Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Радикальные растворителей

    При жидкофазном нитровании парафинов энергия, необходимая для ионного разрыва химических связей, сообщается растворителем, который благодаря своему полярному характеру сольватирует ионы. Как отмечает Бахман с соавторами [2] и Уотерс [62], большинство газовых реакций протекает по радикальным механизмам. Бахман с соавторами 2] в недавно опубликованных статьях привел много экспериментальных данных в пользу свободно радикального механизма реакций, идущих при парофазном нитровании пропана и бутана при 420—425°. Они показали, что прибавление ограниченных количеств кислорода или галоида, которые, как известно, увеличивают концентрации свободных радикалов в паровой фазе, также повышает степень нитрования тетраэтилсвинец, образующий при нагревании этильные радикалы, также благоприятствует нитрованию, Существенно также, что факторы, понижающие концентрацию своб.дных алкильных радикалов в паровой фазе, например присутствие окиси азота или чрезмерные количества кислорода или галоидов, снижают и степень нитрования. [c.81]


    Бирадикальный механизм находится в соответствии с общей нечувствительностью реакции к растворителям и катализаторам. Он также правильно предсказывает течение реакции в случаях возможного образования двух изомеров, основываясь на двух факторах, которые более детально обсуждаются в разделе, посвященном сополимеризации. Одним из них является ожидаемая тенденция, что такая реакция идет через образование наиболее резонансно стабильного радикала [например, один непарный электрон, конъюгированный с карбонильной группой в реакции 15)]. Другим фактором является способность полярных резонансных структур повышать стабильность переходного состояния радикалов, это ведет к образованию того же изомера, что и предсказанный на основе полярного механизма. Отмечалась также близкая аналогия между радикальным механизмом и термическим инициированием процесса, наблюдающихся в некоторых случаях реакции полимеризации [36]. В качестве аргумента против такого механизма было выставлено то, что инициаторы радикалов, подобные перекиси бензоила, не ускоряют реакцию Дильса-Альдера. Однако это фактически не относится к обсуждаемому вопросу, так как реакция включает стадию (15), являющуюся процессом термического образования бирадикала, который в большей степени, чем любой другой процесс, мог бы быть инициирован присоединением посторонних радикалов по двойной связи. [c.181]

    В жидкой среде катализ протекает по гетерогенно-гомогенному механизму значительно чаще, чем в газовой. Это происходит по ряду причин 1) вследствие большей скорости, чем в газовых средах гомогенной некаталитической реакции, интенсивность которой часто бывает соизмерима с гетерогенной реакцией на твердых катализаторах 2) в жидких средах нередко катализатор -выступает лишь как возбудитель цепной радикальной реакции, которая продолжается гомогенно в растворе 3) вследствие влияния растворителя. [c.53]

    В отличие от радикальной полимеризации константы скорости роста, обрыва и передачи цепи при ионной полимеризации характерны не для того или иного мономера, а только для определенной системы мономер - катализатор - сокатализатор -растворитель, ибо противоион расположен достаточно близко, оказывая существенное влияние на реакции ионизированного конца растущей цепи, а степень ионизации зависит от природы растворителя. [c.257]

    Тетрафторэтилен и хлортрифторэтилен полимеризуются радикально и образуют продукты, устойчивые почти ко всем растворителям кроме того, они отличаются чрезвычайно высокой термостойкостью, что, однако, затрудняет их обработку. [c.940]


    Новые возможности в получении препрегов без применения растворителей открывают методы радиационно-химического отверждения связующего, проводимого в две стадии а) за счет ионизирующего излучения (радикальная полимеризация) и б) доотверждения при нагреве (стадия поликонденсации или ступенчатой полимеризации [9-20]). [c.524]

