Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Щелочные металлы на катионитах

    Различия в результатах реакции становятся весьма существен ными, если изменить механизм процесса замещения, перейдя от нуклеофильного типа к электрофильному и использовав вместо катиона щелочного металла катион Ад .Так, если при алкилировании цианидов щелочных металлов в) с помощью галоидопроизводных ион N0 реагирует своим атомом углерода, электроотрицательность [c.332]


    Классическими представителями ионных кристаллов являются галогениды щелочных металлов. Катионы М+ и анионы Х расположены упорядоченно в кубической решетке каждый анион непосредственно окружен находящимися на расстоянии г от него 6 катионами, и наоборот. Следующие сферы включают 12 анионов, находящихся на расстоянии гд/З от исходного аниона, и, наконец, еще 8 катионов — на расстоянии г. В первом приближении можно полностью пренебречь вкладом ковалентной связи и принять во внимание лишь кулоновское взаимодействие ионов М+ и Х-. Учитывая, что в гипотетической двухатомной молекуле М+Х- потенциальная энергия такого взаимодействия составляет е /4л еоГ (где г — расстояние М+...Х ), можно записать потенциальную энергию V взаимодействия иона М+ с двумя ближайшими сферами анионов (содержащими 6 и 8 анионов) и первой ближайшей сферой катионов (12 катионов) следующим образом  [c.322]

    ЩЕЛОЧНЫЕ МЕТАЛЛЫ Катионный обмен [c.301]

    Считают, что в кристаллах галогенидов щелочных металлов катионные и анионные вакансии присутствуют в равных количествах. [c.53]

    Посторонние электролиты часто добавляют в раствор для увеличения электропроводности. Иногда добавка приводит к повышению, чаще же (особенно в случае общего аниона) к понижению активности ионов основной соли. Это повышает поляризацию и способствует образованию более мелкокристаллического осадка. Особенно сильно влияют в кислых ваннах добавки минеральных кислот, в щелочных — свободных щелочей, в цианистых — цианидов щелочных металлов. Катион добавленного электролита, не разряжаясь на катоде, накапливается в слое раствора у катода, повышает его электропроводность, что позволяет 34 Зак. 4755. Хомяков и др. 529 [c.529]

    Катионы фона — ионы двухвалентных щелочноземельных металлов — оказывают также существенное влияние на электровосстановление нитробензола и 3-нитропиридина в диметилформамиде [33]. В присутствии двухвалентных катионов кальция, бария и магния на поверхности электрода образуются отложения их соединений с анион-радикалами (NB ,M ), где NB — нитробензол. В присутствии щелочных металлов — катионов фона — наблюдаются две волны, а на фоне солей щелочноземельных металлов — только одна четырехэлектронная (из-за неустойчивости анион-радикалов, образующихся на первой стадии процесса). Но в хорошо осушенном растворителе все же удается наблюдать разделение волн на фоне двухвалентных катионов, особенно на пульс-полярограммах. На циклических кривых с достаточно большими скоростями сканирования потенциала — более 0,1 в сек — для них можно наблюдать анодный пик, отвечающий окислению NB . Различие между потенциалами ников и -Ё рк зависело от природы катионов 70 и 150 мв для перхлоратов бария и магния соответственно. Столь большое различие объяснялось образованием новой окислительно-восстановительной пары нитрозобензол — анион-радикал нитрозобензола NOB/NOB , которая стабилизировалась в присутствии кальция и бария, но была неустойчивой в присутствии одновалентных катионов фона. [c.110]


    Щелочные металлы образуют также молекулы гидридов МН. В кристаллах гидридов щелочных металлов со структурой хлористого натрия водород образует анионы Н , а щелочные металлы — катионы. Поэтому можно ожидать, что вязи в газообразных молекулах щелочных металлов будут-частично-ионными (с участием состояния М+Н"). Это должно привести к выигрышу энергии резонанса с ионными состояниями и положительным значениям Д. Но из табл. 4 видно, что для Ы, NaH и КН значения Д отрицательны. [c.58]

