Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоны к олефинам

    Для получения N-замещенных амидов могут быть использованы изопарафины С этой целью изопарафины обрабатывают концентрированной серной кислотой, нитрилами (или цианистым водородом) и соединениями, дающими в условиях реакции ионы карбония (олефины, спирты, алкилгалогениды). Первая стадия реакции заключается в переносе гидрид-иона от изопарафина к иону карбония . При этом из изопарафина образуется новый ион карбония, который далее реагирует по обычной схеме реакции Риттера (см. стр. 255). Например, из изопентана в присутствии нитрила, трет-бутанола и серной кислоты после гидролиза образовавшегося амида получен 2-амино-2-метилбутан. (наряду с трет-бу-тиламином). Выходы достигают 78%. [c.254]


    Как уже упоминалось в связи с катионной полимеризацией (стр. 143), хлористый алюминий и другие кислоты Льюиса применяются в присутствии минеральных кислот или других доноров протонов. Трехфтористый бор, например, может служить катализатором для таких изомеризаций, если он используется вместе с фтористым водородом [9]. Фактически для начала реакции достаточно незначительного количества веществ, способных давать ионы карбония (олефины, спирты и т. д.). При использовании чистого хлористого алюминия и чистого парафина реакция не происходит. В том случае, когда имеется ион карбония, реакция протекает следующим [c.165]

    Исследования, проведенные с твердым фосфорнокислым катализатором, показали, что олигомеризация пропилена при концентрации его свыше 3,1 моль на 20 г катализатора проходит как реакция первого порядка [87]. Опыты с фосфорной кислотой на силикагеле [88] показали, что доля димеров и тримеров увеличивается с повышением содержания воды. Результаты эти истолковываются так на первой стадии происходит отложение пропилена на кислом катализаторе и образование сложных эфиров фосфорной кислоты, которые затем реагируют с пропиленом. В результате образуются ионы карбония, которые присоединяются к другим молекулам олефина или путем отдачи одного протона стабилизируются на анионах фосфорной кислоты при этом выделяются олигомеры. [c.249]

    Карбкатион, образующийся при взаимодействии протона с олефином, называют карбений ионом. Термин "карбоний ион", часто неправильно используемый в литературе, относится к карбкатиону, о(>разующемуся в результате присоединения протона к парафину  [c.92]

    Было найдено, что при низких давлениях в интервале температур от 200 до 400° скорость дегидратации имеет первый порядок по спирту и она не превышает скорости сорбции. Такие результаты можно объяснить, если предположить, что единственная стадия, определяющая скорость реакции, протекает на поверхности катализатора. Предполагается, что эта стадия состоит в ионизации молекулы сорбированного спирта с образованием положительного иона карбония и иона ОН". При этом ион карбония быстро разлагается на адсорбированный нротон Н"" и олефин  [c.541]

    По данным приведенной табл. 2 видно, что существует большое различие в теплотах реакции образования различных ионов карбония из того же самого олефина  [c.119]

    Эти энергетические данные указывают на преимущественное образование вторичных алкил-ионов сравнительно с нормальными и третичных ионов сравнительно со вторичными благодаря разнице в теплотах от 15 до 25 ккал моль в первом случае и 10 ккал моль во втором. Эти величины, комбинированные с теплотой образования родственных им олефинов, дают возможность судить о теплоте изомеризации ионов карбония (табл. 3). [c.119]


    Рассматривая вес приведенные данные в целом, можио заметить, что 1) из альфа-олефинов с открытой цепью наблюдается образование скорее вторичных ионов карбония, чем первичных 2) для разветвленных олефинов соответствующе структуры особенно характерно образование третичных иоиов, а не первичных и 3) первичные ионы легко изо-меризуются до вторичных или третичных, а вторичные — до третичных. [c.120]

    Реакции такого типа представляют собой важную стадию низкотемпературной полимеризации и алкилирования олефинов над кислыми катализаторами. В соответствии с разницей в энергиях между изомерными формами ионов карбония (табл. 3) образовавшийся ион немедленно изомеризуется, как было показано выше (обычно путем простого смещения протона), до вторичного иона  [c.120]

    Сродство ионов карбония с олефинами [c.121]