    При хлорировании непредельных соединений, как правило, хлор барботируют через раствор непредельного соединения в соответствующем растворителе, при бромировании и иодировании к раствору непредельного соединения по каплям прибавляют раствор галогена в том же растворителе. В качестве растворителя при галогенировании используют галогеналканы, уксусную кислоту, простые и сложные эфиры и другие органические жидкости, не взаимодействующие с галогеном в условиях реакции присоединения, а также воду. Полярные растворители способствуют гетеролитиче-скому протеканию реакции. Чтобы избежать свободнорадикального течения, реакции проводят в темноте и в присутствии ингибиторов радикальных реакций. [c.121]

    Высокие анодные потенциалы необходимы для генерирования частиц радикального типа из молекул субстрата, растворителя и (или) соответствующих компонентов раствора (например, Р из НР или Р ). Образование таких частиц и их дальнейшие превращения определяются не только собственно высоким значением потенциала электрода, но и структурой поверхностного слоя, включающего в себя оксиды, адсорбированные ионы и органические частицы (см. гл. 3). Синтез продуктов радикальных превращений возможен и при <2,0 В, однако в этих условиях преимущественно протекают реакции деструктивного окисления исходных органических веществ до воды, оксида углерода (IV), оксида углерода (И), формальдегида и т. п. [c.289]

    Реакция протекает на поверхности магния и имеет, вероятно, радикальный характер. R—fAg—Hal как кислота Льюиса координируется с основным растворителем (чаще всего диэтиловым эфиром, тет- [c.77]

    Влияние растворителя на радикальные процессы проявляется значительно слабее, чем на гетеролитические или ион-радикальные, поскольку радикалы являются незаряженными частицами. В ряде случаев, однако, обнаруживается способность радикалов образовывать п- или (т-комплексы с растворителями  [c.241]

    Для радикальных реакций характерно проявление клеточного Э( х №кта, суть которого заключается в том, что образующаяся радикальная пара заключена в оболочке из молекул растворителя и может многократно рекомбинироваться, прежде чем произойдут диффузия радикалов за пределы клетки и их дальнейшие преобразования. [c.241]

    Пример 38. Вычислите, в какой степени следует разбавить растворителем реакционную смесь при радикальной полимеризации, чтобы начальная скорость реакции уменьшилась на 27 %. Как при этом изменится длина кинетической цени Допускается, что растворитель инертен. [c.24]

    Пример 53. Реакционная смесь, содержащая мономер и инициатор, разбавлена смесью растворителей А и В до концентрации мономера 1 моль л . В каком отношении следует брать эти растворители, чтобы получить полимер с Х = 2000, если радикальной полимеризацией в массе был получен полимер с начальной среднечисловой степенью полимеризации 20000. Молекулярные массы мономера и растворителей 80, 257, 110, плотности при температуре реакции - 1,20, 1,10 и 0,95 г/см См = 1,5-10- Сд = 310- Св = 810- = С1 = 0. [c.36]

    Как изменятся начальные скорость и длина кинетической цепи при радикальной полимеризации, если реакционную смесь разбавить до увеличения объема на 69 % растворителем, не ингибирующим полимеризацию  [c.44]

    Радикальная полимеризация первоначально проводилась в растворе А ([М] =4 моль-л , [А] = 6 моль-л ) и был получен полимер с начальной среднечисловой степенью полимеризации, равной 800. Вычислите степень полимеризации после разбавления реакционной смеси равным объемом растворителя В (плотность при температуре реакции 1,0 г см , молекулярная масса 143), если Сд = 210" , Св = 810 , м = 3 10 С, = 0. [c.53]

    Начальные скорости радикальной полимеризации, обрыва цепи (диспропорционированием) и передачи цепи на мономер и растворитель равны соответственно 3,4 10 3,1 10 , 1,2-10 и 0,9 -10 моль - л - с Вычислите значение Каким оно станет, если s увеличить в 10, 100 и 1000 раз  [c.55]

    Для инициирования радикальной полимеризации при комнатной или пониженной температуре могут быть использованы окислительно-восстановительные системы. Реакцию окисления — восстановления проводят в среде, содержащей мономер. Полимеризацию вызывают свободные радикалы, образующиеся в качестве промежуточных продуктов реакции. Можно подобрать пары окислитель — восстановитель, растворимые в воде (пероксид водорода— сульфат двухвалентного железа персульфат натрия — тиосульфат натрия и др.) или в органических растворителях (органические пероксиды — амины органические пероксиды —органические соли двухвалентного железа и др.). В соответствии с этим радикальную полимеризацию можно инициировать как в водных, так и в органических средах. [c.8]


