Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура и выделение металлов электрохимическое

    В книге освещены проблемы и современное состояние борьбы с коррозией аппаратуры и машин в химической, нефтеперерабатывающей и смежных с ними отраслей промышленности. Описаны исследование коррозии металлов в условиях теплопередачи применение электросварных труб в нефтеперерабатывающей и нефтехимической промышленностях катодное наводороживание и коррозия титана и его а-сплавов в различных электролитах влияние водорода на длительную прочность сталей влияние пластической деформации на водородную стойкость сталей о методике определения температурных границ применения конструкционных сталей в гидрогенизационном оборудовании влияние водорода при высоких температурах и давлениях на механические свойства металлов защитные свойства плакирующего слоя стали 0X13 на листах стали 20К против водородной коррозии влияние твердости стали ЭИ579 на ее коррозионную стойкость в водородосодержащих средах влияние легирующих элементов на водородную коррозию стали влияние толщины стенки и напряжений на скорость водородной коррозии стали протекторная защита теплообменной аппаратуры охлаждаемой сырой морской водой коррозия углеродистой стали в уксусной кислоте и электрохимический способ ее защиты торможение коррозии стали Х18Н9 в соляной кислоте добавками пенореагента ингибиторы коррозии для разбавленных кислот ингибиторы коррозии стали в системе углеводороды—сероводород—кислые водные растворы сероводородная коррозия стали в среде углеводород—электролит и защитное действие органических ингибиторов коррозии ингибиторы коррозии в среде углеводороды—слабая соляная кислота коррозионно-стойкие стали повышенной прочности для химического машиностроения тепло- и коррозионно-стойкие стали для печных труб и коммуникационных нефтеперерабатывающих заводов коррозия в нитрат-нитритном расплаве при 500° С коррозионная стойкость сталей с пониженным содержанием никеля в химически активных средах коррозия нержавеющих сталей в процессе получения уксусной кислоты окислением фракции 40—80° С, выделенной из нефти коррозионные и электро-химические свойства нержавеющих сталей в растворах уксусной кислоты коррозия металлов в производстве синтетических жирных кислот газовое борирование металлов, сталей и сплавов для получения коррозионно- и эрозионно-стойких покрытий применение антикоррозионных металлизированных покрытий в нефтеперерабатывающей промышленности коррозия и защита стальных соединений в крупнопанельных зданиях. [c.2]


    Общая характеристика процесса (348), 2. Зависимость перенапряжения водорода от плотности тока и материала электрода (350), 3. Влияние природы и состава раствора на водородное перенапряжение (353), 4. Влияние температуры и некоторых других факторов на перенапряжение водорода (355), 5. Возможные стадии процесса катодного выделения водорода (357), 6. Теория замедленного разряда водородных ионов (359), 7. Теория замедленной рекомбинации водородных атомов (363), 8. Теория замедленной электрохимической десорбции (366), 9. Возможные пути катодного выделения водорода (368), 10. Критерий справедливости теории водородного перенапряжения (370), 11. Природа водородного перенапряжения на различных металлах [c.507]

    Величина перенапряжения при электрохимическом выделении металлов так же, как и при других электродных реакциях, зависит от плотности тока, увеличиваясь вместе с ней. Однако в данном случае характер этой зависимости часто оказывается более сложным. Даже при осаждении одного и того же металла результаты поляризационных измерений, в зависимости от диапазона применяемых плотностей тока, состава раствора и температуры, могут укладываться на прямые в одной из следующих систем координат  [c.417]

    Преобладание того или иного вида перенапряжения определяется природой металла, составом раствора, плотностью тока, температурой электролита. При обычных температурах и при использо-/ вании простых, некомплексных, электролитов величина перенапряжения изменяется с природой металлов так, как это показано в табл. 48. Опытные данные указывают на то, что выделение металлов, стоящих в начале ряда (Н , Ад, Т1, РЬ, Сё, 5п), сопровождается лишь незначительной поляризацией, связанной, главным образом, с замедленностью возникновения и развития новой фазы. Замедленность электрохимической стадии не играет здесь существенной роли. В электрохимической литературе эти металлы, для которых характерно фазовое перенапряжение, называются часто нормальными металлами. Напротив, при выделении металлов, стоящих в конце ряда табл. 48 (металлы железной группы), наблюдается высокая поляризация, обусловленная преимущественно замедленностью электрохимической стадии. Эти металлы, для которых характерно электрохимическое перенапряжение, называются инертными металлами. Промежуточное положение и по величине поляризации, и по природе перенапряжения (здесь наиболее вероятно наложение нескольких видов перенапряжения) занимают такие металлы, как В1, Си и 2п. [c.493]


