвешенном прокален- [c.559]


Библиография для Определение фосфора титане: [c.198]   
Смотреть страницы где упоминается термин Определение фосфора титане: [c.193]    [c.198]    [c.109]    [c.561]    [c.91]    [c.174]    [c.6]    [c.465]   
Аналитическая химия фосфора (1974) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Определение в фосфорите



© 2025 chem21.info Реклама на сайте