Рис. 1. Хроматографическое разделение смеси щелочных металлов (катионит РФ). Рис. 1. <a href="/info/39784">Хроматографическое разделение</a> смеси <a href="/info/6862">щелочных металлов</a> (катионит РФ).
    И связанного с этим уменьшения потенциала пары 2Н+/Н2 предупредить выделение водорода при электролизе можно также, проводя электролиз с ртутным катодом. Перенапряжение водорода на ртути особенно велико (около —1 в), поэтому применение ртутного катода дает возможность количественно выделять многие металлы, которые нельзя осадить на платине вследствие выделения водорода. Другое преимущество ртутного катода заключается в том, что выделяющиеся металлы образуют с ртутью амальгамы— разбавленные растворы этих металлов в ртути, и значительно меньше переходят в раствор (т. е. окисляются), чем эти же металлы в чистом виде. Вследствие этого на ртутном катоде можно выделить (при низкой концентрации Н+-ионов) даже щелочные металлы. Большое значение имеет применение ртутного катода для отделения Ре + и ряда других катионов от А1 +, Цз+ и т. д. [c.436]

    Зависимость относительной теплоты гидратации катионов от их радиуса (/ ) в ряду гидроксидов щелочных металлов [c.50]

    Из выражения (7.79) следует, что в щелочных растворах потенциал стеклянного электрода зависит от активности катиона щелочи и, следовательно, его можно использовать в качестве индикаторного злектрода для определения активности ионов соответствующего щелочного металла. Если источником катионов служит только раствор щелочи, тогда ам+=аон , а так как ап+аон-=Л 1в, та для щелочной области растворов вместо (7.79) можно написать [c.176]

    Тетраэдры с ионами 31 + электрически нейтральны, а тетраэдры с ионами трехвалентного алюминия АР имеют заряд минус единица, который нейтрализуется положительным зарядом катиона Ме (сначала катионом Ыа+, поскольку синтез чаще ведется в щелочной среде, затем в результате катионного обмена — катио — н<1ми других металлов, катионом НН или протоном Н ). [c.112]

    Конденсация толуола и метанола на синтетических цеолитах с ионообменными катионами щелочных металлов  [c.321]

    Конденсация толуола и метанола на синтетических цеолитах с ионообменными катионами щелочных металлов / Ю. Н. Сидоренко, П. Н. Галич, В. С. Гутыря, [c.369]

    СИЛЬНО зависит от стерических эффектов, связанных с катионом. Для контактных ионных пар стереоспецифичность более вероятна это проявляется, например, в реакциях Н/О-обмена [28]. Известно, что краун-эфиры превращают многие (но не все см., например, [17]) контактные ионные пары катионов щелочных металлов в разделенные растворителем ионные пары. Последние реагируют менее специфично [28]. Влияние различных эфирных растворителей (например, эфиров поли-этиленгликоля или добавленных краун-эфиров) на структуру ионных пар рассмотрено в обзоре [32]. [c.20]

    В разд. 1.1 межфазный катализ был определен как двухфазная реакция между солями (в твердой форме или в виде водных растворов), кислотами или основаниями и субстратами, находящимися в органических растворителях, протекающая в присутствии так называемых межфазных катализаторов. Типичными представителями таких катализаторов являются ониевые соли или вещества, образующие комплексы с катионами щелочных металлов, такие, как краун-эфиры, криптанды или их аналоги с открытой цепью. Как уже указывалось в разд. 1.1, определение МФК основано скорее на наблюдаемых эффектах, а не на каком-либо едином механизме. Впрочем, широкие исследования этих эффектов привели к выяснению механизма многих реакций МФК. [c.44]

    В более поздней гипотезе, предложенной Макошей 26, 27],. было высказано предположение, что депротонирование субстрата происходит на поверхности раздела фаз. Если катализатор в системе отсутствует, то на поверхности раздела фаз образуется как бы двухслойная структура, включающая со стороны водной фазы катион щелочного металла, а со стороны органической фазы депротонированный анион субстрата. Из-за взаимной нерастворимости в противоположных фазах ионы иммобилизуются и в значительной степени дезактивируются. Эта ситуация похожа на обычную адсорбцию на поверхности. [c.58]


    Как называются соли жирных кислот и катионов щелочных металлов Какие свойства этих солей делают их полезными для нас и как эти свойства проявляются  [c.341]

    Из многих попыток заменить при катионной полимеризации произ водные щелочных металлов другими металлоорганическими соедине ниями наиболее успешной была идея Циглера, предложившего исполь зовать для этой цели алкилалюминиевые соединения и тем самым от крывшего новую главу в химии полимеров. [c.109]

    Катионы или анионы, имеющие слабую энергию связи со своими соседями, вытесняются в поверхностный слой. В шлаках к таким компонентам относятся катионы щелочных металлов, фосфора, [c.82]

    Наличие максимумов на кривых зависимости температуры плавления от молекулярной массы для галогенидов щелочных металлов становится понятным, если учесть ослабление поляризующего действия катионов в ряду Li+ — Na+ — К+ — Rb+ — s+ и усиление поляризуемости в ряду F — 1 — Вг — I-.  [c.114]