    Константы скорости и энергия активации роста цепи в первую очередь зависят от природы мономера. Растворители, не склонные к специфическому взаимодействию с молекулами мономера и растущими радикалами, не влияют на реакцию роста радикальной полимеризации. [c.9]

    Взаимодействие растущего радикала с молекулой передатчика цепи приводит к прекращению роста данной материальной цепи, т. е. снижает молекулярную массу образующегося полимера. Способность растворителей участвовать в передаче цепи при радикальной полимеризации данного мономера характеризуют константой передачи Сз = (табл. 1.1). Реакции передачи цепи широко используются при синтезе полимеров для регулирования их молекулярных масс. Для уменьшения молекулярной массы синтезируемого полимера обычно применяют передатчики со значениями Сз > 10 которые называют регуляторами, например  [c.12]

    Кинетические закономерности и механизмы ионной полимеризации имеют более сложный характер, чем в случае радикальной, так как промежуточные активные центры могут сосуществовать в равновесии в виде различных форм свободных ионов, ионных пар, поляризованных комплексов и др. Смещение этого равновесия в ту или иную сторону путем изменения условий проведения реакций (температуры, природы растворителя, катализатора и др.) позволяет достаточно активно воздействовать на кинетику процесса и структуру образующегося полимера, что, как правило, исключается в случае радикальной полимеризации. [c.18]

    Единой кинетической схемы для описания скорости катионной полимеризации и расчета молекулярных масс получаемых полимеров не существует, поскольку практически каждая конкретная система мономер — катализатор — растворитель характеризуется индивидуальными кинетическими закономерностями. Общим для большинства катионных систем является то, что скорость процесса пропорциональна концентрации возбудителя в первой степени, а молекулярная масса не зависит от концентрации катализатора (в отличие от радикальной полимеризации). [c.20]

    Полимеризация в блоке (в массе) — это полимеризация мономера в конденсированной фазе в отсутствие растворителя. При проведении реакции до полного превращения мономера получают монолит (блок), имеющий форму сосуда, в котором находился исходный мономер. При блочной полимеризации можно использовать как инициаторы радикальной, так и катализаторы ионной полимеризации, растворимые в мономере. Основным достоинством данного способа является возможность использования блоков полимера без последующей переработки и отсутствие стадии отделения от растворителя. Основной недостаток — сложность отвода выделяющегося тепла, особенно при высокой вязкости системы. [c.28]

    Константа скорости и энергия активации роста цепи зависят от химической природы мономера. Химическая природа растворителя не влияет на константы скоростей при радикальной полимеризации. Скорость обрыва цепи описывается уравнением [c.388]

    Эмульси01Н1ая радикальная полимеризация 0,30 массовой доли стирола и 0,70— бутадиена. 2. Конденсация 0,70 массовой ДС ЛИ стирола II 0,30 — бутадиена. 3. Блочная сополимеризация. 4. Со полимеризация стирола и бутадиена в высококипищем органическом растворителе. [c.279]

    Методики проведения свободно радикальной полимеризации. Полимеризацию в лабораторных условиях проводят путем слабого нагревания небольших количеств мономера (самого мономера или его раствора в подходящем растворителе), обычно в присутствии добавленного инициатора, до тех пор, пока реакция не закончится или не пройдет до желаемой сте пени. Имеются детальные описания методики [36, 127] главное внимание должно быть обращено на то, чтобы для реакции брались достаточно малые количества образцов и чтобы поддерживалась достаточно низкая степень полимеризации, чтобы было возможно контролировать температуру реакции. Желательно также по возможности исключить из системы жислород, так как он часто ингибитирует полимеризацию и дюжот вызвать обесцвечивание или другие нежелательные изменения свойств продуктов реакции. [c.119]