    И зависит от сродства олефина с протоном (табл. 2) в этом случае такая реакция может рассматриваться скорее как общая схема переноса протона между ионами карбония и олефинами на промежуточных стадиях каталитического крекинга. [c.126]

    Качественно установлено, что изомеризация олефинов может проходить над более слабыми кислыми катализаторами или при более мягких условиях сравнительно с условиями изомеризации или крекинга парафинов. Еще болое важными являются наблюдения, показывающие, что олефины в условиях более высоких температур и болео длительного времени контакта с катализатором, т. е. в условиях, необходимых для крекинга парафинов, будут скорое крекироваться, чем изомеризоваться [9, 16]. Можно заключить, что высокая энергия активации, необходимая для образования ионов карбония из нормальных парафинов наряду с высокой температурой, которая обычно требуется для этого, приводит к такому отношению скоростей реакций, когда крекинг преобладает над изомеризацией. В настоящее время Облад и сотрудники [28] изучили в этом отношении два нормальных парафина и несколько изопарафинов при довольно низких температурах (от 100 до 250° С). В условиях, при которых нормальные углеводороды мало изменяются или вообще не изменяются, парафины с третичными атомами углерода интенсивно изомеризуются и крекируются, причем соотношение этих реакций меняется в широком диапазоне в зависимости от молекулярного веса и структуры. Эти результаты представляют особый случай изомеризации парафинов в сильно измененных условиях. [c.128]

    Перенос водорода. Перенос водорода представляет собой сумму двух детально рассмотренных выше реакций 1) захват олефином протона с образованием иона карбония, и далее 2) перенос гидридного иона от любой нейтральной молекулы углеводорода, в результате чего в качестве одного пз продуктов получается парафин, соответствующий исходному олефину. [c.133]

    Полимеризация олефинов. Как говорилось раньше в связи с обсуждением энергетики реакции табл. 4, присоединение иона карбония, полученного при взаимодействии протона с олефином, является необходимой стадией полимеризации олефинов. Новый ион карбония может снова реагировать с мономерами, образуя полимеры, до тех пор, пока не произойдет отщепление протона, что прекратит реакцию. Так, пропен полимери-зуется по механизму  [c.135]

    Образование ионов карбония из олефинов. Протонные кислоты превращают олефины в ионы карбония путем присоединения протона кислоты к поляризованным тг-электронам двойной связи  [c.215]

    Подобный сложный ион карбония был предложен [20] в качестве активного агента полимеризации этилена в присутствии хлористого алюминия. Этот комплекс, содержащий подобно обычному иону карбония, образованному в результате присоединения протона к олефину, атом углерода с дефицитом электронов, отличается от истинного иона карбо- [c.228]

    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]


    Промотирующин эффект, вызываемый олефинами, находит объяснение в цепной теории процесса изомеризации с участием ионов карбония. Олефины реагируют с хлористым водородом, обра- [c.304]

    Можно, наконец, получить такгке свободные кислоты из олефинов, воды и каталитических количеств карбонила никеля без добавления йодистого никеля. При 250—280° и 200 ат окиси углерода в присутствии карбонила никеля из этилена получают пропионовую кислоту с 85%-ным выходом. Если ввести в эту реакцию пропионовую кислоту, то в присутствии про-ниопата никеля образуется с 85%-ным выходом пропионовый ангидрид, важный исходный материал для получения пропиоцеллюлозы. Подобным же образом из олефинов, окиси углерода и первичных спиртов в присутствии [c.219]

    В 1933 г. весьма важные результаты были получены Гейером [25] при воздействия фуллеровой земли и некоторых синтетических катализаторов на пропилен при 350°, хотя Гейер не предполагал, что его результаты могут быть объяснены предложенной недавно теорией реакции с ионом карбония. Гейер быстро пропускал над катализатором пропилен и, кроме полимеров пропилена, получил олефины, парафины и изопарафины, содержащие ст пяти до восьми и больше атомов углерода. Синтетический алюмосиликат обладал приблизительно той же активностью, что и фуллерова земля, а искусственный катализатор, приготовленный из 1 % окиси алюминия на кремнеземе, обладал в 20 раз большей активностью, чем активность лучшей фуллеровой земли. [c.89]

    Реакции иохш карбония, протекающие при каталитическом крекинге, согласно Томасу заключаются в переносе водорода, при котором олефины могут частично превращаться в парафины без добавления водорода извне. Первая стадия состоит во введении иона водорода в молекулу олефина  [c.89]