    Растворимость солей щелочных металлов с повышением температуры, как правило, возрастает. В ряду Li — s тенденция к образованию кристаллогидратов солей уменьшается (их известно много для лития, меньше — для натрия и совсем мало — для других щелочных металлов), что обусловлено ростом радиусов ионов. В кристаллогидратах катионы щелочных металлов проявляют следующие координационные числа (к. ч.) 4 и 6 у Li+, 6 у Na+ и К+. 8 у Rb+ и s+. В разбавленных водных растворах средние значения к.ч. ионов LI+, Na+, К+, Rb+, s+, по-видимому,. близки соответственно к 5, 6, 7, 8, 8. [c.305]

    Значения ф° для бериллия и его аналогов близки к значениям ф° для элементов подгруппы лития, хотя энергии ионизации атомов элементов подгруппы ПА значительно больше, чем для щелочных металлов, ио это различие в энергиях ионизации компенсируется более высокими энергиями гидратации катионов элементов подгруппы ПА, [c.312]

    Катионы Na+, К+ и т. д. (однозарядные) бесцветные, вследствие чего бесцветны все соединения щелочных элементов (окраска может быть вызвана только цветным анионом типа МпО, СгО , Сг О ). При электролизе водных растворов солей щелочных металлов катионы восстанавливаются только на ртутном катоде (металлы образуют со ртутью амальгамы, см. 21.4), из певодных растворов или из расплава катионы могут быть восстановлены на любых электродах. [c.270]

    Описывая в предыдущем разделе возможную структуру точечных дефектов, мы ограничились рассмотрением кристаллов с металлической или ковалентной связью между атомами. Однако существует многочисленный класс кристаллических веществ, для которых характерна ионная межатомная связь. Типичными представителями ионных кристаллов являются щелочно-галлоидные кристаллы. Их структура такова, что эти кристаллы как бы построены из двух подрешеток подрешетки положительных ионов щелочного металла (катионов) и подрешетки отрицательных ионов галлоида (анионов). Большинство щелочно-галлоидных кристаллов имеет пространственную решетку типа НаС1 (см. рис. 3). В главных кристаллографических плоскостях (1, 1,0) этой решетки катионы и анионы расположены в шахматном порядке, образуя две вставленные друг в друга квадратные решетки (рис. 54). [c.179]

    Некоторые ионы вызывают появление осадков или мути, мешающих открытию кобальта. Так, ионы элементов Ад, РЬ, В1, У(Уз+), А1, 2г и щелочных земель образуют желтую или буроватую муть ионы иОг и Се + образуют осадки бурого цвета ионы Нд+, Т1 + и N 2 образуют буро-красные осадки и, наконец, ион Нд2+ образует красный осадок, почти идентичный с осадком кобальта. Ионы Си + образуют обильный буро-черный за-темняк>щий все осадок. Так же реагируют ионы железа двухвалентное железо дает зелено-черный, а трехзалентное бурочерный осадок. Катион трехвалентного железа может быть маскирован фторидом щелочного. металла (катион двухвалентного железа следует предварительно окислить перекисью водорода или азотной кислотой). [c.160]

    В кристаллах галогенидов ионы галоида значительно больше, чем ионы металла. Эти большие ионы галоида образуют плотную упаковку. В плотной упаковке ионов число октаэдрических пустот равно числу плотно упакованных ионов следовательно, если все пустоты заняты, то соединение имеет формулу МеХ. В структуре Na l ионы хлора находятся в плотной кубической упаковке, а ионы натрия в октаэдрических пустотах между шестью ионами хлора. Однако в большинстве галоидных солей щелочных металлов катионы слишком велики для октаэдрических пустот между плотно упакованными ионами галоида, которые поэтому уже не соприкасаются между собой, а только с окружающими их шестью ионами щелочного металла. Плотная упаковка галоидов имеется только в структурах L1 I, LiBr и LiJ. [c.263]

    Динамические эффекты, наблюдаемые в спектрах ионных пар, привлекают внимание многих исследователей, работающих в области применений ЭПР и ЯМР. Из спектров магнитного резонанса, в которых проявляются такие эффекты, можно извлечь полезную информацию о природе ионных пар. Этот аспект рассматривается в разд. 5 главным образом на примере ионных пар анион-радикалов пирацена со щелочными катионами. Такой выбор обусловлен не только причинами исторического характера, но и тем фактом, что в спектрах ЭПР этих ионных пар проявляются практически все эффекты, наблюдаемые при образовании ионных пар вообще поляризация, сдвиг g -фактора, отрицательная спиновая плотность на ядре щелочного металла, катионный обмен, колебания катионов. [c.349]

    Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусл(Звливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 — металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор солн металла в обмене участвуют катионы металла (см., однако, ниже). Скачок потенциала на границе стекло — раствор, а также ионообменная смола — раствор по5 вляется в результате обмена, в котором участвуют два вида одноименно заряженных ионов. На границах стекло — раствор и катионнг—раствор такими нонами являются ноны щелочного металла и водорода иа границе анионит— раствор это ион гидроксила н какой-либо другой анион. Прн контакте двух несмешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую. [c.28]

    Мортон относит реакцию замещения водорода металлом к реакциям электрофильного замещения, основываясь на убеждении (иризнанном в настоящее время неправильным), что атакующим реагентом является катион щелочного металла, а карбанион играет только второстепенную роль акцептора протонов [229]. С другой стороны, основываясь на расположении нары электронов углерод-водородной связи, которая разрывается, и связи углерод — металл (ионной), которая образуется [159], реакция замещения водорода металлом мон<ет быть определена как электрофильное замещение. По той же причине гидролиз тирет-бутилхлорида определяют как реакцию нуклеофильного замещения [159]. [c.473]

    Вещества, прохождение через которые электрического тока вызывает передвижение вещества в виде ионов ионная проводимость) и химические превращения в местах входа и выхода тока (электрохимические реакции), называются проводниками второго рода. Типичными проводниками второго рода являются растворы солей, кислот и оснований в воде и некоторых других растворителях, расплавленные соли и некоторые твердые соли. Как правило, в проводниках второго рода электричество переносится положительными (катионы) и отрицательными (анионы) ионами, однако некоторые твердые соли характеризуются униполярной проводимостью, т. е. переносчиками тока в них являются ионы только одного знака — катионы (например, в Ag l) или анионы (ВаСЬ, ZrOa + aO, растворы щелочных металлов в жидком аммиаке). [c.384]

    Ионная связь. Связь такого типа осуществляется в результате взаимного электростатического притяжения противоположно заряженных ионов. Ионы могут быть простыми, т. е. состоящими из одного атома (например, катионы Ма+, К , анионы Р , С1") или сложными, т. е. состоящими из двух или более атомов (напрнмер, катион ЫН , анионы ОН, N03, 504 ). Простые ионы, обладающие положительным зарядом, легче всего образуются из атомов элементов с низким нотеициалом ионизации к таким элементам относятся металлы главных подгрупп I и II группы (см. табл. 4 и 5 на стр. 102). Образование простых отрицательно заряженных ионов, напротив, характерно для атомов типичных неметаллов, обладающих большим сродством к электрону. Поэтому к типичным соединениям с ионным типом связи относятся галогениды щелочных металлов, например, МаС1, СзР и т. п. [c.150]

    Поляризующая способность ионов, т. е. их способ-, ность оказывать деформирующее воздействие на другие ноны, также зависит от заряда и размера иона. Чем больше заряд иона, тем сильнее создаваемое им электрическое ноле следовательно, наибольшей поляризующей способностью обладают многозарядные ионы. При одном и том же заряде напряженность электрического поля вблизи иона тем выше, чем меньше его размеры. Поэтому поляризующая способность ионов одинакового заряда и аиалогичиого электронного строения падает с увеличением иотюго радиуса. Так, в ряду катионов щелочных металлов поляризующ.а,я [c.152]

    Гидриды щелочных металлов имеют ионное строение. Металл входит в их состав в виде катиона, а водород—в виде апиопа. [c.564]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]

    Катализаторы для экстракции катионов. Все до сих пор рассмотренные катализаторы используются для переноса анионов в неполярную среду. Обратный процесс — перенос отдельных катионов в эти фазы — используется не очень часто, хотя он легко осуществим так, для переноса солей щелочных металлов необходимо использовать липофильные анионы, например иодид [1398], липофильные сульфонаты [1257, 1737], длинноцепочечные карбоксилаты или тетраарилбораты [1795]. [c.88]

    Обычно в растворе устанавливается равновесие между этими тремя формами, положение которого зависит от различных факторов (см. ниже), однако наличие в молекуле жесткого скелета может привести к тому, что будет существовать только одна форма. Свойства этих трех форм и особенно кислотность и способность к образованию ионных пар и к их диссоциации весьма различаются. Было показано [362], что в неполярных растворителях еноляты щелочных металлов ациклических р-ке-тосоединений находятся главным образом в О-форме и между анионом и катионом существует сильная ассоциативная связь. Это взаимодействие остается сильным даже в водных растворах [362]. [c.197]

