Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стереохимия сахаров

    Один из основоположников этой новой главы стереохимии сахаров — Ривс [7] — установил три основных фактора нестабильности конформаций пиранозных колец  [c.10]

    Важная часть стереохимии сахаров — установление конфигураций их асимметрических центров излагается в курсе органической химии и поэтому здесь рассматриваться не будет. [c.407]

    Открытие оптической активности сахаров принадлежит Биоту (1817), исследовавшему раствор сахарозы. С тех пор определение оптической активности —поляриметрия —успешно используется для исследования углеводов с различными целями —идентификации, количественного анализа, изучения строения и стереохимии сахаров (определения их конфигурации и конформаций) (см. обзор [1 ]). В последние годы особенно повысился интерес к разновидности поляри-метрии, называемой дисперсией оптического вращения (стр. 82). [c.73]


    Сам факт, что тип гликозидной связи в полисахаридах является определенным (а-1,4 Р-1,6 и т. д.), указывает, что при ее образовании конфигурация относительно аномерного атома углерода стабильна (по сравнению со свободными сахарами, где циклические а- и р-формы легко превращаются одна в другую). Это дает возможность использовать систематические наименования олиго- и полисахаридов с указанием стереохимии соединения, размера колец и способа их связывания. [c.11]

    Формально образование полисахаридов из моносахаридов можно представить как превращение полуацетальной функции в ацетальную (гликозиды) за счет соединения гидроксильной группы одной молекулы сахара с гидроксильной группой другого моносахарида. В результате возникает цепочка последовательно соединенных через кислородные атомы остатков сахаров. Точно так же как при превращении глюкозы в метилглюкозид образуются два аномерных продукта (разд. 17.2.1), так и стереохимия кислородных мостиков между остатками сахаров может быть различной. Существенное отличие биологических свойств различных полисахаридов обусловлено особенностями пространственного строения эфирных мостиков. [c.280]

    Символы над линией, соединяющей остатки сахаров, обозначают положение и стереохимию гликозидной связи. [c.281]

    Составить представление о значении для биологических объектов стереохимии связи между остатками сахаров можно при сравнении мальтозы и целлобиозы. Мальтоза гидролизуется под действием мальтазы — фермента, присутствующего в дрожжах, который может вызывать гидролиз многих производных а-о-глюкозы, например а-метил-о-глюкозида. Однако мальтаза неэффективна по отношению к целлобиозе, хотя МОЛекулы [c.281]

    Стереохимия многоатомных спиртов и их родственные отношения с сахарами будут разобраны в разделе углеводов. [c.113]

    В центре внимания в данной книге стоят общие вопросы химии углеводов, которые в конечном счете определяют основные подходы и методы исследования в данной области, его стратегию и тактику. Это прежде всего вопросы реакционной способности молекулы сахара и ее зависимости от химического строения, конфигурации и конформации. Освещение этой основной проблемы химии углеводов потребовало широкого рассмотрения генеральных путей синтеза и основных химических и физико-химических методов установления структуры—и стереохимии, применяемых в современной химии углеводов. Указанный материал и составляет основное содержание книги. [c.3]

    Реакции элиминирования, проходящие по 2-механизму, в результате которых образуются непредельные соединения, в последнее время нашли применение в синтетической химии углеводов, поскольку введение двойной связи в молекулу моносахарида позволяет осуществить ряд превращений и синтезировать труднодоступные производные моносахаридов. Если стереохимия заместителей и конформация молекулы удовлетворяют требованиям, необходимым для механизма Е2 (см. стр. 15 ), то элиминирование протекает очень легко. Так, например, сульфоны сахаров образующиеся при окислении меркапталей органическими надкислотами, уже в слабокислой среде отщепляют гидроксильную группу у Са. [c.157]


    Электрофорез особенно успешно применяется для обнаружения моносахаридов, в молекуле которых имеются основные (как в аминосахарах) или кислые (как в альдоновых, уроновых, сахарных кислотах, фосфатах и сульфатах сахаров) группировки (см., например, ). В тех случаях, когда необходимо разделить нейтральные моносахариды, используют их способность образовывать отрицательно заряженные комплексы с борной кислотой или ее солями , с молибдатами , вольфраматами, германа-тами и рядом других неорганических анионов разные анионы предъявляют часто различные требования к стереохимии моносахарида, необходимой для образования устойчивых комплексов. Естественно поэтому, что выбор комплексообразователя и условий проведения электрофореза, в первую очередь pH растворов, весьма существенно влияет на результат разделения (см. ). Для обнаружения зон веществ на электрофореграммах применяется большинство реагентов, используемых при хроматографии на бумаге. [c.411]