    Перенапряжение зависит от свойств электродов и участников электрохимической реакции, состояния поверхности электродов, условий проведения процесса (плотности тока, температуры) и т. д. Установлено, что на гладком электроде перенапряжение больше, чем на шероховатом, а перенапряжение при выделении металлов значительно меньше, чем при выделении газов, и т. д. [c.245]

    Коррозия металла. По характеру самого процесса коррозию разделяют на две основные группы химическую и электрохимическую. Химическая коррозия протекает в неэлектролитах — жидкостях, не проводящих электрический ток, и в сухих газах при высокой температуре. Электрохимическая коррозия — в электролитах и во влажных газах, характеризуется нал.ч-чием двух параллельно идущих процессов окислительного (растворение металлов) и восстановительного (выделение металла из раствора). Этот вид коррозии сопровождается протеканием электрического тока (рис. 1). Если привести в контакт два разнородных металла в присутствии разбавленных кислот, щелочей или растворов солей, то один из металлов (более активный) начнет разрушаться (рис. 2). Металлы и раствор образуют между собой электрическую цепь. По степени активности металлы располагаются в следующей последовательности бронза, медь, железо, никель, серебро, золото, платина. [c.5]

    Электрохимическая коррозия — возникает при действии на металл электролитов и влажных газов и характеризуется наличием двух параллельно идущих процессов окислительного (растворение металла) и восстановительного (выделение металла из раствора). Этот вид коррозии сопровождается протеканием электрического тока в результате образования микрогальванических элементов. Возникновение коррозионных разрушений в металле связано с неоднородностью металла, присутствием примесей, нарушением структуры металла или защитного слоя, непостоянством состава раствора, неравномерностью деформаций различных участков, разностью температур и другими факторами. [c.262]

    На основании величин электродных потенциалов могут быть составлены электрохимические ряды, которые указывают на порядок выделения металлов (или неметаллов) при электролизе. Примеры таких электрохимических рядов в некоторых ионных расплавах приведены в табл. 4. Как видно из этой таблицы, порядок следования металлов изменяется не только в зависимости от природы ионного расплава, но и от температуры. [c.114]

    Для выяснения электрохимических условий, приводящих к образованию высококоэрцитивных сплавов, были сняты поляризационные кривые, которые характеризуют процесс совместного выделения металлов из растворов № 1 и 2 при различных pH электролита и температурах (фиг. 4). [c.65]

    Вода при соприкосновении с ювенильной поверхностью титана вытягивает из него ионы Т1 + стандартный электродный потенциал для этого процесса равен — 1,630 В. Судя по этому электродному потенциалу, титан является электрохимически довольно активным металлом. Однако поверхность титана обыч ю покрыта оксидной пленкой, поэтому практически при обычной температуре вода на титан не действует. Кипящая вода взаимодействует с порошкообразным титаном с выделением водорода  [c.263]

    В 1807 г. были опубликованы результаты электрохимических работ Дэви, о которых он доложил в 1806 г. Королевскому Обществу [100]. В следующем, 1807 году, Дэви доложил о своих блестящих электрохимических опытах, приведших к выделению щелочных металлов [82]. В этих же работах Дэви изложил всю электрохимическую теорию, опирающуюся на многочисленные исследования взаимосвязи электрических и химических явлений. Дэви указывает на то, что при соприкосновении разнородных вешеств, способных вступать в химическую реакцию (металл + кислота, кислота + основание и т. д.) до начала реакции, возникает разность потенциалов. Таким образом, электрические явления, предшествуя химической реакции, не могут быть ее следствием. Повышение температуры влияет одинаково на химическое сродство и на электрическую полярность, увеличивая и то, и другое. Дэви указывает, что одни и те же условия влияют на химическое сродство и на электрические явления. Причина химического взаимодействия — электрическая полярность взаимодействующих веществ, возникающая при их соприкосновении, причем вид заряда зависит от природы веществ. Искусственное увеличение заряда одного из веществ увеличивает и силу его химического сродства. Наоборот, уменьшение заряда реагирующего вещества до нуля приводит к потере его реакционной способности. Дэви считал, однако, что как химические, так и электрические явления должны рассматриваться как различные явления, но произведенные одной и той же общей силой, действующей в одних случаях на массы [электрически], а в других случаях на частицы [химически] [79, стр. 191]. [c.153]