    Недавние физико-химические исследования (дальняя ИК-, ЯМР-спектроскопия, кондуктометрические измерения) в ТГФ и ДМСО подтвердили, что основным типом енолятов является ионная пара с анионом в и-форме. Особенно поражает тот факт, что соли тетрабутиламмония ведут себя так же, как и соли щелочных металлов. Это указывает на ионность связи в этих ено-лятах и, что еще более важно, на отсутствие жестких требований к положению катиона по отношению к узкой области локализации заряда аниона. В то время как небольшой ион щелочного металла может располагаться на плоскости между 0-атомами (истинный хелат), ион аммония вынужден находиться выше плоскости и-образного аниона [363]. [c.198]

    ВОДЫ. Низшие аналоги боронатов связывают воды больше, чем боронаты с высшими алкильными заместителями. Однако нет сведений о том, что присутствие каталитических количеств воды или катионов щелочных металлов необходимо только при восстановлении карбонильных групп или оно требуется и при восстановлении других функциональных групп Кроме того, некоторые функциональные группы, по-видимому, образуют с реагентом рыхлые комплексы, которые с легкостью распадаются при обработке. Некоторые аммонийборонаты имеются в продаже, хотя и их цена относительно высока. Аммонийборонаты получают традиционным способом реакцией обмена и выделением путем осаждения [c.368]

    Для выяснения влияния природы иона электролита на устойчивость дисперсии алмаза в растворах ЫС1, СзС1 и ВаСЬ в широком интервале pH (2—9) и концентраций (10 — 5-10 моль/л для ЫС1 и СзС1 и 5-10 =—5-10 моль/л для ВаСЬ) получены зависимости обратной счетной концентрации частиц 1//г от времени t. Влияние исследованных катионов на коагуляцию дисперсии алмаза различно. При концентрации выше 1-10 2 моль/л значения -потенциала алмаза в растворах ЫС1, КС1 и СзС1 существенно не различаются. Следовательно, и результаты теоретических расчетов энергии взаимодействия частиц на основании классической теории ДЛФО, и ожидаемые степени агрегации должны быть близки. Наблюдаемое в эксперименте существенное различие в агрегативной устойчивости в растворах хлоридов щелочных металлов может быть объяснено с привлечением представлений о ГС и влиянии их структуры и протяженности на агрегативную устойчивость исследованных систем. [c.185]

    Способность вещества терять электроны в водном растворе характеризуется его окислительным потенциалом. Способность вещества присоединять электроны в водном растворе характеризуется его восстаповительпым потенциалом. Щелочные металлы (Ы, На, К, КЬ, Сз, атомы которых имеют электронную валентную конфигурацию ь ) обладают высокими окислительными потенциалами, соответствующими образованию гидратированных катионов с зарядом + 1 [Ь1(тв.) - + е = + 3,05 В]. Щелочноземельные металлы (Ве, М , Са. 8г, Ва, атомы которых имеют валентную электронную конфигурацию. s ") также обладают большими окислительными потенциалами, соответствующими образованию гидратированных катионов с зарядом -ь2[Са(тв.) -> Са" + 2е = -Ь 2,76 В]. Г алогены обладают высокими восстановительными потенциалами, соответствующими образованию галогенид-ионов (Р -Ь 2е -> 2Р < = -Ь 2,86 В). [c.456]

    Строение внешних электронных оболочек атомов щелочных металлов пх. Поэтому они имеют низкие энергии ионизации, уменыиаюищеся при переходе по подгруппе элементов сверху вниз. При этом ослабление связн электрона с ядром вызывается ростом радиуса атома (обусловленного увеличением главного квантового числа внешнего электрона) и экранированием заряда ядра предшествующими внешнему электрону оболочками. Поэтому данные элементы легко образуют катионы Э+, имеющие конфигурацию атомов благородного газа. [c.300]


Смотреть страницы где упоминается термин Щелочные металлы на катионитах: [c.67]    [c.577]    [c.616]    [c.24]    [c.365]    [c.121]    [c.121]    [c.319]   
Ионообменные разделения в аналитической химии (1966) -- [ c.109 , c.302 ]




ПОИСК





Смотрите так же термины и статьи:

Катионы металлов

Катионы щелочных металлов



© 2025 chem21.info Реклама на сайте