Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидратация механизм

    Лимитирующей стадией является стадия 3 — перенос протона от ОН к сопряженному основанию А . Для обратного процесса гидратации ацетальдегида лимитирующей стадией является реакция 4. (Скорость гидратации и скорость дегидратации должны одинаковым образом зависеть от кислотности.) Подобный механизм был предложен и для реакции, катали- [c.489]


    За последние годы наблюдается быстрое развитие представлений о механизме функционирования металлоферментов, а именно удалось установить место и последовательность протекания реакций в активном центре, а также найти ключи к пониманию некоторых механизмов. Важное место занимает гидролиз (или гидратация) субстратов карбонильного и фосфорильного типа, таких, как СО2, эфиры карбоновых кислот, эфиры и ангидриды фосфорной кислоты и пептиды. По-видимому, не вызывает удивления тот факт, что для функционирования большинства таких систем требуется ион двухвалентного металла. Гораздо удивительнее то, что такими ионами обычно оказываются 2п(П) или Мд(11) (в ферментах действующих на ДНК, РНК, сАМР или сОМР). Так, например, цинк по своему содержанию в организмах млекопитающих (в организме человека 2,4 г на 70 кг) уступает лишь железу (5,4 г на 70 кг), и большая часть его необходима для функщганирования ферментов [215]. [c.343]

    При гетеролитическом катализе промежуточное взаимодействие реагирующих веществ с катализатором протекает по гетеролитиче-скому механизму при этом образование и разрыв двухэлектронных связей протекает без разрушения и образования электронных пар. Гетеролитический механизм осуществляется при каталитических реакциях дегидратации спиртов, гидратации олефинов, крекинга, изомеризации, алкилирования углеводородов, гидролиза и многих других. Катализаторы для этой группы реакций должны обладать способностью к образованию координационной связи путем отдачи или присоединения электронной пары. В частности, они могут представлять собой протонные или апротонные кислоты и основания. [c.406]

    По данным работы [655], диэлектрическая изотерма сорбции воды на торфе также является ломаной линией. На основе калориметрических сорбционных опытов было высказано предположение, что первым двум участкам изотермы отвечает различная энергия связи молекул с центрами сорбции, а третьему, с наибольшей производной е7 а, — образование в процессе сорбции водородных связей между сорбированными молекулами. Существенно, что при критической величине сорбции ао обнаруживается резкое увеличение коэффициента диэлектрических потерь е", обусловленное, по-видимому, значительным возрастанием электропроводности материала вследствие образования цепочек из сорбированных молекул и функциональных групп сорбента — карбоксильных (СООН), гидроксильных (ОН) и других полярных групп. При этом предполагалась возможность эстафетного механизма переноса протона вдоль цепочек, что обусловливает значительное возрастание е и е". Наличие протонной проводимости и протонной поляризации позволяет объяснить не только большие величины с1г /<1а, но и частотную зависимость критической гидратации Со, обнаруженную для ряда сорбентов [646, 648]. Здесь необходимо отметить, что при измерении диэлектрических характеристик применяются слабые электрические поля, которые не могут повлиять на про- [c.245]


    Сильные электролиты. Уже в работах Д. И. Менделеева, содержащих критику гипотезы электролитической диссоциации, было установлено, что во многих случаях выводы этой гипотезы неприменимы к экспериментальным данным. Опытный материал показывал, в частности, что закон действия масс неприменим к диссоциации сильных электролитов. Дальнейшее изучение этого вопроса привело к разработке теории сильных электролитов, в основе которой лежит представление, что сильные электролиты не только в разбавленных растворах, но и в растворах значительной концентрации содержатся практически только в виде ионов. Это согласуется с рассмотренными нами в 156 представлениями о механизме образования растворов электролитов и о гидратации ионов в растворах. К тому же, при исследовании оптических и спектральных свойств таких растворов сильных электролитов не обнаружено существования в них недиссоциированных молекул в растворах же слабых электролитов недиссоциированные молекулы обнаруживаются. [c.392]

    Оксимеркурирование. В отличие от гидратации механизм реакции оксимеркурирования алленовых соединений исследован более детально. Реакция проходит через стадию образования несимметричного комплекса винильного типа, который переходит в аллильный комплекс  [c.44]