    Электрохимические методы разделения не универсальны, однако могут быть использованы при анализе некоторых чистых металлов и для выделения индивидуальных примесей из сложных смесей при высокой концентрации солей в растворе. Возможность разделения металлов, в частности, основы и примеси оценивают по величинам обратимых равновесных электродных потенциалов. При электроосаждении потенциал катода зависит не только от природы выделяемого металла, но и от его концентрации, состава раствора, температуры, плотности тока и пр. [373]. При наличии примесей в коллоидной форме наблюдаются нарушения закономерного течения электрохимического процесса. [c.312]


    Известно, что металлы в жестком состоянии (после нагревания до высокой температуры и быстрого охлаждения) являются менее благородными в электрохимическом отношении, чем те же металлы в мягком состоянии (нагревание до высокой температуры и медленное охлаждение). В связи с этим обстоятельством для этих двух состояний должно существовать различие в величине самопроизвольного осаждения радиоактивных изотопов на данных металлах. Это явилось предметом исследований, проведенных Тамманом и Вильсоном [ ]. Ими, нанример, было найдено, что для серебра и меди соотношения скоростей выделения полония на этих металлах в жестком и мягком состоянии соответственно равны 1.30 и 1.17 (при совершенно одинаковых экспериментальных условиях). Авторами было установлено также, что самопроизвольное выделение полония происходит даже на таких благородных металлах, как золото, платина и палладий. Как показало изучение изотерм распределения полония между поверхностью изучаемых металлов и раствором, это осаждение адсорбционного типа. [c.558]

    В радиохимической практике электрохимические методы имеют большое значение для выделения радиоактивного элемента из растворов или расплавов. Основным преимуществом применения электрохимических методов является возможность получения тонких равномерных слоев радиоактивных веществ большой химической чистоты. Радиоактивные элементы могут быть выделены в виде металла на катоде или в виде окислов на аноде. Выход радиоактивных элементов и эффективность разделения зависят от состава электролита, температуры, плотности тока и от материала электрода. [c.178]

    Современная теория электрохимической кристаллизации дает возможность объяснить влияние природы металла, типа разряжающихся ионов и характера их электронных структур, состава раствора и наличия в нем поверхностно-активных веществ, пассивационных явлений, заряда поверхности, стадийности и числа присоединяемых электронов, водорода, природы растворителя, параметров электролиза (плотность тока, температура и т. п.) и других факторов на величину перенапряжения при выделении металлов х]м. В свою очередь, именно величина т]м определяет соотношение скоростей образования центров кристаллизации и их роста, что сказывается на мелкокристалличности получаемых осадков и равномерности их распределения по основе. [c.141]

    Систематические исследования химических и электрохимических реакций, протекающих при электролизе солевых расплавов, содержащих гафний, изучались в Институте электрохимии Уральского филиала АН СССР М. В. Смирновым с соавторами [80—84]. Методом э. д. с. изучено равновесие между металлическим гафнием (катод) и расплавом, состоящим из эквимолярной смеси хлоридов натрия и калия, содержащей 0,16—1,51 масс.% гафния, в инФер-вале температур 692—954° С. Измерения проводились относительно хлорного электрода сравнения [80]. Установлено, что при электролизе таких хлоридных расплавов, как и в случае циркония, выделению металла на катоде предшествует восстановление его до двухвалентного состояния. Возле катода в расплаве имеет м сто равновесие между металлом и ионами его высшей и низшей валентностей  [c.94]

