Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафтены образование их при крекинге

    Крекинг нафтенов Образование олефина  [c.850]

    Промежуточное образование простейших шестичленных нафтенов при крекинге декалина позволяет объяснить образование при этом процессе ряда отмеченных выше продуктов бензола, толуола и фенола, обнаруженных нами также при крекинге метилциклогексана и ментана образование здесь о-ксилола также вполне понятно, тогда как обнаруженный нами, и-ксилол представляет собой, очевидно, продукт вторичного происхождения. [c.297]


    Содержание ароматических углеводородов в сырье низкотемпературного риформинга менее опасно, чем может показаться на первый взгляд. Большинство реакторов риформинга может перерабатывать сырье, содержащее от 7 до 10 об., % ароматических соединений без какого-либо сокращения срока службы или ухудшения характеристик катализатора. Однако можно считать (см. гл. 4), что для лигроина, получаемого из подавляющего большинства видов нефти, такое высокое содержание ароматических углеводородов (маловероятно. Действие нафтенов аналогично действию ароматических соединений, однако любой эффект дезактивации, производимый ими, компенсируется одновременным образованием водорода при крекинге нафтенов в ароматические углеводороды и газ на начальных стадиях процесса низкотемпературного риформинга. [c.116]

    При переработке сырья, обогащенного большим количеством конденсированных полициклических структур, например циркулирующего газойля каталитического крекинга, основными реакциями являются расщепление конденсированных нафтенов с образованием моно- и бициклических нафтенов. Бициклические нафтены подвергаются дальнейшему крекингу и гидрированию, превращаясь при этом в моноциклические нафтены с одной или двумя боковыми цепями. [c.135]

    Кислотной функцией обладает носитель катализатора — окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Эти свойства особенно важны при переработке сырья с большим содержанием парафиновых углеводородов (инициировании реакций гидрокрекинга и изомеризации парафинов, а также гидроизомеризации пятичленных нафтенов в шестичленные, что при последующем их дегидрировании приводит к образованию ароматических углеводородов). Для усиления кислотной функции катализатора в его состав вводят галоген. В последнее время с этой целью чаще применяют хлор, раньше и изредка сейчас —фтор, который также стабилизирует высокую дисперсность платины, образуя комплексы с ней и окисью алюминия. Преимущества хлора в том, что он в меньшей мере способствует реакциям крекинга это особенно важно в условиях жесткого режима. [c.139]

    Крекинг нафтенов с образованием олефинов  [c.83]

    В продуктах крекинга нафтенов наряду с углеводородами, отмеченными для крекинга алканов-и алкенов, присутствуют алкилбензолы, изомеры исходного нафтена, нафтеновые и нафтено-ароматические углеводороды меньшей молекулярной массы. [1, 3]. Образование ароматических углеводородов является результатом реакция - [c.95]


    Есть основания считать, что ароматические углеводороды в этом процессе образуются по схеме, описанной на стр. 253, в результате взаимодействия низших олефинов и диолефинов, получающихся при крекинге тяжелых парафинов. При обычных процессах крекинга получаются также ароматические углеводороды по механизмам, описанным на стр. 242 (дегидрирование нафтенов) и на стр. 251 (циклизация и ароматизация парафинов). Другой путь образования низших ароматических углеводородов заключается в деалкилировании моно- и полиалкилбензолов с длинными боковыми цепями. Простейшим примером этого служит термический крекинг стирола и этилбензола (стр. 260). [c.267]

    При получении бензинов путем термического и каталитического крекинга нефтяного сырья в них, кроме парафиновых, нафтеновых и ароматических углеводородов, содержатся также олефиновые углеводороды, образующиеся в результате расщепления крупных молекул насыщенных углеводородов. Помимо расщепления парафиновых углеводородов при крекинге происходит дегидратация нафтенов с образованием ароматических углеводородов. Если состав бензинов прямой перегонки всецело зависит от состава исходной нефти, то состав бензинов крекинга в значительной степени определяется условиями проведения процесса. Определяющим параметром термического крекинга является температура. При каталитическом крекинге углеводородный состав получаемого бензина зависит также и от фракционного состава сырья и свойств катализатора. [c.65]

    Дегидрогенизация моноциклических нафтенов до соответствующих ароматических углеводородов протекает через стадию образования циклических непредельных углеводородов. Эта реакция свойственна жесткому режиму крекинга (главным образом пиролизу). Так, превращение циклогексаиа в бензол протекает с отрицательным изменением энергии Гиббса при температурах выше 660°С. При 622°С, по данным Ф. Е. Фрея, крекинг циклогексаиа дал 44,1% олефинов (до С4), 9,57о бутадиена, 3,7% циклопентена и амиленов, 4,9% циклогексена и циклогексадиена и только 0,9% бензола (и 1,2% высших углеводородов). [c.53]