    Катализ второго класса — ионный — протекает ца твердых телах, не имеющих свободных носителей тока в объеме, т. е. на изоляторах. Электропроводность этих тел, заметная при высоких температурах, — ионная, аналогичная электропроводности электролитов. Катализаторы этого типа, как правило, не окрашены реакции происходят без разделения электронных пар и объединяются в тип гетеролитических. Сюда относятся реакции изомеризации, присоединения (гидратации, аминирования), замещения гидролиза), дезаминирования. Указанные два класса каталитических реакций не включают в себя, однако, всех возможных механизмов катализа. [c.13]

    Так, в цехе отмечены многочисленные случаи хлопков и воспламенений при уборке шихты, перенесении цианамида кальция в барабаны, содержащие влагу, т. е. предварительно не высушенные в узле гидратации цианамида в транспортирующих механизмах дробленого и тонко размолотого карбида и цианамида кальция. [c.73]

    Процесс массопередачи при абсорбции СО, растворами третичных аминов, в отличие от сероводорода, лимитирует медленная химическая реакция гидратации СО , поскольку механизм карбаматного взаимодействия СО, с третичными аминами невозможен. [c.52]

    Электрофильный механизм гидратации олефинов определяет уже отмеченное выше направление присоединения по правилу Марковникова, а также изменение реакционной способности олефинов в следующем ряду СНз-1 Н=СНа СНз-Ш2-СН=СН, > СНз-СН=СН, H.,= Hj [c.185]

    Следовательно, экспериментальные зависимости хорошо согласуются с выводами капиллярно-фильтрационной модели механизма полу-проницаемости. Следует ожидать, что данный подход с учетом взаимного влияния ионов и внешних факторов на процесс гидратации, а также с учетом влияния электролитов на толщину адсорбционных слоев растворителя даст возможность разработать количественную теорию обессоливания растворов обратным осмосом. Однако решение этой задачи невозможно без точного определения размеров пор и их распределения, толщины слоя связанной жидкости на внутренней поверхности пор при течении жидкости под действием градиента давлений. Уместно отметить, что и для процесса ультрафильтрации определение толщины слоя связанной жидкости также имеет важное значение, особенно при сравнительно небольших диаметрах пор (порядка 5 30 нм, или 50—300 А). Как было показано выше (см. стр. 105), в этом случае толщина слоя связанной жидкости становится соизмеримой с радиусом пор ультрафильтров. [c.211]

    Ионные промежуточные соединения, каталитический нецепной механизм. Кинетика реакции гидратации изобутилена в присутствии кислотного катализатора [c.35]

    Уменьшение гидратации частиц с повышением конценграции полимера в латексе сказывается на коагулирующей способности электролитов. Соотношение порогов коагуляции (для Na , Са", А1") зависит от концентрации латекса, уменьшаясь от 1/Z до при повышении последней от 3 до 30% [45], что, по-видимому, указывает на коагуляцию концентрированных латексов по нейтрализационному механизму. [c.260]

    Карбоний ионный механизм. Под влиянием серной кислоты олефины подвергаются различным реакциям гидратации, образованию сложных эфиров, нолиморизации и конденсации с ароматическими углеводородами. Наиболее просто механизм различных реакций можно понять с точки зрения нродстаплений об образовании в качестве промежуточного продукта карбопнй-иопа [1381. Так, нанример, в разбавленных растворах кислот третичные олофины подвергаются гидратации в третичные спирты [78, 196, 204, 205 . С бо. гое концентрированными кислотами образуется сложный эфир сорной кислоты [170]. В разбавленных водных растворах кислот вода является главным нуклеофильным агентом, в то время как в 67%-ной серной кислоте концентрация свободной воды ничтожно мала и бисульфат-ион присутствует в очень большой концентрации (ЬХХУП)  [c.435]


    Возможны более сложные системы, в которых растворитель (вода) образует гидратированные соли (рис. У-26). В простейшем случае получаются как бы две соединенные диаграммы для систем вода — кристаллогидрат — безводная соль. Иногда соль образует несколько кристаллогидратов различной степени гидратации и на кривой растворимости в этом случае можно наблюдать несколько механизмов процесса. В зависимости от подбора начальной концентрации можно получить в такой системе кристаллы с различным содержанием кристаллизационной воды либо безводную соль. В пределах Хе, — Хе2 кристаллизуется водная соль, а в пределах А е, — 1 — безводная. [c.392]