    При отсутствии тока величина электродного иотенциала определяется электрохимическим равновесием на границе соирикосновения металла с раствором. При прохождении тока через гальваническую цепь на поверхности электрода происходят различного рода реакции (например, выделение водорода или металла на отрицательном электроде и реакции выделения кислорода или растворения металлов а положительном). Вследствие этого равновесие у поверхности электрода нарушается и потенциал электрода изменяется (поляризация электродов). Величина сдвига потенциала зависит от плотности тока (т. е. от силы тока, приходящейся на единицу поверхности электрода). Чем больше плотность тока, тем больше величина поляризации. Кроме того, поляризация зависит от природы электрода, состава раствора, температуры, природы реакции, протекающей на поверхности электрода, и других условий. [c.318]

    Расплавы. Ионные расплавы, как правило, обладают высокой удельной электропроводимостью, в несколько раз превышающую электрическую проводимость водных растворов кислот и щелочей. Это свойство используют для получения электрохимическим путем, например, щелочных и щелочно-земельных металлов, алюминия и других веществ, выделение которых невозможно из водных растворов. Расплавы используют в некоторых видах ХИТ. С целью снижения температуры плавления в качестве расплавов часто применяют эвтектические смеси двух или трех солей. Например эвтектика Li l (45 масс. %)—КС1 (55 масс. %) имеет т. пл. 352 °С. Данная эвтектическая смесь обладает наименьшей плотностью по сравнению со смесями других солей, что позволяет получить от ХИТ более высокие характеристики на единицу массы. [c.25]

    Предпринимались неоднократные Попытки нахождени связи между каталитической активностью и другими свойства ми веществ. Например обнаружена линейная зависимост (рис. 1.4) между логарифмом плотности тока обмена реакци катодного выделения водорода и работой выхода электрона и металла, которая непосредственно связана с зарядом поверз ности, а соответственно и с адсорбцией частиц на поверхност1 Однако энергия адсорбции зависит не от одного какого-т свойства, а от природы катализатора, а также от природы рег гентов, степени заполнения реагентами и продуктами реакци растворителем и другими частицами, температуры и потенциг ла, поэтому пока не создана теория электрокатализа, позволя щая предсказывать оптимальные катализаторы для той ил иной реал ции. Электрокатализаторы подбираются в основно экспериментальным методом с учетом достижений кинетик электрохимических реакций и электрокатализа. [c.30]

    Перемещивание электролита, повышение температуры и про чие факторы, облегчающие подачу вещества к электроду, по вышают пр и снижают концентрационную поляризацию. р] Собственно электрохимической поляризацией называется смещение потенциала электрода, обусловленное только замедленностью протекания самого электрохимического процесса. Замедленность связана с тем, что электрохимическая реакция, как и всякая другая химическая реакция, требует определенной энергии активации. Наиболее высокие значения электрохимической поляризации наблюдаются при выделении газов. Возникновение перенапряжения при выделении водорода обычно связывают с замедленностью какой-либо одной или неск ольких стадий этого процесса 1) разряд иона водорода H- -f Ме-Ь - МеН (Ме — металл, МеН — атом водорода, хемосорбирован-ный на металле) 2) рекомбинация адсорбированных атамов 2МеН- Нг-Ь2 Ме 3)- электрохимическая десорбция H+-fMeH-f + e - H2-f Ме. [c.264]

    Для создания наиболее благоприятных температурных условий электролизу обычно подвергают расплав смеси солей. Флю-суюшие добавки подбирают, основываясь на значениях ионных потенциалов выделения при высокой температуре (электрохимический ряд в расплавах). В качестве добавок нельзя применять соли с более электроположительными катионами, в противном случае добавки разлагаются и загрязняется основной металл. Смесь солей применяют еше и по той причине, что растворимость металла в" смеси обычно ниже, чем в расплаве индивидуальной соли. [c.270]

    Если при наложении положительного потенциала весь ток или его большая часть расходуется на растворение металла (его переход в раствор в виде ионов), то металл находится в активном состоянии и, следовательно, не может быть использован в этих условиях в качестве анода. Если же при анодной поляризации ток практически полностью расходуется на другой процесс, для протекания которого требуется более положительный потенциал, чем для раствореция металла (например, выделение кислорода на никеле при электролизе воды), в этом случае металл пассивен и может служить анодным материалом. Пассивация вызывает существенное изменение поверхностного слоя металла, благодаря чему становится возможным протекание процесса, требующего большей затраты энергии, тогда как растворение металла — более легкий процесс в отношении затраты энергии — полностью прекращается или протекает с очень малой скоростью. При этом нарушается закон электрохимической кинетики, согласно которому скорость анодного растворения металла должна возрастать при увеличении потенциала электрода. При изменении условий, в которых находится металл, состояние пассивности в ряде случаев может быть нарушено. Поэтому изменения плотности тока (или потенциала металла), концентрации электролита, температуры или других условий поляризации, иногла совсем незначительные, могут служить причиной перехода металла из пассивного состояния в активное и наоборот. [c.206]