    Дегидрогенизация нафтенов является чрезвычайно важной реакцией при крекинге, так как она ведет к образованию ароматических углеводородов. Нафтены, содержащие шесть атомов углерода в цикле, как моноциклические, так и полициклические, при относительно высоких температурах очень склонны к дегидрогенизации, особенно р. присутствии катализаторов. Дегидрогенизация циклогексана [c.68]

    Характерно отметить, что при крекинге нафтенов образование ароматических углеводородов связано и с образованием предельных алифатических соединений, что является результатом сопряженного дегидрогидрирования  [c.327]

    УВ нагревали в автоклаве при 350 °С в течение 4 ч, образовавшиеся бензиновые УВ анализировали (табл. 10). Общая черта для всех нефтей резкое преобладание алканов над нафтенами. Снова подтверждается известный факт высокой парафинистости продуктов термического крекинга. Факт этот послужил основой для гипотезы Г.И. Сафоновой, А.Я. Куклинского и Р. Мартина об образовании высокопарафинистых нефтей по реакции термического крекинга. Однако из табл. 10 видно, что отношение алканов к нафтенам в крекинг-бензинах в несколько раз выше, чем в любых самых парафинистых нефтях. Кроме того, в [c.37]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]

    Наконец, при каталитическом крекинге нафтенов наблюдается, в осоС енпости за счет гомологов циклогексана, заметная дегидрогенизация с образованием ароматических. [c.444]

    Непредельные углеводороды, образующиеся в результате реакций крекинга, расщепляются по углерод-углеродным связям, изо-меризуются, полимеризуются, а также подвергаются реакциям ароматизации. Важной реакцией является межмолекулярное перераспределение водорода, заключающееся в насыщении водородом олефинов за счет образования бедных водородом продуктов уплотнения. Указанные выше процессы обусловливают, с одной стороны, получение стабильных бензинов благодаря малому содержанию в них непредельных углеводородов, а с другой — образование на поверхности катализатора коксовых отложений. Нафтеновые углеводороды в присутствии алюмосиликатов подвергаются дегидрированию и расщеплению связей С—С как с раскрытием колец, так и с отрывом боковых цепей. В результате превращений нафтенов образуются ароматические углеводороды, повышающие октановые чивла бензипов и некоторые количества продуктов уплотнения, частично остающихся на поверхности катализатора. Парафиновые углеводороды крекируются с образованием насыщенных и ненасыщенных соединений. Последние далее подвергаются вторичным превращениям. [c.66]


    Специальное исследование влияния сырья на кинетику процесса крекинга [801 в рамках треугольной схемы Уикмена [см. выражение (Н1-5)] показало, что константы скорости крекинга сырья и образования бензина существенно зависят от углеводородного состава сырья и, в частности, от отнощения ароматических (А) к нафтенам (Н). Так, для прямогонных газойлей константы скорости разложения сырья и образования бензина предлагается соответственно рассчитывать по формулам [c.91]

    Основные направления распада нафтеновых углеводородов разрыв кольца с образованием олефинов и дегидрогенизация кольца (простая или с последующим его разрывом до олефинов и диолефи-пов). Степень образования из шестичленных нафтенов ароматических углеводородов весьма незначительна. Так, по данным Ф. Е. Фрея, при крекинге циклогексана образуется 44,1% олефинов (до С4), 9,5% бутадиена, 3,7% циклонентена и пентана, 4,9% цикло-гексеиа и гексадиена и только 0,9% бензола и 1,2% высших угле-)50Д0р0Д0В. [c.25]

    В присутствии катализатора при нагреве до 450—500° С парафиновые высокомолекулярные углеводороды разлагаются. Образуются легкие предельные и непредельные углеводороды. Происходят реакции изомеризации, образуются изомерные углеводороды— изопентан, изогексан, изогептан, изооктан и другие, которые и повышают октановое число получаемого при каталитическом крекинге бензина. Нафтеновые углеводороды также изменяются в условиях каталитического крекинга—получаются циклоолефины, пз которых образуются насыщенные алкилировапные нафтены. Происходит также разрыв кольца нафтена, что приводит к образованию газов и продуктов изомеризации. При некоторых реакциях, происходящих с нафтенами, образуются ароматические углеводороды. [c.274]

