Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ячейка для определения коэффициентов диффузии

    При определении молекулярной массы по методу седиментационного равновесия знание коэффициента диффузии не является необходимым. В этом случае используют более низкое число оборотов. По сравнению с предыдущим методом, для которого необходимо гравитационное поле до 400 ООО g, здесь достаточно центробежной силы, в 10 — 15 тыс. раз превосходящей земное притяжение. Через несколько часов или через несколько суток процесс седиментации и обратной диффузии достигает состояния равновесия, при котором перемещение частиц отсутствует. Измерив градиент концентрации белка от мениска до дна ячейки, можно вычислить его молекулярную массу. Медленное установление равновесия — недостаток метода. Этого можно избежать при проведении определения по Арчибальду. В этом низкоскоростном методе для расчетов можно использовать градиент концентрации, образующийся в измерительной ячейке у мениска жидкости (до отделения белковой зоны). Метод нулевой концентрации в мениске, предложенный в 1964 г., делает возможным достижение седиментационного равновесия при высокой скорости ротора (высокоскоростной метод), в этом случае белковая зона уже отделена от мениска. Это дает возможность сократить время эксперимента до 2 — 4 ч. [c.361]


    Хоффман и Зимм [10] применили ячейку с подвижной границей для определения коэффициента термодиффузии непосредственно в зависимости от концентрации для двух образцов полистирола различного молекулярного веса в толуоле. Полученные ими данные также представлены на рис. 6-1. Указанное выше влияние концентрации на коэффициент термодиффузии было отмечено и в работе Хоффмана и Зимма, но влияние молекулярного веса было выражена менее отчетливо. Мейергоф с сотр. [15], применив улучшенный метод измерения, определил коэффициент диффузии, также указанный на рис. 6-1. [c.163]

Рис. 6-1. Определение коэффициента термической диффузии в ячейке. Рис. 6-1. <a href="/info/1646590">Определение коэффициента термической</a> диффузии в ячейке.
    Существует несколько физических методов абсолютного измерения молекулярных масс, в первую очередь основанных на использовании седиментации или рэлеевского рассеяния света. Они требуют существенно большего количества индивидуального биополимера, чем описанные химические и биохимические методы, проводятся путем прецизионных измерений на дорогостоящем оборудовании и применительно к задаче измерения молекулярных масс белков и нуклеиновых кислот постепенно утрачивают свое значение. Седиментационные методы основаны на использовании уравнений (7.2) или (7.3). В первом случае измерению подлежат константа седиментации биополимера и коэффициент диффузии. Во втором случае нужно достичь состояния седиментационного равновесия и измерить распределение концентрации исследуемого биополимера вдоль центрифужной ячейки, т.е. концентрацию биополимера на нескольких разных расстояниях г от оси ротора. Оба метода требуют определения парциального удельного объема, или, что то же самое, плавучей плотности биополимера в условиях, используемых для седиментации. [c.267]

    При непосредственном применении первого закона Фика для экспериментального определения коэффициента диффузии требуется, вообще говоря, изучать стационарную диффузию. Для этого следовало бы с двух сторон цилиндрической ячейки (с сечением 5 и длиной I), в которой происходит диффузия, поддерживать постоянные концентрации С2 и С и измерять количество вещества Ат/А/, перенесенного через ячейку за единицу времени. Поскольку градиент концентрации в этом случае постоянен по длине ячейки I и равен [c.142]


    Перечисленные методы, разумеется, не исчерпывают всех возможностей, основанных на наблюдении свободно диффундирующей границы. Однако такие методы, как ячейка с мембраной Стокса [139] или система капиллярной трубки с открытым концом [140, 141], применяются преимущественно для изучения низкомолекулярных веществ. Несмотря на то что такие методы были использованы при изучении диффузии белков, нет оснований отдавать им предпочтение, по крайней мере до тех пор, пока на этой основе не будет разработан надежный метод, применимый к белкам, обладающий как высокой точностью, так и высокой чувствительностью. Коэффициент диффузии можно также определить но методу иммунодиффузии [142, 143]. Коэффициент диффузии в среде геля не совпадает с коэффициентом диффузии в свободном растворе, но при наличии стандартов с известными коэффициентами диффузии влияние геля может быть учтено [40]. Тем не менее иммунодиффузия не является достаточно точным методом определения коэффициента диффузии. Этот метод применяется главным образом для приблизительной оценки, которая может быть получена с его помощью нри чрезвычайно малом расходе вещества. Кроме того, метод позволяет оценить [c.62]