    Известно, что в качестве связующих используют восстановленные формы кремнемолибденовой и кремневольфрамовой кислот в зависимости от природы восстановителя — цинка, железа, кобальта, меди, свинца. Одновременно ведут гетерофоретическое осаждение гетерополикислот и электрохимическое выделение коллоидных металлов и получают композиционные материалы или покрытия на основе неорганических полимеров — металлополи-меров, рабочая температура которых до 1000°С. Такие материалы обладают интересными электрическими, каталитическими и защитными свойствами. [c.107]

    В поддержку этого заключения свидетельствуют исследования изотопного отношения скоростей К выделения из Н О и из ВдО [333]. Недавняя работа Конвея и МакКиннона [334] показывает, что в первичном эффекте, связанном с различием нулевой энергии, существенную роль играет структура чистого И- и чистого В-раство-рителей. В самом деле, присоединение Н влияет на ОН-связь и таким образом определяет величину кинетического изотопного эффекта. Изотопные эффекты использовались также [331, 332] для целей регистрации туннелирования протона в реакции электрохимического выделения водорода, однако из-за противоречивости теоретических представлений [325, 326, 331, 332] в настоящее время нельзя сделать определенных выводов. Недавняя экспериментальная работа Конвея и МакКиннона [334], проведенная до сравнительно низких температур (-120 °С в спиртовых растворах, ср. [325]), показывает, что на таких металлах, как ртуть, где скоростьопределяющей стадией, по-видимому, является простой разряд протона, роль туннелирования протона меньше, чем предполагалось теоретически на основании предыдущих работ [331, 336]. В различных работах Хориучи и сотр. [325, 326], Конвея и сотр. [329, 333, 337] и Бокриса и его школы [330, 331, 336] дана общая теория электрохимического разделения изотопов Н/В и изотопного отличия скоростей процессов в чистых НдО и ВзО. [c.515]

    Отклонения действительной концентрации кислорода от равновесной вызываются физическими влияниями, например резким изменением барометрического давления, изменением температуры воды, аэрацией воды в плотинах и т. п. физико-димическими влияниями, например поглощением кислорода при электрохимической коррозии металлов и потреблением его на химическое окисление веществ, содержащихся в воде или соприкасающихся с ней биохимическими влияниями, которые в естественных условиях преобладают, как, например, потреблением кислорода при аэробном разложении органических веществ или, наоборот, выделением кислорода при поглощении СОа организмами. [c.80]

    В настоящем обзоре показано, что сочетание двух моделей, учитывающее, что перенос электрона сопровождается как перестройкой полярной среды, так и движением протона, позволяет количественно объяснить особенности реакций электрохимического выделения водорода. Константа скорости эндотермической реакции разряда ионов водорода описывается аррениусовской зависимостью, в которой энергия активации преимущественно связана с перестройкой среды. Для быстрой экзотермической реакции электрохимической десорбции (образования молекулы водорода из адсорбированного атома водорода, оксониевого иона и электрона металла) скорость реакции определяется туннельным переходом электрона из металла в реакционный комплекс и не зависит от температуры. Обе реакции характеризуются изотопным эффектом, падающим с уменьшением энтальпии реакции. [c.203]

    Так обстоит дело с влияние м состава раствора на скорость стадии разряда в предположении, что температура и природа металла, из которого изготовлен электрод, остаются н<еиз менны1ми. Однако нельзя забывать, что из теории замедленного разряда следует с увеличением температуры ско рость электродного процесса, как правило, повыгаается. С другой стороны, если продукты реакции адсорбируются на электроде, то при одинаковых значениях г )1 и фа — скорость собственно электрохимической стадии будет тем выше, чем больше энергия адсо рбции продуктов реакции. Например, в результате разряда ионов гидроксония или молекул воды образуется промежуточный продукт — атомы водорода, которые очень хорошо адсорбируются па поверхности платинового электрода и зиачительно хуже на поверхности ртути. Именно поэтому при замене ртутного катода платиновым скорость выделения водорода при электрохимическом разложении воды резко возрастает. [c.85]