    По мере увеличения глубины крекинга парафинов наблюдается образование нафтенов, циклоолефинов, ароматики и изонарафинов. Образование указанных углеводородов следует отнести за счет вторичных реакций этиленовых углеводородов друг с другом и с парафинами. Поэтому мех,анизм этих реакций будет рассмотрен подробнее в главе 5 о термических превращениях непредельных углеводородов. [c.79]

    К 4)еакциям с высокой термодинамической вероятностью (более 95%) протекания в условиях крекинга относятся реакции расщепления парафинов и олефинов. дегидроциклизации парафинов, дегидрирования гидроароматических углеводородов и перераспределения водорода в ненасыщенных циклических углеводородах с образованием циклояарафиновых и ароматических углеводородов [1]. Такие реакции, как изомеризация, деалкилирование алкилароматических углеводородов, перераспределение водорода в линейных олефинах, циклизация парафинов и олефинов с образованием нафтенов характеризуются термодинамической вероятностью протекания до определенного равновесного состояния, [1, 2]. Однако близкое к равновесию соотнощение композитов наблюдается только для некоторых реакций изоме-ризациТКолефинов, изомеризации и деалкилирования ароматических углейодородов. [c.66]

    По данным ряда исследователей, нафтены очень чувствительны к крекингу над алюмосиликатными катализаторами. Скорость-их распада повышается с увеличением молекулярного веса [83], Полициклические нафтены легче подвергаются расщеплению и дегидрогенизации, чем гомологи моноциклические. Так, среди продуктов, получающихся при каталитическом крекинге декалина при 400°, анализом было найдено нафтенов 66,5% (в том числе неизмененного декалина 21,7%), ароматических углеводородов-16,5 %, тетралина 6,5%. Образование ароматических углеводородов [84, 85] идет как по линии дегидрогенизации исходных нафтенов, так и после распада колец и образования парафинов [83]. [c.249]

    Кроме того, при превращениях ароматических углеводородов существенную роль играют реакции конденсации. К этим реакциям наиболее склонны полициклические ароматические углеводороды, в результате чего повышается количество кокса, отлагающегося на катализаторе. Каталитический крекинг смеси углеводородов идет последовательно. При одинаковом примерно числе углеродных атомов в молекуле углеводороды различных рядов по последовательности их превращений на алюмосиликатных катализаторах располагаются в следующем порядке 1) конденсированные ароматические углеводороды, 2) нафтено-ароматические углеводороды и полициклические нафтены, 3) алкилирован-ные бензолы и нафталины, 4) парафины. Влияние ароматических углеводородов с конденсированными циклами на каталитический крекинг парафинов, нафтенов и олефинов изучали Д. И. Сос-кинд и С. И. Обрядчиков [88]. Ими установлено, что конденсированные ароматические углеводороды больше всего тормозят крекинг парафинов меньше —нафтенов и еще меньше олефинов. Так как в дистиллятных фракциях масел преобладают нафтено-ароматические углеводороды, то при низкотемпературном крекинге этих фракций мы вправе ожидать преимущественный крекинг этих углеводородов, сопровождающийся расщеплением нафтеновых колец, частичной их дегидрогенизацией с образованием малокольчатых ароматических углеводородов, имеющих достаточно длинные алкильные цепи. [c.250]

    Образование нафтенов, циклоолефи нов и ароматики, наблюдающееся при увеличении глубины крекинга па рафинов, есть результат вторичных реакций — прев-ращения образовавшихся при крекинге пара1фина олефиноВ. Однако в- присутствии специальных катализаторов возможно непосредствеиное замыкание парафиновых углев одю родов с числом углеродных атомов в пря мой цепи шесть или больше) в шестичленное кольцо с одновременной дегидрогенизацией его- и превращением в ароматический угле- [c.104]

    Расщепление боковых цепей у алкилировапных нафтенов принадлежит к важнейшим реакциям термического крекинга. Особую роль оно играет в процессах неглубокого крекинга высокомолекулярных фракций нефти, проводимого с целью понижения их вязкости. Устойчивость алкилирован-ных пафтенов чем больше, чем короче их боковые цепи, поскольку циклические системы, как правило, крекируются труднее. Наряду с реакцией расщепления нафтены еще и очень небольшой степени претерпева от дегидрирование с образованием ароматических циклов. Находящиеся в продуктах крекинга ароматические углеводороды, которые отсутствовали в исходном сырье, обязаны своим происхождепием в основном реакциям дегидрирования. [c.228]