    Равновесие в такой термодиффузионной ячейке достигается за время (5-=-6)ir, где t,= (4/я ) [W /Di). Так как в жидкостях коэффициент диффузии />2 ж) порядка 10 = см /с, то даже при IF=5 см равновесие в ячейке установится не менее чем через месяц. Отсюда ясно, что для снижения времени установления равновесия размер ячейки должен быть по возможности минимальным. Но, к сожалению, при этом возрастает ошибка в определении разности составов раствора на концах ячейки, что, в свою очередь, сказывается на точности определения величины St. Поэтому оптимальный размер ячейки обычно подбирают опытным путем. [c.180]

    Ячейку калибровали по скорости диффузии 0,2 Ж раствора соляной кислоты в воду, приняв в качестве среднего значения коэффициента диффузии для этой системы значение 2,52 см" - в 1 день, взятое из работы Джемса и Гордона [Л4]. После калибровки диффузионной ячейки Адамсон заполнял оба отделения растворами иодида натрия, различавшимися только тем, что раствор в верхнем отделении содержал меченые атомы. Коэффициент диффузии вычисляли для каждой данной концентрации иодистого натрия путем измерения количества меченых атомов в нижнем отделении спустя определенное время. Этот метод удобен для применения его недостатками являются лишь некоторая недостоверность значений, полученных при калибровке пористой стеклянной диафрагмы, и возможность адсорбции ионов на развитой поверхности диафрагмы при применении очень разбавленных ионных растворов. [c.68]

    Известны попытки теоретического расчета постоянной термодиффузии для жидких смесей. Однако соответствующие методики расчета имеют еще меньшую точность, чем аналогичные методики расчета для газовых смесей. Поэтому и здесь приходится прибегать к экспериментальным определениям. В большинстве случаев при этом определяют не ат, а величину Sr = = ат1Т, которую называют коэффициентом Соре. Простейшая установка для определения коэффициента Соре представляет собой заполненный исследуемой смесью цилиндр, концы которого закрыты днищем и крышкой, изготовленными из теплопроводящего материала, обычно из металла. Один конец цилиндра охлаждается до температуры Ti, а другой нагревается до температуры Ti. Таким образом, днище и крышка цилиндра играют роль холодной и горячей стенок соответственно. Под влиянием градиента температур в цилиндре (ячейке) возникает градиент концентрации, обусловленный протекающими процессами термической и концентрационной диффузии. Для устранения конвективного перемешивания в растворе в середине ячейки устанавливают пористую перегородку. По достижении равнове- [c.179]

    Числовой коэффициент 3,00 в формуле (1.2.17) был определен при калибровке ячейки на системе кислород— вода. Коэффициент диффузии кислорода был определен с точностью до 1 % методом полярографии и равен 2,6 10 см /с при 20 °С. Погрешность экспериментального метода, согласно [148,280], составляла 10 %. [c.808]

    Перед началом эксперимента внутренняя ячейка I промывается и заполняется дегазированной жидкостью примерно на 1/3 своего объема. Затем конец иглы проходил через нижнюю перегородку цилиндра 9 (рис 1.2.18) и цилиндр 9 опорожняется. После достижения вакуума цилиндр 9 заполняется газом, коэффициент диффузии которого должен быть определен. [c.810]

    Коэффициент седиментации 5 и коэффициент диффузии О входят (в виде отношения, / >) в уравнение Сведберга (1.11) — основное уравнение для определения молекулярной массы. Тут следует иметь в виду следующее для вычисления молекулярной массы по уравнению (1.11) необходимо определять 5 и О в одинаковых растворителях и при одинаковой температуре, экстраполируя полученные значения к бесконечному разбавлению. Если молекулярный вес определяют равновесными методами или методом Арчибальда, отношение //) в явном виде в соответствующие уравнения не входит. Что касается неравновесного опыта, то, когда плотность растворенного вещества превышает плотность растворителя, происходит два противоположных процесса седиментация вещества, с одной стороны, и диффузия — с другой. Если в результате седиментации молекулы растворенного вещества устремляются ко дну ячейки, то в результате диффузии происходит обратное явление молекулы вещества стремятся равномерно распределиться по всему объему ячейки. Седиментация и диффузия, таким образом, действуют в противоположных направлениях, и какое из этих двух движений преобладает — зависит от величины ускорения центробежной силы. [c.58]