    Для определения количества абсорбированного водорода в результате электрохимических процессов (коррозия, катодная поляризация, электроосаждение металлов) используются иногда методы вакуум-иагрева (металл. нагревается значительно ниже температуры его плавления) и вакуум-экстракции (анализируемый металл нагревается до перехода в жидкое состояние). Эти методы детально рассмотрены в специальной литературе [П2, ПЗ]. Однако надо подчеркнуть, что следует с большой осторожностью относиться к результатам, полученным при использовании методов вакуум-нагрева и вакуум-экстракции для анализа образцов, аводороженных при электрохимических процессах выделения водорода на металле. Дело в том (см. раздел 2.10), что в этом случае наводороживание металла происходит очень неравномерно, водород накапливается в больших количествах в относительно тонком приповерхностном слое металла (для мягкой стали толщина этого слоя менее 1 мм [87, 88]). Методы же вакуум-нагрева и вакуум-экстракции позволяют определить лишь валовое, среднее содержание водорода в образце данной массы. Ясно, что полученные этими методами результаты будут в очень сильной степени зависеть от массы образца и величины его поверхности, подвергавшейся катодно1му насыщению водородом. Некоторые экспериментальные результаты, полученные при исследовании влияния толщины стальных плоских образцов одинаковой поверхности на количество поглощенного при пх коррозии водорода [1114], подтверждают справедливость нашего замечания. Эти методы со1вершенно непригодны для получения сравнимых результатов на образцах разной формы, имеющих различное отношение величина поверхности/масса образца. Они могут служить лишь для приблизительной оценки величины наводороживания конкретного образца в данных ус- [c.34]

    Наибольшее практическое значение в настоящее время имеет межкристаллитная коррозия металлов в электролитах, рассмотрению методов изучения которой и будет посвящена настоящая глава. Относительно низкая коррозионная стойкость металлов по границам зерен связывается с повышенной электрохимической неоднородностью в этих районах. Обычно последнее является следствием выделения по границам зерен вторичных фаз, которые могут быть либо эффективными анодами, либо катодами по отношению к близлежащим участкам твердого раствора. Такими фазами, например, при нагреве многих хромистых и хромоникелевых сталей до температуры 450—850° С могут быть хромовожелезные карбиды Сг4(Ре)С, сигма-фаза, обедненный хромом аустенит [109], а при нагреве после закалки до 150° С многих алюминиевых сплавов — металлическое соединение СиАЬ [110]. Разрушение этих материалов имеет наибольшее практическое значение. Однако даже для них еще не разработаны методы определения склонности к межкристаллитной коррозии, полностью удовлетворяющие исследователей и практиков. [c.96]

    Коррозионное поведение электрохимически неблагородного титана определяется действием покровных пленок. В кислотах, реагирующих с титаном с выделением водорода, образуются пленки из гидрида титана, в азотной кислоте и царской водке —из Т102 (анатаз), в хромовой кислоте — ТЮг (анатаз и рутил) [17—19]. Пленки из гидрида титана достигают значительной толщины (несколько микронов), причем содержание водорода снижается по мере удаления от поверхности металла. В более сильных кислотах и при повышении температуры скорость растворения защитных пленок превышает скорость их образования. Присутствие окислителей благоприятствует образованию окисных пленок. Вещества, образующие комплексные соединения (например, ионы фтора), концентрированная серная кислота, соляная кислота, ионы фтора, а также щавелевая кислота препятствуют созданию защитных пленок в связи с образованием легкорастворимых соединений. [c.427]


Смотреть страницы где упоминается термин Температура и выделение металлов электрохимическое: [c.47]    [c.137]    [c.170]    [c.402]    [c.266]    [c.57]    [c.495]    [c.16]    [c.511]    [c.19]   
Электрохимия металлов и адсорбция (1966) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы выделение из руд

Электрохимический ряд металлов

Электрохимическое выделение металлов



© 2024 chem21.info Реклама на сайте