    В отдельных работах указывается, что реакции эти можно заметно ускорит , применением высокого давления (1000—5000 ат) [38]. Температуры, при которых конденсации идут с подходящей скоростью, варьируют в очень широких пределах — от комнатной до 200°. Наиболее общим условием, рекомендуемым для синтетических работ, является нагревание в течение 10—30 час. при 100—170° в растворителе ароматического характера, например в ксилоле. Важно помнить, что во многих случаях с реакцией Дильса-Альдера конкурирует реакция свободно-радикальной сополимеризации олефинов и диолефинов, поэтому часто желательно добавление в такие системы антиокислителей. В качестве примера такой конкурирующей реакции (при соответствующим образом подобранных условиях) может служить реакция бутадиена и акрилонитрила, приводящая к образованию каучукоподобного полимера или тетрагидробензо-нитрила. Кроме того, как будет показано, конденсации по Дильсу-Аль-деру — практически обратимые реакции, поэтому продукты конденсации могут распадаться при более высоких температурах. По этой причине образование и пиролиз таких продуктов присоединения иногда оказываются удобным путем для проведения химического выделения, как, например, при очистке полициклических углеводородов [9, 20]. Однако температура, при которой происходит пиролиз, и выход регенерированного исходного вещества колеблются в широких пределах для разных систем. Некоторые из факторов, влияющих на это, будут обсуждены ниже более детально. [c.176]

    Получение каучуков типа СКФ-26 основано на радикальной сополимеризации фторолефинов, которые в отличие от нефториро-ванных олефинов не вступают в полимеризацию по ионно-координационному механизму или по катионному механизму, но в то же время довольно легко полимеризуются по радикальному механизму (за исключением сильно разветвленных олефинов типа перфтор-изобутилена и др.). Сополимеризация фторированных олефинов с тетрафторэтиленом или винилиденфторидом обычно осуществляется в водноэмульсионной среде, но может проводиться также и в среде растворителя. [c.503]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    В растворах эти побочные реакции идут с участием растворителя, как например, в случае распада натрий-этила в-эфире [272]. Изучение распада этилсеребра в растворе [273] показало, что разложение не инициирует полимеризации стирола или метилметакрилата, как это обычно наблюдается при распаде соединений, поставляющих радикалы. Однако-радикальный механизм распада еще не может быть окончательно исключен на основании этого факта. Термический распад паров тетраэтилсвинца [274], тетраэтилсилиция [275] и тетраэтилгермания [276] изучен только при высоких температурах, и разнообразие образующихся продуктов затрудняет интерпретацию опытных данных. При фотолизе этил-иодида [2771 было найдено, что реакцией рекомбинации диспропорционирования этильных радикалов можно пренебречь по сравнению с другими реакциями этил-радикалов. [c.223]

    Имеются данные о незначительном влиянии природы растворителя ш скорость радикальных реакций. При этом обсуждается возможность сольватации свободных радика юв. В т(елом в.тиянне природы раствортеля на гемолитические реакции значительно ниже, чем на гетеролитические. [c.25]

    Полимеризация простых диенов (бутадиен, изопрен) может инициироваться радикалами или протекать по монному механизму. Полимеризация в растворителях в промышленности вытеснена эмульсионной радикальной полимеризацией. В качестве инициаторов, вызывающих образование свободных радикалов, применяются в первую очередь перекиси (в частности, персульфаты щелочных металлов), затем ароматические диазоэфиры, алифатические азосоедкиения и т. д. находят применение также щелочные металлы (литий, натрий, калий) и комплексные соли Циглера. [c.953]

    Реакция полимеризации протекает по типу радикальных процессов, инициатором ее служат перекиси, в том числе персульфаты. Введение в реакционную смесь и( котарого количества ионов серебра в сочетании с персульфатом заметно улучшает свойства полимера—повышается его твердсзсть и термическая стойкость. Полимеризацию проводят как в органических растворителях (спирт, бензол), так и в водной эмульсии при 45—65 . В результате полимеризации образуется тэнкнй порошок. [c.260]