    Парофазные бензины состоят из олефинов (45—50%), ароматических углеводородов (40—45%) и нафтенов. Они не содержат парафинов, обладают неприятным запахом, быстро желтеют и осмоляются при хранении, выделяя слой черной смолы октановое число достигает 80—90. Парофазные бензины не могут быть применены непосредственно, их предварительно подвергают очистке и стабилизации лишь после такой обработки бензин становится стойким к хранению, теряет неприятный запах и обладает высокой антидето-национной способностью. Вследствие высокого процента образования газа, выходы парофазных бензинов меньше, чем жидкофазных. Крекинг-газы представляют собой ценное сырье для химической промышленности. [c.312]

    Дегидроциклизация парафинов (с числом атомов С не менее шести) происходит через стадию образования олефина, его последующую циклизацию до нафтена и дегидрирование нафтена в ароматический углеводород. Несмотря на то что при температурах промышленного риформинга ( — 500 °С) эта реакция, казалось бы, термодинамически маловероятна, образование даже малых концентраций нафтенов вызывает их быстрое превращение в ароматические углеводороды. Однако в целом дегидроциклизация парафинов протекает значительно медленнее и менее селективно, чем дегидрогенизация нафтенов, и сопровождается крекингом (точнее гидрокрекингом) исходных молекул, так как образующися олефины насыщаются водородом. Образующиеся легкие парафины Сб—Сб частично также подвергаются изомеризации, однако для этой реакции благоприятны более низкие температуры. [c.187]

    Как известно, в качестве сырья каталитического крекинга используется целый ряд нефтяных фракций, в состав которых входят парафины, нафтены и ароматические углеводороды, обладающие различными молекулярными массами и реакционной способностью. Основные продукты каталитического крекинга образуются в результате сложной последовательности первичных и вторичных реакций каталитического крекинга и, до некоторой степени, реакций термического крекинга. На рис.1 приведено в общем виде уравнение реакции крекинга нафтенов, которая может протекать различными путями с образованием самых различных углеводородных продуктов в зависимости от условий реакции и типа катализатора. Для производства бензина с максимальным выходом, предпочтительным является процесс, приводящий к образованию углеводородов с максимальными октановыми числами /ОЧ/, т.е. получению продукта, обогащенного изопарафинами и ароматическими соелиненнями- [c.248]

    Турбинное топливо. Средний дистиллят можно превратить в турбинное топливо или, в конце концов, в сырье для подбора композиции турбинного топлива, но при этом требуется предварительная гидроочистка. Основной проблемой является, вероятно, снижение высокого содержания ароматических соединений. Фракция масла Синтойл содержит 27% moho-, 21% ди- и 8% многоядерных соединений, что значительно выше, чем уровень 25% (об.), допускаемый для турбинного топлива. Гидроочистка под высоким давлением может насытить многие ароматические структуры, превратив их в нафтеновые вещества, и таким образом улучшить максимальную высоту некоптящего пламени и теплотворность. Однако в присутствии значительных количеств нафтенов может стать необходимым снил ение содержания ароматических соединений практически до нуля, та4( как ее способность к образованию дыма возрастает в присутствии нафтенов. Наконец, наиболее эффективным процессом переработки этой фракции в турбинное топливо должно быть гидрирование в нафтеновые структуры с последующим селективным крекингом этих насыщенных соединений в разветвленные парафины и в одноядерные ароматические соединения, содержащие парафиновые заместители. [c.202]

    Таким образом, изомеризация гексена в циклогексан дает отрицательные значения изменения свободной энергии до 540° С и очень малые положительные значения при более высоких температурах (до 700° С). Реакция термодинамически возможна при всех температурах промышленного крекинга. Однако не имеется прямых доказательств изомеризации олефинов с циклизацией в соответствующие нафтены ни в некаталитических процессах при высоких температурах, ни в каталитических процессах при умеренных и низких температурах. Образования Сд-или С -нафтенов из изомерных олефинов не наблюдалось ни при каких условиях. С другой стороны, имеется много косвенных доказательств возможности такой изомеризации. При крекинге высокомолекулярных олефинов преобладают рассмотренные выше реакции полимеризации и разложения. Однако жидкие продукты крекинга, особенно высококипящие фракции, содержат различные циклические углеводороды, включая нафтены и ароматику. В присутствии хлористого алюминия олефины легко дают циклические углеводороды, особенно в высококипящих фракциях. Возможно, что обра- [c.54]