    Для определения коэффициента диффузии цинката через гидратцеллюлозный сепаратор, применяемый в щелочноцинковых аккумуляторах, может быть использован электрохимический метод [21. В этом методе в катодную часть экспериментальной ячейки, разделенной на две секции гидратцеллю-лозным сепаратором, заливается чистый раствор щелочи. Катодом служит медная амальгамированная сетка, перекрывающая отверстие ячейки с установленным в нем сепаратором. [c.39]

    В качестве католита в опытах по определению коэффициента диффузии применен раствор КОН, 10 М анолитом служит цинкатный раствор КОН общ. Ю ЛСхп 25 г/л 2п +. Толщина набухшего гидратцеллюлозного сепаратора б = 120 мкм площадь отверстия, перекрываемого сепаратором, 5 = 6,0 см -. При этом установившийся (скорректированный) ток на ячейке при 20° С равен / = 5,0 мА. [c.40]

    Кривая 2 соответствует уравнениям (11)— (14), и, следовательно, разность между кривыми 2 ш 3 характеризует влияние электрофоретической составляющей. Результаты, взятые из табл. 173, изображены кружками, и, судя по расположению этих кружков, для правильного выражения экспериментальных данных следует учитывать электрофоретическую составляющую. Крестиками обозначены значения, вычисленные Гордоном [19] ЙЗ результатов выполненных им измерений с помощью ячейки с диафрагмой, а такжа из данных Мак-Бэна и Доусона [20], а также Хартли и Ран-никса[21]. Результаты этих измерений [176] были использованы Гордоном, который использовал для калибровки ячейки результаты, полученные кондук-тометрическим методом для концентраций ниже 0,01 н. (табл. 173). При низких концентрациях совпадение результатов, полученных обоими методами, является хорошим, однако при более высоких концентрациях результаты, которые дает метод ячейки с диафрагмой, несколько ниже результатов, полученных методом электропроводности. Данные Коэна и Бруинса [22], полученные по методу анализа слоев, а также данные Ламма [23], полученные по его методу шкалы, также изображены на рис. 167. Поскольку принципы описанных методов определения коэффициентов диффузии весьма различны, можно считать совпадение результатов, полученных различными методами, удовлетворительным. [c.562]

    Другой вариант установки (рис. 1.2.16) для определения коэффициента диффузии по ЛВ -методу использовался в [279, 280]. Здесь ячейка, в которую вводился пузырек, располагается горизонтально и пузырек закрепляется также с помощью сил поверхностнотхэ натяжения на верхней поверхности. Прозрачная ячейка 1 изготовляется из прозрачно специального материала толщиной 1,5 10 м и размерами 55 х 6 х 5 мм. Эта ячейка заключена в водяную рубашку 2 размерами 70 х 20 х 11 мм и имеет прозрачные стенки. Вода нротекает по щелевому пространству со скоростью порядка 1 л/мин, осуществляя термостатирование ячейки /. Температура жидкости в ячейке измеряется термопарой 3. Единст-венное отверстие, ведущее к ячейке 1, позволяет вводить с помощью шприца исследуемые жидкости и газ. Образование пузырьков аналогично предыдущей работе. Вви- [c.807]

    Простота метода очевидна, поскольку для определения коэффициента диффузии требуется измерение только глубины ячейки и разности электропроводностей за определенные интервалы времени. В начале опыта предположение о постоянстве может не оправдываться, но по мере выравнивания разности концентраций приближается к постоянной величине. Если эти значения постоянны в течение нe кoJшкиx дней, то пол) ченные результаты являются дифференциальными коэффициентами диффузии в растворе с усредненной концентрацией, которая устанавливается под действием теплового перемешивания после завершения опыта. [c.841]