    Со(1И)-триеновые системы удобны тем, что обмен и замещение воды в координационной сфере иона металла — всегда очень медленный процесс от минут до часов), т. е. кинетические параметры можно легко оценить. Медленный обмен лигандов в водном растворе позволяет использовать изотопную метку для прослеживания реакционного пути координированной молекулы воды или гидроксогруппы и, таким образом, дает возможность различить прямой нуклеофильный и общий основной механизмы гидролиза. Однако помимо указанных преимуществ у этих систем имеются и очевидные недостатки, если рассматривать соответствие их (или отсутствие такового) ферментативным процессам. Например, Со(1П)-триеновые комплексы, инициирующие реакции, находятся в сте-хиометрическом, а не каталитическом соотношении с продуктом гидролиза или гидратации, который остается прочно связанным с находящимся в комплексе металлом. По этой причине комплексы Со(П1) не столь пригодны, как могли бы быть, для моделирования ферментов. Тем не менее из-за благоприятного понижения (ДЯ" практически не меняется) при комплексообразовании с подходящими лигандами наблюдалось увеличение скорости в 10 раз. Несмотря ни на что, обсуждаемая здесь система все же неплохая модель, что обусловлено способностью металлов поляризовать прилегающие молекулы субстрата и активировать координированные нуклеофильные группы. [c.356]

    По кислотно-основному механизму идут каталитические реакции гидролиза, гидратации и дегидратации, полимеризации, поликонденсации, крекинга, алкилирования, изомеризации и др. Типичные катализаторы для кислотно-основного взаимодействия — кислоты и основания. Активными катализаторами являются соединения бора, фтора, алюминия, кремния, фосфора, серы и других. элементов, обладающих кислотными свойсгвами, или соединения элементов 1 и 2 групп периодической системы, обладающих основными свойствами. [c.27]

    Механизм гидратации ацетилена описывается схемой  [c.236]

    Согласно Пешли, гидратные (точнее, структурные) силы могут возникать как на гидрофильных поверхностях с гидратированными полярными или ионными группами, так и на поверхностях, которые вначале не являются гидрофильными, но могут изменяться при адсорбции гидратированных форм и вести себя как гидрофильные ( вторичная гидратация ) [121]. В основе теории гидратных сил лежит положение о поверхностной адсорбции гидратированных ионов. Анализ явления показывает, что действие гидратных сил определяется не только плотностью адсорбированных катионов, но и изменением свободной энергии, связанным с замещением катионом иона Н3О+. Силы гидратации проявляются в достаточно концентрированных растворах (более 10 моль/л), и их величина определяется положением ионов в лиотропном ряду. Этот механизм, согласно которому взаимодействие гидратированных катионов приводит к возникновению сил отталкивания между поверхностями с достаточно высокой плотностью поверхностного заряда и слабой способностью к образованию водородных связей, может объяснить высокие пороговые концентрации, необходимые для коагуляции амфотерных частиц латекса полистирола [501] и золя SIO2 [502]. [c.173]

    В промышленности нашла широкое применение пока одна группа органических твердых катализаторов — ионообменные смолы ( иониты), катализирующие химические превращения, которые протекают по кислотно-основному механизму этерификация, алкилирование, дегидратация, гидратация, полимеризация и другие [233-235]. [c.174]

    В случае ацетальдегида найдено, что дегидратация диола в растворе ацетона, изученная дилатометрическими методами, подчиняется законам общего кислотного катализа [37]. (Реакция прямой гидратации была изучена Беллом с сотруд. [44].) Кислотный катализ протекает, по-видимому, по следующему механизму  [c.489]

    Механизм контролирующих стадий точно неизвестен, но в ряде случаев это, возможно, низкая скорость гидратации иона металла [c.53]

    Механизм процесса гидратации при различных стадиях неодинаков, в связи с этим величина энергии активации меняется как в ходе самого процесса, так и при изменении внешних условий. Для ориентировочных расчетов на двух последних стадиях процесса гидратации тампонажного портландцемента в температурном интервале от 280 до 360 К может быть принято значение энергии активации, равное 40 кДж/моль при т=0,2—0,5 и 20 кДж/моль при /я>0,5. [c.106]

    Механизм изомеризации металлилового спирта в изомасляную кислоту должно быть слагается из гидратации спирта с образованием изобутилен-гликоля, после чего следует дегидратация и изомеризация [23]. [c.361]

    Механизм и кинетика процесса гидратации [c.100]

    По механизму специфического кислотного катализа протекают реакции гидролиза эфиров, ацеталей, гидратации ненасыщенных альдегидов, а специфического основного катализа — такие, как альдольная конденсация, гидратация альдегидов и др. [c.91]