    Томас указал, что высокие температуры могут быть необходимы для образования малых количеств олефинов, которые в свою очередь образуют ионы карбония для ряда каталитических ценных реакций, идущих по механизму обмена гидрид-иона, предложенному Бартлеттом для алкилирования олефинов парафинами. В связи с проведением таких реакций с малыми количествами олефинов Грихгфельдер отметил, что, как было найдено Пинесом и Уалхером [37], при изомеризации бутана (полагая, что в этом случае [c.89]

    Оба основных механизма — а) крекинг над кислотными катализаторами по ионному механизму и б) термический крекинг по радикальному механизму (при отсутствии катализаторов) соверщенно очевидны. В случае каталитического крекинга постулированные выше ионные реакции являются обратными низкотемпературным (от О до 100° С) реакциям присоединения, протекающими над кислыми катализаторами, а именно, полимеризации олефинов, алкилированию ароматических углеводородов олефинами и алкилированию изопарафинов олефинами. Низкотемпературные реакции над кислыми катализаторами, происходящие, как правило, с участием олефинов, дог1 точно хорошо изучены, и суп ,естБующая по этому вопросу обширная литература [34] позволяет сделать вывод, что механизм этих реакций характеризуется образованием иона карбония как промежуточного продукта. [c.115]

    Образование, как правило, олефинов в этих первичных стохиомет-рических реакциях диссоциации дает возможность подойти к концепции, которая аналогична теории, объясняющей низкотемпературные реакции присоединения над кислыми катализаторами, а именно, объяснить образование иона карбония простым присоединением протона (Н+)к олефину. Прежде всего, необходимо рассмотреть механизм и энергетику этой реакции [c.117]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Воличины для реакции 4 могут быть использованы и для высших нормальных альфа-олефинов, вступающих в реакцию с ионами карбония по следующему уравнению  [c.121]

    В табл. 4 приводится сродство нескольких наиболее важных олефинов с ионами карбония, — что мо>кет дать представление о виличине энергии, свойственной этому типу реакции. Приведенные в таблице цифры рассчитаны по данным табл. 2, 5 и 6. Величины энергии, соответствующие обратным реакциям каталитического крекинга, были получены простой переменой алгебраических знаков в табл. 4 (исключение составляет реакция 2, поскольку в нее включена дополнительная стадия изомеризации).  [c.121]

    Должно быть объяснено также присутствие алкильного иона, такого, как вто/>-пропил-ион. Вообще вполне целесообразно предположить наличие при крекинге предельных углеводородов некоторого термического крекинга, или окисления, приводящих к образованию олефинов. Последние, в свою очередь, быстро образуют над кислотным катализатором ионы карбония Л+, которые затем и инициируют указанную выше реакцию переноса гидридного иона так образуются требуемые ионы карбония из парафинов. Доказательство переноса гидридного иона между третичными структурами в низкотемпературных системах над кислыми катализаторами может быть найдено в работе Бартлетта [1]. Брюйер и Гринсфель-дер [5] установили обмен вторичного гидридного иона с третичным галоидным ионом в аналогичных системах, распространив таким образом этот механизм на важные структуры типа нормальных парафинов и неза- [c.124]

    С т а д и я 5. В случае системы, содержащей парафиновые углеводороды, конечный небольшой относительно труднокрекируемый ион карбония вновь претерневает перенос гидридного иона, как в стадии 1, с образованием низкомолекулярного парафина и нового иона карбония большой воличины. При крекииге олефинов конечный малый ион карбония может возвратить протон ката. гизатору или перенести протон на более крупную молекулу олефина и образовать новый высокомолекулярный ион карбония в обоих случаях конечный ион карбония сам превращается в низший олефин. Последняя реакция имеет вид  [c.126]

    Реакция (1) соответствует бимолекулярной реакции ионного замещения, и реакция (2) формально соответствует механизму крекинга олефина. Ввиду особых свойств бензольного кольца, заключающихся в сильном взаимодействии между шестью углеродными атомами и шестью 7г-электронами, в результате чего образует. я исключительная среди углеводородов молекулярная структура, было бы неразумно для объяснения крекинга ароматических углеводородов искусственно приводить схему (2), основанную на поведении алифатических структур. В итоге можно констатировать, что реакция (1) представляет собой простую конкуренцию между п отоном и ионом карбония за место в ароматическом кольце, тог 1 а как реакция (2) отвечает образованию сильного комплекса протон арен (или катализатор арен) с дальнейшим отщеплением иона карбония. [c.130]