    Масс-спектрометрический метод, успешно разрабатываемый в настоящее время, относительно мало чувствителен к стереохимическим различиям в структуре моносахаридов, по крайней мере для соединений с незакрепленной конформацией, что приводит к близкому сходству масс-спектров диастереомеров. Поэтому масс-спектры производных моносахаридов позволяют получить весьма полезную информацию о молекулярном весе соединения, его функциональных группах и их взаимном расположении, размере цикла и т. д., но не о стереохимии. ЯМР-спектроскопия дает существенную информацию именно о стереохимических и конформационных различиях сахаров и в ряде случаев позволяет сделать исчерпывающие заключения о пространственном строении молекулы моносахарида. [c.626]

    Однако центральной проблемой синтетической химии сахаров остается, несомненно, поиск избирательных реакций, позволяющих проводить нужные изменения структуры и стереохимии в заданном месте молекулы моносахарида без изменения других частей молекулы. Применение таких реакций открывает путь к получению более трудно доступных моносахаридов и их производных, исходя из нескольких наиболее доступных моносахаридов. Значительное число однотипных функциональных групп в молекулах моносахаридов, способность молекул к многообразным конформационным переходам и, главное, крайне тесная и весьма тонкая зависимость реакционной способности каждой из этих функциональных групп от их взаимного расположения, и особенно от стереохимических взаимоотношений, крайне затрудняет разрешение указанной проблемы. Это является [c.629]

    Дадим ряд определений из области химии и стереохимии сахаров и полисахаридов. a-D-глюкоза (a-D-глюкопираноза), или циклическая форма глюкозы,— типичное мономерное звено многих полисахаридов. Для изображения структуры моно- или полисахари-доц используют три типа формул  [c.9]

    Необходимо кратко остановиться на изображении циклических формул сахаров. В настоящее время в литературе циклические формы сахаров чаще всего изображают в виде равностороннего шести- или пятиугольника, один из углов которого занимает окисный атом кислорода, а атомы водорода, гидроксильные группы и другие заместители располагаются над и под плоскостью кольца в зависимости от стереохимии сахара. Не всегда само собою разумеющимся является переход от написания циклической формулы сахара, произведенной из фишеровской формулы, к формуле с правильным шестиугольником. Обычно для правильного написания последней следует сделать поворот заместителя на формуле у С(5)В гексозе (илиQ4)B пентозе) и у гликозидного гидроксила так, чтобы связи окисного кислорода находились на одной прямой с основной цепью С—С связей сахара, после чего переписать формулу в виде правильного пяти- или шестиугольника. Приведем несколько примеров. [c.39]

    Х-винная кислота имеет лево-левую конфигурацию, а (+)-/)-вин-ная — право-правую. Иную картину представляет проекция VIL Зеркало, поставленное перпендикулярно к плоскости проекции углеродного скелета, решет ее на взаимные зеркальные изображения. Таким образом, это лево-правая конфигурация. Молекула симметрична (плоскость зеркала и есть плоскость симметрии), и ее зеркальное изображение (проекция VIII) тождественно с предметом. Поэтому мезовинная кислота (VIII) оптически недеятельна. Такие симметричные молекулы, имеющие асимметрические атомы, которые недеятельны благодаря внутренней компенсации , называются по мезовинной кислоте — мезо-формами. Позднее при рассмотрении стереохимии сахаров мы увидим, что эти лезо-формы служат опорными при установлении конфигурации соединений с многими асимметрическими углеродами. [c.390]