    Джексон и Бломгрен предположили, что поляризация обусловлена замедлением диффузии хлорид-ионов к аноду, которым приходится диффундировать через пористый слой Li l, а не только через объем раствора. Для проверки этой модели поляризации анода было найдено решение диффузионного уравнения для нестационарного состояния, а подстановка в полученное уравнение экспериментальных данных привела в конечном счете к определению коэффициента диффузии ионов С1 в слое хлорида лития. Расчет показал, что D имеет порядок величины 10 см сек, т. е. промежуточное между Л в растворе ( 10 см /сек) и в непористом твердом теле см /сек и меньше). Рассмотренная модель поляризации литиевого анода подтверждается следующим наблюдением при проведении аналогичного опыта с большим объемом электролита концентрационная поляризация такого типа не обнаруживается, поскольку весь образующийся хлористый литий растворяется. Если опыт осуществлять с электролитом, который насыщен по Li l, но перемешивается, то и в этом случае концентрационная поляризация не наблюдается. По окончании перемешивания электролита на дне ячейки виден Li l. Отсюда следует, что продукт держится на аноде непрочно. [c.86]

    Для определения коэффициента диффузии цинката через гидратцеллюлозную сепарацию, применяемую в ще-лочно-цинковых аккумуляторах, может быть использован электрохимический метод [1]. В этом методе в катодную часть экспериментальной ячейки, разделенной на две секции гидратцеллюлозной сепарацией, заливается чистый раствор щелочи. Катодом служит медная амальгамированная сетка, полностью перекрывающая отверстие ячейки с установленной в нем сепарацией. В анодное пространство заливается раствор той же общей щелочности, что и католит, с исследуемым содержанием цинката. В качестве анода используется монолитный цинковый электрод, растворение которого компенсирует потери цинката при диффузии. [c.37]

    Некоторые исследования И. Е. Старика по изучению состояния ультрамалых количеств вещества представляют интерес как методр1ческие. Из работ последнего времени к ним относятся развитие метода адсорбции — изучение адсорбции радиоактивных изотопов на произвольно модифицированной поверхности стекла, что позволяет исследовать величину адсорбции элементов в зависимости от их состояния и свойств поверхности (И. Е. Старик, Н. Г. Розовская) усовершенствование метода диффузии применительно к определению коэффициентов диффузии радиоактивных элементов, присутствующих в растворах в микрокопцептрациях. Большим достоинством этого метода является минимальная поверхность диффузионной ячейки, с которой соприкасается раствор радиоактивного изотопа. Благодаря этому ошибки, вызываемые адсорбцией на стенках прибора, сводятся к минимуму и возникает возможность количественно изучать диффузию микроколичеств радиоактивных изотопов во всем интервале pH, не исключая области максимальной адсорбции данного элемента (И. Е. Старик, Ф. Л. Гинзбург, Б. Н. Раевский, А. И. Юртов). [c.18]

    Таким образом, для определения коэффициента диффузии нуж- 0 знать высоту слоя жидкости / в диффузионной ячейке и установить темп растворения газа в жидкость /Иб. Соответственно урав-1енпю (49) / в определяется по изменению веса жидкости (взве-инванием подвесной системы) при растворении в ней газа. [c.197]

    Рассмотрим, например, определение коэффициентов диффузии трехкомпонентной смеси (Л, В и С) в диффузионной ячейке, состоящей из двух камер, в которых жидкость хорошо перемешена, разделенных пористой перегородкой. Первоначально камеры заполняют смесями различного состава, затем анализируют их содержимое, дав возможность диффузии протекать в течение неодинаковых промежутков времени. По наблюдаемым изменениям концентрации можно найти потоки любых двух компонентов и концентрационные градиенты по толщине перегородки как функции времени. (Поток третьего компонента и градиент его концентрации являются зависимыми величинами, поскольку сумма мольных долей всех компонентов равна единице.) Повторяя опыт, можно изменять первоначальный градиент концентрации компонента В, например, поддерживая в то же время первоначальный градиент концентрации компонента Л постоянным, или наоборот. Таким образом, на основе описанных выше измерений можно получить значения двух независимых коэффициентов в выражении для потока  [c.80]

    Метод времени запаздывания был использован для определения коэффициента диффузии СОг в поливинилхлориде (пленка толщиной 30 мкм). Опыты проведены при разных давлениях над мембраной (сырьевой отсек) р. В пермеатном отсеке ячейки давление р2 вначале понижено (откачка), а затем нарастает во времени. Получены следующие результаты  [c.278]