    В заключение можно сказать, что ионный механизм каталитического крекинга обоснован непосредственно большой работой Уитмора по изучению реакций олефинов с участием иона карбония. Многие дополнительные исследования для доказательства ионного механизма были проделаны английскими химиками, детально изучившими ионные механизмы многих органических реакций. Можно упомянуть работу Шмерлинга и Бартлетта по алкилированию олефинов изопарафинами, недавно опубликованную работу Броуна по алкилированию методом Фриделя-Крафтса ароматических углеводородов алкил- и арилгалоидами и цитированную уже работу Бика и сотрудников. Физические данные были получены посредством спектроскопического изучения растворов углеводородов в кислотах, которые, как считается, генерируют ионы карбония, и посредством определения потенциалов, появления углеводородных ионов, особенно алкил-ионов в масс-спектрометре. Отсюда можно было перейти к термодинамическим данным, что дает возможность предсказывать некоторые важные свойства ионов карбония. [c.138]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    Реакции, инициированные перекисями. В присутствии свободных радикалов четыреххлористый углерод конденсируется с олефинами легче, чем с участием ионов карбония. Так, перекись ацетила индуцирует реакцию четыреххлористого углерода с октеном-1, в результате которой получается 1,1,1,3-тетрахлорононан [31, 32]. Носителями цепи являются радикалы трихлорметила  [c.222]

    Термическая изомеризация. Как уже говорилось выше, в противоположность ионам карбония свободные радикалы редко подвергаются перегруппировке. Этим объясняется отсутствие скелетной избмеризации олефинов в термических условиях. С другой стороны, в таких жестких условиях, по-видимому, происходит изомеризация с миграцией водородных атомов. Например, пентен-1 при температуре 550—600° С изомеризуется до пентена-2 [21, 22]. В этом случае наиболее вероятен цепной механизм с участием аллильпых радикалов. [c.235]

    Крекинг парафиновых и циклопарафиновых углеводородов можно рассматривать как реакцию деалкилирования и механизм его — как механизм,обратный механизму реакции алкилирования. Основной реакцией каталитического крекинга является разложение иона карбония на меньший ион карбония и олофин (правило 2), тогда как для термического крекинга основной реакцией является разложение свободного радикала на меньший радикал и олефин (правило 2 ). В обоих случаях имеет место расщепление связи С—С в бета-положении с образованием трехвалентного атома углерода. Вследствие существенных различий в поведении ионов карбония и свободных радикалов продукты каталитического и термического крекингов заметно отличаются друг от друга. Например [17], при jtpeKHHre гексадеканов в присутствии алюмосиликатных катализаторов [c.235]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    В результате крекинга парафиновых углеводородов в присутствии хлористого алюминия, промотированного хлористым водородом, образуется смесь продуктов большего и меньшего молекулярных весов, чем исходный парафин. Такая реакция, известная как автодеструктивное алкилирование [24], предполагает каталитический крекинг, сопровожда-юш,ийся алкилированием путем присоединения третичного алкильного иона карбония к промежуточному олефину. [c.237]


Смотреть страницы где упоминается термин Карбоны к олефинам: [c.174]    [c.186]    [c.215]    [c.6]    [c.88]    [c.118]    [c.119]    [c.120]    [c.127]    [c.128]    [c.133]    [c.134]   
Введение в электронную теорию органических реакций (1965) -- [ c.404 , c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены Олефины гидроформилирование Карбони

Замещение карбонила олефином

Карбоний-ион при полимеризации олефинов

Карбонилы металлов замещение групп олефино

Конформационные эффекты на образование олефинов из карбониевых ионов

Механизмы ионов карбония из олефино

Олефины алкилирование карбониевыми ионами

Олефины реакции с карбониевыми нонам

Основные параметры реакции гидроформилирования олефинов на карбонилах родия

Присоединение карбониевых ионов к олефинам и обратные им катионные реакции распада

Реакции карбониевых ионов с олефинами



© 2024 chem21.info Реклама на сайте