    Переход спираль - клубок обратим. При охлаждении комплементарные цепочки вновь завязывают между собой водородные связи. При этом расстояние между основаниями вдоль сахаро-фосфатной цепи равно по-прежнему 6,8 А. В то же время энергетически выгодным является непосредственный ван-дер-ваальсов контакт между соседними парами оснований, который соответствует расстоянию 3,4 А. Для сближения на это расстояние соседним парам оснований необходимо повернуться относительно друг друга на 36°. Это требование диктуется стереохимией сахаро-фосфатного остова, причем поворот происходит таким образом, что в обычных условиях образуется правая спираль ДНК. В спиральном состоянии ДНК обладает весьма жесткой структурой. Свобода вращения вокруг одинарных связей почти полностью исключается. Все же некоторая гибкость цепи сохраняется, и двунитевая ДНК представляет собой клубок с очень большим статистическим сегментом — приблизительно 300 пар оснований — такая величина обусловлена непрерывной гибкостью спирали, а не локальными нарушениями спиральной структуры, т.е. ДНК является червеобразной (персистентной), а не энгэагообразной цепью. Таким образом, переход спираль - клубок представляет собой обратимый переход из энергетически выгодного высокоупорядоченного спирального кристаллического состояния в разупорядоченное, жидкое состояние статистического клубка. Существенно подчеркнуть, что последовательность оснований в цепи остается в клубке столь же строго фиксированной, как и в спирали, так как при плавлении ДНК разрушаются лишь слабые межмолекулярные силы, ковалентные связи внутри сахаро-фосфатных цепей остаются нетронутыми. [c.73]


    Не будет преувеличением сказать, что наступившая в химии углеводов эра, являющаяся новым этапом развития стереохимии сахаров, по своей значимости не уступает эре, последовавшей после открытия циклических форм углеводов и таутометрии откры- тых и циклических форм. [c.5]

    Один из главных основонолол ников этой новой главы стереохимии сахаров Ривс [14] установил, что степень лабильности пиранозных колец определяется тремя основными факторами нестабильности. [c.23]

    Перед Э. Фишером встала задача точной идентификации продуктов синтеза. Решение ее было тем более неотложно, что не было удовлетворительных методов идентификации природных сахаров. Э. Фишер использовал фенилгидразин (H2NNH 6H5), открытый им в 1875 г., как реактив на альдегиды и кетоны. Однако при действии фенилгидразина на сахара часто получались совершенно одинаковые озазоны. Для объяснения этого явления Э. Фишер использовал положения стереохимии, основы которой заложили Я. Вант-Гофф и А. Ле Бель. Он допустил, что положение гидроксогрупп в молекуле может быть пространственно различно и что эти сахара достаточно устойчивы и реально существуют в природе. Для фруктозы можно было представить восемь изомеров и т. д. [c.258]

    Пастер Луи (Pasteur L.)—выдающийся французский ученый (1822— 1895). Родился в г. Доль, в семье кожевника. Был профессором Страсбургского, Лилльского и Парижского университетов. В студенческие годы работал под руководством Ж- Дюма. Пастер показал, что оптическая активность винной кислоты и асимметрическое строение ее кристаллов находятся в тесной зависимости его работы по асимметрии имеют очень большое значение в стереохимии. Он провел большие исследования процессов брожения. В 1857 г. Пастер установил, что молочная кислота образуется при сбраживании сахара в результате жизнедеятельности молочно-кислых бактерий. Его исследования в области брожения явились научной основой для использования микроорганизмов с целью производства пищевых продуктов (уксуса, вина, пива), а также для разработки метода предохранения их от порчи (пастеризация). [c.293]

    Итак, главные источники структурного и функционального многообразия моносахаридов лежат в различном наборе функциональных групп (карбонильные, гидроксильные, карбоксильные, аминогруппы и т. д.) и в не меньшей степени в различиях стереохимии. Последнее надо особо подчеркнуть. В обычном курсе органической химии рассматривают свойства и различия отдельных классов соединений, основанные в первую очередь на различиях бут-леровских структур, и отдельно в виде некоего несколько экзотического приложения — вопросы стереохимии. В химии сахаров такого разделения не может быть. В принципе вся эта область есть органическая стереохимия par ex ellen e , и все многообразие свойств углеводов проистекает прежде всего из их стереохимических различий. Так, например, кардинальные различия свойств и биологической функции целлюлозы и одного из двух компонентов крахмала — амилозы — обусловлены различием кон фигурации лишь одного асимметрического центра элемен тарного звена этих стереоизомерных полисахаридов. [c.10]