    Инкубационный период заканчивается стадией ускорения реакции III. Механизм этого явления еще не объяснен. Последняя стадия IV — стадия затухающей реакции — связана с постепенным расходованием реагирующего вещества в процессе гидратации. Кинетика гидратации на этой стадии выражается уравнением [c.104]

    Гидратация и сольватация ионов в растворе. Изложенные представления о механизме образования ионного раствора заставляют признать существование интенсивного взаимодействия между молекулами растворителя и ионами как в процессе растворения, так и в самом растворе. В водных растворах гидратация ионов была установлена в работах Каблукова, Джонса и др. Она проявляется во всех свойствах этих растворов. Одним из следствий ее является способность многих электролитов, при выделении их из растворов, связывать некоторое количество воды, увлекая ее в виде кристаллизационной воды. Именно гидратация ионов препятствует обратному соединению ионов в молекулы. Ионодипольное взаимодействие бывает наиболее интенсивным при гидратации положительных ионов, обладающих малым радиусом (например, Li+) и в особенности малым радиусом и одновременно большим зарядом (например, А1 +). [c.385]

    Механизм присоединения воды к а-окисям подробно изучался многими авторами. П. В. Зимаков [17] считает, что при гидратации в сернокислой среде в качестве промежуточного вещества получается сульфат этиленгликоля, который далее гидролизуется водой  [c.523]

    Следует подчеркнуть, что эффект разрушающе-структури-рующего влияния ионов на ГС должен зависеть от концентрации ионов вторичная гидратация наиболее ярко проявляется при достаточно высоких константах комплексообразования и вдали от изоэлектрической точки, а также на поверхностях, активные группы которых не способны (или обладают слабой способностью) образовывать водородные связи с молекулами воды. Приведенные выше возможные механизмы влияния ионов на ГС необходимо учитывать при рассмотрении устойчивости конкретных дисперсных систем. [c.173]

    Таким образом, на основе рассматриваемой модели механизма селективной проницаемости -мем1бран с учетом представлений о гидратации в растворах электролитов удается не только объяснить основные зависимости, характерные для разделения водных растворов солей обратным осмосом, но и получить количественный подход к расчету ряда параметров процесса разделения. Полученные результаты нашли подтверждение в последних работах Сурираджана [175]. [c.210]

    Эту реакцию нетрудно распространить на высшие олефины как правило, образуются кетоны, причем группа ОН в решающей стадии присоединяется к положительному концу двойной связи [113, 122]. Однако изменение реакционной среды может вызвать заметное повышение выхода альдегида из gHs в качестве главного продукта образуется ацетон, а пропионовый альдегид в количестве 20% получается при увеличении концентрации НС1 или при соответствующем выборе лигандов для Pd. Бутадиен сначала дает кротоновый альдегид, что указывает на 1,4-механизм, а затем ацетальдегид, который в присутствии сильной кислоты быстро конденсируется в триацетилбензол. В случае изобутена (и сходных олефинов) получаются только следы изомасляного альдегида, главным же продуктом является трет-бу-танол — результат простой гидратации, катализируемой кислотой. Вышеописанная схема показывает, что окончательная перегруппировка комплекса в этом случае невозможна  [c.170]

    Еще не все удалось выяснить О механизме этого защитного действия. От коррозии водой такие пленки могут защищать вследствие нерастворимости в воде самих окислов (.A.I2O3) или продуктов их гидратации Mg(0H)2. Повышение стойкости к коррозии кислотами связано с более сложными соотношениями и требует дальнейшего выяснения. [c.458]

    Гидратация изобутилена на ионитах протекает по такому же механизму, что и гидратация пропилена (см. с. 231). Повышенная реакционная способность изобутилена позволяет проводить процесс в более мягких условиях при температуре не выше 90 С и давлении около 2,0 МПа. Для повышения растворимости изобутилена в воде в реакционную массу вводится полярный растворитель — этилцеллозольв (массовое соотношение вода/растворитель равно 1 1), а для создания устойчивой эмульсии вода—изобутилен используется неионоген-иый эмульгатор—синтанол ДС-10 в количестве 1% от массы воды. Мольное соотношение вода/изобутилен равно 28 1. [c.232]

    Реакция получения меркаптанов через олефины сходна с процессом прямой гидратации олефинов. Процесс осуществляют в присутствии катализаторов (протонных кислот, алюмосиликата, окиси алюминия и др.) или по радикальноцепному механизму. Присоединение проходит в соответствии с правилом Марковникова  [c.435]