    Таким образом, К тем больше, чем больше коэффициент диффузии В деполяризатора, площадь поверхности 5 рабочего электрода и меньше объем V раствора деполяризатора в ячейке и толщина диффузионного слоя 6. Наибольшее влияние на К оказывает увеличение соотношения З/У, это обстоятельство учитывается при определении оптимальных параметров электролиза. Коэффициент В специфичен для каждого деполяризатора, но его вклад в скорости протекания электролиза можно увеличить, уменьшая вязкость раствора, нагреванием и заменой растворителя на менее вязкий (если это допустимо ). Температурный градиент изменения О от t равен приблизительно 2 % на 1 °С. Энергичное, равномерное перемешивание электролизи-руемого раствора также дает положительный эффект, так как заметно уменьшает толщину диффузионного слоя б. [c.13]

    На практике коэффициенты седиментации можно определить достаточно точно. Определение же коэффициентов диффузии гораздо более трудоемко. Поэтому метод седиментационного равновесия, который не требует определения коэффициента диффузии, намного удобнее и более широко используется для установления молекулярных масс белков. В этом методе ультрацеитрифугирование продолжают до тех пор, пока не будет достигнуто равновесное распределение изучаемого белка по всей длине ячейки. При равновесии не происходит видимого перемещения белка в ячейке, поскольку его движение ко дну ячейки под действием центробежной силы полностью уравновешивается движением вверх, обусловленным диффузией. Такое равновесное распределение характерно для каждого белка и зависит от его молекулярной массы. После дости- [c.129]

    Для определения коэффициентов массоотдачи применяются ди-фузионные ячейки [112, 113] с неподвижными жидкостями. Лучшее приближение к рабочим условиям в экстракционных аппаратах даютячейки с перемешиванием жидкости, так как в них можно определить влияние турбулентности на массопередачу [22, 48, 54]. В таких ячейках Дэви [22] исследовал скорость диффузии различных солей (хлорида калия, бромида калия, иодида калия, натрия, лития [c.79]

    Диффузионный ток увеличивается с повышением температуры примерно на 2% на С, поскольку с повышением температуры растет коэффициент диффузии В. Таким образом, изменешш температуры может влиять на результаты анализа. Из)гчение влияния температуры на диффузионный ток показало, что для определения а с погрешностью, меньшей 1%, температуру электрохимической ячейки следует поддерживать в пределах 0,5 С. [c.421]

    На практике коэффициенты диффузии определяют, например, по скорости распространения растворенного вещества в растворителе, осторожно налитом на слой раствора, используя в качестве неподвижной системы отсчета экспериментальную ячейку. Чтобы установить, какой из величин соответствует определенный таким путем коэффициент диффузии Оаноп< необходимо решить, какая из характеристических скоростей обращается в нуль в условиях данного опыта, При этом можно исходить из следующих рекомендаций [4]  [c.278]

    При анализе электрохимического наводороживания используют методы, основанные на определении скорости проникновения водорода через тонкую мембрану, изготовленную из металла с высоким коэффициентом диффузии водорода палладия, армко-железа и др. 46,55-57J. Для регистрации количества водорода, диффундирующего через мембрану, используют различные способы. Простейшим является измерение увеличения давления или объема газа в регистрирующей части ячейки. В устройстве для определения наводороживания металла при трении в кислоте 57J измерение потока водорода проводят при непрерывной откачке системы со стороны выхода мембраны с помощью омегатронного измерителя парциального давления. [c.25]

    Особенности диффузии реагентов в цеолитах, используемых в качестве катализаторов, обусловливаются их кристаллической структурой. Размер полости элементарной ячейки кристаллов различных цеолитов и окон, ве11ущих внутрь этих полостей, колеблется от 0,3 до 1,3 нм. Вследствие небольшого объема внутри полости элементарной ячейки цеолита может находиться всего несколько молекул. При прохождении через окна, ведущие в полость, и при движении внутри полости молекулы испытывают сильное влияние со стороны ионов кристаллической решетки. Эти особенности обусловливают необычный характер диффузии в цеолитах и затрудняют интерпретацию данных, полученных при экспериментальном исследовании. Общей теории, позволяющей дать численную оценку коэффициенту диффузии в цеолитах или с единой позиции проводить интерпретацию экспериментальных данных, в настоящее время не существует. Для определения диффузионных паюков в цеолитах используется уравнение [c.569]

    Необходимость калибровки каждой ячейки, а также подбор жидкости для калибровки усложняют применение данного метода для определения коэффициентов молекулярной диффузии и вводят донолнительную погрещность в его значение. Также не изучено вдшяние поверхности пор на диффузию молекул газа и жидкости. [c.802]