    Среди многочисленных конформеров стероидов большинство составляют те, которые обусловлены различной стереохимией сочленения колец А и В. 5а-Стероид содержит тракс-сочленение А/В, а Зр-стероид — цис-сочле-нение А/В. В 5а-стероиде расположение колец А и В подобно расположению колец в тракс-декалине, а в Зр-стероиде — расположению в г мс-декалине. Буквы а и Р используются в циклических соединениях (стероидах и сахарах, в частности) для обозначения положения заместителей снизу и сверху от кольца соответственно. При этом цикл считается плоским, кольцо А рисуют [c.278]

    О к и с л е н и е йодной кислотой. Все перечисленные методы перехода от высших моносахаридов к низшим сводились к отщеплению тем или иным методом альдегидной группы мойосахарида и укорачиванию его углеродной цепи на один углеродный атом. Главным недостатком этих методов с препаративной точки зрения является то, что в конечном продукте синтеза сохраняется стереохимия всего углеродного скелета исходного моносахарида таким образом, отсутствует должная гибкость, позволяющая переходить к более редким в стерео-химическом отношении моносахаридам. С этой точки зрения наиболее интересным явился бы метод, позволяющий разрывать углерод-угле-родную цепь сахара там, где это желательно для химика-синтетика, не затрагивая при этом конфигурацию других углеродных атомов. [c.28]

    Весьма важным для синтетической химии сахаров вопросом является механизм и стереохимия замещения галоида в 0-ацилгликозилгало-генидах, так как это определяет конфигурацию образующего ся при реакции замещения О- или N-гликозида. Этот вопрос в настоящее время можно считать в общих чертах выясненным. Оказалось, что решающим фактором, влияющим на механизм реакции и ее стереохимическое течение, является конфигурация у второго углеродного атома. Нужно различать два принципиально разных случая I) атом галоида у (i) и ацилоксильная группа у (ij находятся в цис-положении, т. е. по одну сторону плоскости кольца, и 2) атом галоида у (i) и ацилоксильная группа у С(2) находятся в транс-положении, т. е. максимально удалены и расположены по разные стороны кольца. [c.71]

    Для доказательства строения аминосахаров (Привлекаются те же методы, что, и при исследовании обычных моносахаридов, причем наибольшие трудности представляют вопросы стереохимии. В качестве примера можно рассмотреть установление строения наиболее важного из а мино-сахаров-—глюкозамнна (2-амино-2-дезоксиглюкозы), который в виде полисахарида хитина составляет основу наружного покрытия раков, крабов, майсмих жуков и т. д. [c.125]

    Изв1естно, что сладкое и горькое вкусовые ощущения слабо связаны между собой. Показано [53], что их появление определяется стереохимией молекул вещества, вызывающего вкус. Сладкие вещества относительно легко трансформировать в соединение, обладающее горьким вкусом. Установлено [20], что в глюкопираиозидах положения 1, 2, 6 и атом кислорода пиранозного цикла не связаны с появлением сладкого вкуса. Было высказано предположение, что каждый элемент молекулы сахаров может влиять иа характер вкусового ощущения. Возможно, существует определенная зависимость между положением сладких и горьких центров в молекулах рецепторов, поскольку число простых веществ, обладающих сладким и горьким вкусом, ограниченно. Возможно, что одни молекулы адсорбируются на сладких, а другие —на горьких центрах рецепторов, но не исключено, что каждая молекула одновременно адсорбируется на центрах всех типов. Если исходить из последнего предположения, то во вкусовых рецепторах должны быть сладкие и горькие зоны. Подтверждением этого служат данные о строении сладко-горьких сахаров, в частности метил-а-о-маннопиранозида. [c.24]

    Использование изопропилиден- и бензилиденацеталей полиолов и сахаров позволяет повысить не только летучесть этих соединений, но и информативность масс-спектров для определения структуры и стереохимии [331]. [c.192]

    Другие методы, позволяющие контролировать стереохимию реакции, включают использование изопропилиденовой защитной группы, экранирующей остаток сахара [20], или анхимерного содействия бензоатной группы в положении 2 [21]. [c.582]