    Гидратацией ацетилена или его гомологов получают ацетальде-гид или соответствующие кетоны. В основе эти процессов лежит открытая М. Г. Кучеровым (1881 г.) [10] реакция гидратации ацетилена в ацетальдегид в присутствии Н2804 с добавкой солей ртути. Хотя эта реакция известна давно и проводится в заводском масштабе, но механизм ее недостаточно изучен и в настоящее время. Она иротекает в несколько стадий, возможно, по следующей схеме (правило Эльтекова) [11]  [c.516]

    Следует отметить работу Фролова с сотрудниками [32], в которой, хотя и не учтена растворимость сульфоксидов, но исследована гидратация экстрагируемых комплексов. Так установлено, что HNOзЭк тparиpyeт я в негидратированном виде, аНС1 иНг804— в виде моногидрата, но при этом не указаны концентрационные пределы, в которых рассмотренный механизм обнаружен. [c.46]

    В области концентраций Нг504 0,1—3,5 моль/л эффективные константы экстракции остаются практически постоянными Кср — = (2,2+0,12) 10 . Константы рассчитывали при Я = 2иЬ = 2. При концентрациях Н2504>3,5 моль/л обнаружено образование гидрато-сольватов с ц = 1 и Ь = 3. Показано, что при учете гидратации ксмплексов в органической фазе и растворимости в воде для определения сольватного числа применим меюд разбавления и в случае гидрато-сольватного механизма экстракции. [c.47]

    Для регулирования ироцесса структурообразования применяют вибрационные, ультразвуковые, кавитационные, электрогидравли-ческие, электромагнитные, электрохимические и другие воздействия.. Все они направлены на ускорение процесса структурообразования и улучшение свойств образующегося цементного камня. Механизм их действия заключается в разрушении экранирующих пленок продуктов гидратации вокруг зерен цемента, препятствующих массообмену между зоной реакции и окружающей жидкой фазой п замедляющих тем самым процесс гидратации. Другое назначение этих методов состоит в разрушении коагуляционных и непрочных конденсационно-кристаллизационных контактов, образующихся на ранней стадии твердения. При этом улучшаются реологические свойства цементной суспензии (повышается ее подвижность) и улучшаются условия образования конечной структуры. [c.115]

    Для объяснения дальнейшей конденсации этих простых продуктов в высокомолекулярные полимеры предложено несколько механизмов или схем. Вероятнее всего процесс идет по следующим стадиям 1) образование диметилолмочевины, 2) переход ее после де гидратации в диметиленмочевину, 3) поликонденсация диметилен-мочевины в трехмерный полимер  [c.500]

    Чтобы лучще понять механизм действия пиридоксаль-Р, остановимся подробно на реакции (7-3) превращение гомосеринфосфата в треонин. Это реакция элиминирования—гидратации. Первый процесс (рис. 7.10) включает альдимин кетиминную таутомерию-объект внутримолекулярного общего кислотного катализа близлежащей оксигруппой, за которым следует медленное расщепление С—Н-связи. Определяет скорость последняя стадия. [c.438]

    Этот механизм позволяет обосновать правило Марковникова. Мехшшзм гидратации алкенов [c.96]


Смотреть страницы где упоминается термин Гидратация механизм: [c.37]    [c.184]    [c.68]    [c.45]    [c.123]   
Электрохимия растворов издание второе (1966) -- [ c.192 , c.193 ]

Химия и технология основного органического и нефтехимического синтеза (1988) -- [ c.160 , c.172 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация алкенов, механизм

Гидратация и дегидратация механизм

Гидратация ионов подсчет но Вер алу и представления о механизм

Гидратация окиси этилена механизм

Карбониевый механизм реакций гидратации алкенов

Механизм гидратации ионитов

Механизм гидратации ионов

Механизм гидратации, катализируемой кислотами

Механизм гидратации, катализируемой основаниями

Механизм гидратации, олефинов

Механизм и кинетика гидратации минералов

Механизм реакции гидратации олефинов

Механизм стабилизации макромолекулярными ионами Объем активации. Гидратация — дегидратация

Механизмы реакций гидратации ацетилена

Механизмы реакций гидратации окиси этилена

Механизмы реакций присоединения алкенов Гидратация, галогенирование, алкилирование, реакция Принса

Реакции гидратации Современные представления о механизме процессов твердения минеральных вяжущих



© 2025 chem21.info Реклама на сайте