    Метод Дейнеса — Баррера заключается в том, что в замкнутой ячейке, состоящей из двух металлических камер, разделенных испытуемой мембраной из полимерного материала, с одной стороны создается давление Р исследуемого газа, а с другой стороны — вакуум. При соприкосновении газа с одной из сторон мембраны его появление с другой стороны наблюдается через определенный промежуток времени. Затем давление возрастает, и кривая Р = /(0 переходит в прямую (рис. 19.1). Продолжая эту прямую до пересечения с осью абсцисс, получают отрезок 0, называемый временем отставания. Для вычисления коэффициента диффузии используют уравнение (19.5) и интегрируют его при определенных граничных условиях от д = О до д = /. Тогда [c.524]

    Экспериментальные методы определения эффективных коэффициентов диффузии можно разделить на две группы стационарные и нестационарные. Широко распространенный стационарный метод заключается в измерении в стационарных условиях встречных потоков газов через пористую диафрагму диффузионной ячейки, бхема диффузионной ячейки приведена на рис. IX. 14. Диафрагма представляет собой перегородку, изготовленную из пористой массы, используемой для приготовления катализатора, либо перегородку из пластмассы или металла, в которой с помощью замазки или специального клея закреплены гранулы катализатора. Метод широко используется для определения эффективных коэффициентов диффузии инертных газов в катализаторах. По результатам измерений, используя одну из моделей пористой структуры к ата- [c.201]

    Деполяризационные газоанализаторы предназначены для определения кислорода в газовой смеси. Действие их основано на измерении диффузионного тока, возникающего при деполяризации кислородом поляризованного электрода электрохимической ячейки. Ввиду того, что диффузионный ток зависит от температуры (с изменением температуры меняется вязкость раствора, растворимость в нем газа и коэффициент диффузии), в приборах обеспечивается термостатирование электрохимических ячеек. Примером может служить деполяризационный газоанализатор ДПГ5-52 для определения кислорода в горючих и инертных газах и газовых смесях, не содержащих электрохимически активных компонентов. [c.215]

    Определение точного значения коэффициента распределения экстрагируемой кислоты между бензолом и водой в присутствии продуктов реакции проводилось в термостатированной стеклянной ячейке, снабженной магнитной мешалкой. Коэффициент диффузии бензойной кислоты в воде находился по работе [2] и составлял 1,02-10 см 1сек, коэффициенты диффузии щелочей рассчитывались по методу Робинсона — Стокса [3] и были равны 2,76 и 2,08-10 для КОН и КаОН соответственно. Коэффициент диффузии пропионовой кислоты в воде рассчитывался по методу Отмера и экера [3] и равнялся 9,6-10 см 1сек. [c.23]

    Проанализирован вклад ошибки по каждой измеряемой величине в суммарную ошибку. Установлено, что основная ошибка вносится за счет ошибки в измерении и расчете диффузии — до 2,8% на 1°, ошибки в формировании капли (ее площадь)—до 0,5% на 1°, ошибка по токоснимающему сопротивлению — 0,2% на Г, ошибки за счет питающего генератора и усилителя — до 0,1% на Г. Таким образом, основная доля ошибок вносится за счет коэффициента диффузии и площади капли. Помимо температуры на последний член оказывают влияние нестабильность механической системы каплеобразования, затекание раствора в капилляр и другие. Это может увеличить ошибку до 1,5—2% на Г. Уменьшение ошибки связано с высокой стабилизацией работы всех электронных приборов, в том числе и приборов, формирующих каплю, и термостатированием ячейки с точностью до 0,1°. С уменьшением определяемой концентрации ошибка определения возрастает за счет влияния емкостного тока и может доходить до 15—20% на 1°. [c.10]


Смотреть страницы где упоминается термин Ячейка для определения коэффициентов диффузии: [c.79]    [c.25]    [c.137]    [c.109]    [c.562]    [c.56]    [c.334]    [c.334]    [c.408]   
Методы измерения в электрохимии Том2 (1977) -- [ c.160 , c.162 ]




ПОИСК





Смотрите так же термины и статьи:

Диффузии коэффициент определение

Диффузия коэффициент диффузии

Коэффициент диффузии

Коэффициент определение

Коэффициент определение по коэффициентам

Ток в ячейке и диффузия

Ячейка

Ячейка для определения

определение коэффициенто



© 2025 chem21.info Реклама на сайте