    Дегидрогенизация нафтенов, относяш,ихся к производным циклогексана и полицикл ическим углеводородам с шестичленными циклами, является очень важной реакцией термического крекинга. Как было указано выше, полициклические углеводороды с шестичленными циклами легко дегидрогенизуются в соответствующие нолицикличе-ские ароматические углеводороды. Моноциклические углеводороды ряда циклогексана дегидрогенизуются значительно труднее, вероятно, только в последних фазах крекинга. Ароматические углеводороды крекикг-бензина и других фракций крекинга образуются в различных фазах процесса, главным образом в результате дегидрогенизации нафтенов, присутствующих в исходном сырье. Образование ароматики из олефинов или олефинов и диолефинов в значительной степени происходит только при высоких температурах, например при крекинге в паровой фазе и других процессах, протекающих при вь соких температурах. Однако даже при крекинге в паровой фазе большая часть ароматических углеводородов получается в результате дегидрогенизации [c.70]

    Основными реакциями при крекинге нафтенов являются деалкилирование (отщепление парафиновых боковых цепей) и дегидрогенизация в ароматические углеводороды эти реакции могут происходить одновременно. Дегидрогенизуются только шестичленные нафтены. Деалкилирование нестабильных, длинных парафиновых боковых цепей происходит в первых стадиях крекинга. В процессе крекинга нафтены с длинными боковыми цепями постепенно превращаются в нафтены или ароматические углеводороды со сравнительно короткими боковыми цепями. Короткие боковые цепь, особенно метильная и этильная группы, будучи термически стабильны, не подвергаются дальнейшему деалкилированию в условиях промышленного крекинга. Парафиновые боковые цепи расщепляются с образованием газообразных, а также низкокипящих парафинов и олефинов вместе с низкомолекулярными моноциклическими нафтенами и деалкилированной ароматикой. [c.76]

    Как уже неоднократно подчеркивалось в главе 1, углеводороды в условиях крекинга дают продукты разложения и конденсации. Ароматика и в некоторой степени олефины обусловливают реакции конденсации. Реакции ароматизации и реакции дегидрогенизации нафтенов играют очень важную роль в процессах конденсации. Реакции образования ароматики являются предварительной стадией для дальнейших реакций конденсации. [c.133]

    Обнаружено значительное различие между результатами этих двух опытов. Интенсивное образование асфальтенов и кокса в первом случае сопровождалось заметным увеличением удельного веса остатка. Во втором случае после удаления ароматики коксообразование составляло только /зо долю того, чтобы было в первом случае. Нафтеновые углеводороды парафинистого дестиллата, оставшиеся после удаления ароматики при обработке серной кислотой, не образуют кокса в начальных стадиях крекинга. Коксообразование начинается только в глубоких стадиях крекинга, ксгда часть нафтенов дегидрогенизуется в][ ароматику. [c.140]

    Нафтены крекинг-бензинов являются производными циклопентана или циклогексана. Присутствие других нафтенов не доказано. К сожалению, парафины крекинг-бензинов относятся к нормальным или только слегка разветвленным парафинам. Нужно подчеркнуть, что малоразветвленные октаны или высшие парафины обладают невысокими октановыми числами. Например, изооктан, имеющий одну боковую цепь, обладает октановым числом около 50. Октановое число нонанов и деканов с одной боковой цепью близко или ниже 30. Тогда как только присутствие высокоразветвленных парафинов (по меньшей мере, с двумя боковыми цепями в молекуле с семью и восемью атомами углерода, или с тремя боковыми цепями в молекуле с девятью или больше атомами) обеспечивает достаточно высокое октановое число парафинистых бензинов. Крекинг-бензины со значительным количеством парафинов, полученные из пенсильванской или мидконтинентской нефти, шяеют низкое октановое число, соответствующее нормальной или слегка разветвленной структуре молекул. Парафинистые бензины гидрогенизации также имеют низкое октановое число. Преимущественно образуются парафины с прямой или слегка разветвленной цепью, так как высокие температуры крекинга благоприятствуют образованию более стабильных нормальных парафинов (уравнение 2). Браме и Хунтер [5], однако, выделили из крекинг-бензина процесса Кросса некоторые изопарафины. Каталитические бензины Удри, вероятно, содержат большое количество изопарафинов благодаря реакциям алкилирования, протекающим в присутствии катализатора, как это указывалось выше. Петеркин с сотрудниками [36а] дают такие высокие цифры содержания изопарафинов в бензинах Удри, как 63% в бензине из парафинистого сырья и 47% в другом бензине из нафтенового сырья. В статье, однако, не указан метод определения изопарафинов. [c.308]


Смотреть страницы где упоминается термин Нафтены образование их при крекинге: [c.339]    [c.118]    [c.135]    [c.159]    [c.130]    [c.66]    [c.113]    [c.122]    [c.263]    [c.352]    [c.458]    [c.225]    [c.96]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Нафтены



© 2025 chem21.info Реклама на сайте