    В настоящее время известно несколько сотен различных по структуре и стереохимии моносахаридов, которые по характеру входящей в их состав карбонильной группы можно разделить на альдозы, содержащие альдегидную группу, и кетозы , содержащие кетогруггу. По числу углеродных атомов различают триозы, тетрозы, пентозы, гексозы и т. д. Моносахариды, в состав которых входит более шести углеродных атомов, объединяют под общим названием высшие сахара . [c.13]

    Еще в 1846 г. Дюбрюнфо обнаружил, что удельное вращение раствора глюкозы изменяется во времени, пока не достигнет некоторого постоянного значения. Это явление, наблюдающееся также и для всех других моносахаридов, получило название мутаротации. Мутаротация связана с взаимными превпащениями таутомерных форм моносахарида и установлением равновесия между ними. Положение равновесия зависит от структуры и стереохимии моносахарида, но не зависит от того, из какой таутомерной формы данного сахара мы исходим. Так, свежеприготовленные водные растворы а- и 3-0-г/1юкозы имеют удельное вращение [ ,+ 106° и +22,5 " соответственно. С течением времени удельное вращение первого падает, а второго возрастает, в обоих случаях достигая постоянного значения +52,5°. [c.32]

    В химии сахаров, так же как и в других областях органической химии, ИК-спектроскопию применяют прежде всего для функционального анализа соединения —для характеристики функциональных групп и их взаимного расположения. Кроме того, с помощью ИК-спектра можно иногда получить некоторые сведения о структуре и стереохимии моносахаридной молекулы в целом. Наконец, ИК-спектроскопия может использоваться для установления идентичности или неидентичности двух образцов. Для решения каждой из этих задач приходится выбирать соответствующие экспериментальные условия. Так как моносахариды нерастворимы в растворителях, применяемых в ИК-спектроскопии ( I4, H I3, Sj), а использование воды в качестве растворителя требует специальной сложной техники снятие ИК-спектров в растворе производится только для изучения замещенных производных моносахаридов. Для самих моносахаридов, а также для их производных снятие спектров обычно проводится в вазелиновом масле или в таблетках, состоящих из образца и бромида калия. Каждый из этих методов не свободен от принципиальных недостатков, а их применение связано с некоторыми техническими трудностями. [c.58]

    Эфиры угольной кислоты . В ряду сахаров угольная кислота дает два типа эфиров — ациклические и циклические карбонаты. Ациклические эфиры угольной кислоты типа НОСООК (где К —остаток сахара), которые обычно получаются действием хлоругольных эфиров на моносахариды, мало чем отличаются от обычных эфиров карбоновых кислот и применяются редко. В то же время циклические карбонаты, этерифицирующие две гидроксильные группы моносахарида, представляют значительный интерес для синтетической химии углеводов. Циклические эфиры угольной кислоты, как правило, имеют пятичленный цикл и замыкаю гея п1эедпочти-тгльно на г ис-сс-гликольных группировках, для временной защиты которых они и применяются. В отличие от рассмотренных выше ацетатов и и бензоатов при образовании карбонатного цикла возникает бицикличе-ская структура типа цис-петалаш или г ис-гидриндана, поэтому образование циклических карбонатов находится под строгим контролем стереохимии исходного моносахарида . Действительно, поскольку циклический эфир дают г ис-сс-гликольные группировки, в реакцию вступает таутомерная форма моносахарида, содержащая наибольшее число таких группировок, причем моносахарид нередко реагирует в фуранозной форме. [c.138]

    Нуклеофильное замещение при гликозидном центре может протекать 7 ак по механизму 5д1, так и по механизму 5д,2. В соответствии с общими закономерностями стереохимии этих реакций одновременно с замещением может протекать частичная или полная рацемизация при гликозидном центре или обращение конфигурации. В производных циклических форм сахаров с ацилированными спиртовыми гидроксилами нуклеофильное замещение при гликозидном центре часто сопровождается соучастием соседней ацилоксигруппы как при реакциях типа 5д,1, так и при реакциях типа 5д,2 и приводит к промежуточному образованию циклического ортоэфирного катиона I. Для протекания такой реакции по типу 5д, 2 необходимо н /юнс-расположение заместителей при —Сз (1,2-транс-ачоме-ры) дли реакци11 типа 5д,1 конфигурация при не существенна  [c.189]