    Анализ продуктов окислительного растворения меди в системе бензилбромид-диполярный апротонный растворитель-кислород без и в присутствии дициклогексилдейтерофосфина (ловушки радикалов) свидетельствует о протекании процесса по радикальному механизму через образование бензильного радикала. [c.39]

    На радикальную природу механизма окислительного растворения меди в системе бензилбромид-диполярный апротонный растворитель в присутствии кислорода указывает также исчезновение в процессе реакции введенного стабильного радикала 2,2,6,6-тетра-метилпиперидин-1-оксила (ТМПО), способного взаимодействовать с радикальными интермедиатами, т. к. сигналы ЭПР ТМПО не появлялись после окисления меди и восстановления реакционых смесей К1 [2]. [c.39]

    R--t-( eH6hN- - RN( eH6)j Большое число радикальных реакций проводится в газовой фазе. При проведении радикальных реакций в растворах природа растворителей сказывается иа кинетике этих процессов в значительно меньшей степени, чем на кинетике реакций, протекающих по ионному механизму. Олнако в ряде случаев растворитель оказывает заметное влияние на селективность процесса. Так, например, при свободнорадикальном хлорировании 2,3-диметилбутана замена [c.148]

    При радикальной полимеризации, проведенной в массе мономера, получен полимер с начальной среднечисло й степенью полимеризации 1500. Каким станет значение Х , если реакционную смесь разбавить девятикратным по объему количеством растворителя. Плотность мономера и растворителя щэи температуре реакции соответственно составляет 1,0 и [c.49]

    Многообразие известных аитиоксидантов объясняется сложностью выбора подходящего стабилизатора для того или иного полимера. Эта сложность заключается ие только в том, что аитиоксидапт, эффективный для стабилизации одиого полимера, может оказаться неэффективным для другого, но и в том, что обычно используемые в промышленности антиоксиданты (низкомолекулярные вещества) в большей или меньшей степени обладают рядом недостатков. Это — ограниченная совместимость с полимерами, высокая летучесть, способность вымываться из полимеров водой или органическими растворителями и т. д. Решение проблемы выбора рациональных стабилизаторов упрощается, если вместо низкомолекулярных антиоксидантов использовать высокомолекулярные (ВАО), в состав которых входят группы, способные обрывать радикальные процессы окисления защищаемых полимеров. Высокомолекулярные антиоксиданты прежде всего нелетучи, поскольку это свойство является общим для всех полимерных веществ. Выбором полимерной матрицы и количества ингибирующих групп в ВАО легко решается проблема совместимости таких стабилизаторов с полимером. [c.30]

    Резкая зависимость скорости реакции замеи1 епия от темпе-])атуры, отсутствие избирательности и влияния природы растворителя, а также ингибирование процесса замещения кислородом воздуха позволили заключить, что рассматриваемая реакция споитатю протекает по цепному радикальному механизму. Процессы этого типа называют молекулярно-индуцированным гомолизом [3], и механизм образования радикалов в таких системах до сих пор окончательно не выяснен. [c.48]


Смотреть страницы где упоминается термин Радикальные растворителей: [c.134]    [c.220]    [c.131]    [c.73]    [c.45]    [c.102]    [c.137]    [c.143]    [c.256]    [c.323]    [c.466]    [c.26]    [c.17]   
Введение в электронную теорию органических реакций (1965) -- [ c.541 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние растворителя на электронно-спиновые параметры радикального фрагмента

ГП Влияние растворителя на элементарные реакции радикальной поли—меризации

Радикальное замещение влияние растворителей

Растворителей влияния на радикальные реакции

Растворитель диэлектрическая постоянная, влияние на радикальные реакции

Растворитель нечувствительность радикальных реакций

Растворитель отличие в действии в ионных и радикальных реакция

Роль комплексообразования реагентов с растворителем в кинетике радикальных реакций



© 2025 chem21.info Реклама на сайте