    Номенклатура. Высшими сахарами называются моносахариды, неразветвленная углеродная цепь которых насчитывает более шести атомов. Номенклатура высших сахаров долгое время не была строгой, поэтому в литературе иногда встречаются самые разнообразные названия одного и того же высшего сахара. В настояш,ее время принята предложенная в 1963 г. единая номенклатура углеводов, которая позволяет однозначно назвать любой моносахарид Согласно правилам этой номенклатуры название высшего моносахарида строится следуюш,им образом корень, в основе которого лежит греческое числительное, показывает число атомов углерода в цепи сахара суффикс ( оза для альдоз и улоза для кетоз) определяет природу карбонильной группы. Для обозначения стереохимии цепи используются префиксы, известные (см. гл. 1) из химии обычных моносахаридов, например рибо-, арабино-, глюко-, манно- и т. д. Чтобы избежать появления новых конфигурационных префиксов, число которых для высших сахаров должно резко возрастать, согласно принятой номенклатуре углеродная цепь высшего сахара мысленно разбивается на звенья. Начиная с атома, ближайшего к альдегидной или кетонной функции, отделяется звено, содержаш,ее четыре асимметрических атома (см. формулы I и И), которое однозначно определяется конфигурационным префиксом, заимствованным из названий гексоз. [c.316]

    В целом свойства высших сахаров мало отличаются от свойств обычных моносахаридов и определяются теми функциональными группами, которые они содержат. Так, высшие альдозы проявляют все свойства, характерные для обычных альдоз высшие кетозы соответствуют обычным кетозам и т. д. Высшие сахара так же, как и обычные моносахариды, легко образуют простые и сложные эфиры, реагируют со спиртами и фенолами с образованием гликозидов, дают все известные для обычных сахаров производные по карбонильной группе, легко окисляются до альдоновых кислот и восстанавливаются до полиолов, легко подвергаются превраш,ениям под действием кислот и ш,елочей и т. д. Интересно отметить, что высшие сахара по некоторым физическим (оптическое вра-ш,ение) и химическим свойствам (образование нерастворимых фенилгидразонов, комплексов с солями ш,елочноземельных металлов и т. д.) очень близки к гексозам, если стереохимия первых четырех асимметрических углеродных атомов гексозы совпадает с таковой у высшего сахара. Такое совпадение свойств распространяется не только на циклические формы сахаров, их гликозидов и лактонов, но проявляется также и в свойствах амидов, феннлгидразидов, бензимидазолов и т. д. Наглядным примером является приведенное в табл. 14 сравнение величин оптического враш,е-ния производных )-гулозы и О-эритро-О-гуло-октозы [c.318]

    Возможность более широкого использования химических методов для исследования структуры моносахаридов и развитие новых интересных подходов целиком определяются достижениями химии моносахаридов в целом. Центральной проблемой здесь является детальное изучение реак- ционной способности отдельных функциональных групп в молекуле моносахарида и влияния на нее особенностей структуры. Речь идет об исследовании реакционной способности карбонильной группы, гликозидного гидроксила и спиртовых групп и влияния на реакционную способность различных изменений в строении молекулы (замещение соседних групп, изменение стереохимии тех или иных асимметрических центров и конформации всей молекулы в целом и т. д.). Подобных работ в химии сахаров пока явно недостаточно. По-видимому, наиболее разработанными примерами такого рода являются исследования механизма окисления альдоз бромом и реакций замещения у гликозидного центра. Эти исследования не только позволили сделать важные теоретические выводы, но и способствовали разработке новых синтетических методов. Между тем аналогичные работы по реакционной способности спиртовых групп моносахарида, аминогрупп в аминосахарах, карбоксильных групп в уроновых кислотах почти отсутствуют, и все заключения здесь носят обычно качественный характер, как, например, суждения о различиях в реакционной способности первичных и вторичных гидроксильных групп моносахарида. [c.628]


Смотреть страницы где упоминается термин Стереохимия сахаров: [c.9]    [c.365]    [c.134]    [c.281]    [c.77]    [c.461]    [c.113]    [c.98]    [c.462]    [c.9]    [c.17]    [c.293]   
Органическая химия. Т.2 (1970) -- [ c.525 , c.544 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.531 ]




ПОИСК





Смотрите так же термины и статьи:

Стереохимия



© 2025 chem21.info Реклама на сайте