Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол блоксополимер

    С ВЫСОКИМ содержанием 1,4-звеньев, блоксополимеров и статистических сополимеров бутадиена и стирола, обладающих свойствами термоэластопластов. Бутадиен под влиянием литийалкилов в углеводородной среде превращается в полимер, содержащий до 10% 1,2-звеньев и 90% смеси цис-и транс-структур. В присутствии полярных веществ в полимерах бутадиена и изопрена увеличивается доля 1,2- и 3,4-структур. [c.127]


    Блоксополимеры стирола и метилметакрилата получены также сополимеризацией метилметакрилата с полистиролом, на концах макромолекул которого находятся атомы брома. Полистирол подобного строения образуется при полимеризации стирола в присутствии такого переносчика цепи, как бромтрихлорметан. После тщательного отделения полимера от исходных компонентов его растворяют в метилметакрилате. Раствор подвергают облучению ультрафиолетовым светом, при воздействии которого атомы брома на концах макромолекул отщепляются и образуются макрорадикалы, инициирующие полимеризацию метилметакрилата (М)  [c.546]

    Сополимеры в зависимости от характера распределения разл. звеньев в макромолекуле делят на регулярные и нерегулярные. В регулярных макромолекулах наблюдается определенная периодичность распределения звеньев. Простейшие примеры-чередующиеся сополимеры стирола с малеиновым ангидридом или нек-рых олефинов с акриловыми мономерами, построенные по типу. .. АВАВАВАВ..., где А и В-мономерные звенья (см. Сополимеризация, Радикальная полимеризация). Более сложные регулярные последовательности чередования звеньев реализованы, напр., в полипептидах-сополимерах а-аминокислот. Для нерегулярных сополимеров характерно случайное, или статистическое (т.е. подчиняющееся определенной статистике, но не регулярное), распределение звеньев оио наблюдается у мн. синтетич. сополимеров. В белках нерегулярные последовательности звеньев задаются генетич, кодом и определяют биохим. и биол. специфичность этих соединений. Сополимеры, в к-рых достаточно длинные непрерывные последовательности, образованные каждым из звеньев, сменяют друг друга в пределах макромолекулы, наз. блок со по ли мера ми (см. Блоксополимеры). Последние нах регулярными, если длины блоков и их чередование подчиняются определенной периодичности. При уменьшении длины блоков различие между блоксополимерами и статистич. сополимерами постепенно утрачивается. К внутр. (неконцевым) звеньям макромолекулярной цепи одного хим. состава или строения м. б. присоединены одна или неск. цепей другого состава или строения такие сополимеры наз. привитыми. [c.441]

    Разнообразные методы синтеза блоксополимеров и привитых сополимеров были разработаны лишь в последние годы. Поэтому свойства многих новых соединений, полученных этими методами, еще не изучены, а приводимые характеристики их часто противоречивы. Несомненно, что применение этих методов синтеза расширит возможности получения новых материалов. Путем блоксополимеризации можно сочетать в полимерной цепи такие звенья, которые не удается сочетать методом обычной сополимеризации. Например, сополимеризацией соответствующих мономеров в настоящее время невозможно получить сополимер стирола и винилацетата или сополимер а-хлоракрилата и винилацетата. Методом блоксополимеризации получены сополимеры, в макромолекулах которых сочетаются звенья таких мономеров. [c.535]


    Де Гроот с сотр. [68, 69] при получении блоксополимеров использовал алифатические, алициклические и терпеновые спирты и фенолы. Хорошими деэмульгаторами являются соединения, полученные при обработке гекситов сначала окисью этилена, а затем окисью пропилена, или наоборот. Де Гроот получил эффективные деэмульгаторы при взаимодействии окиси пропилена с соединениями, содержащими первичные или вторичные аминогруппы, сульфамидные или карбоксильные группы. Некоторые исследователи осуществили синтез полиоксигликолей, обладающих гидрофобными свойствами, на основе окисей бутилена и стирола. Например, описаны сополимеры с окисью изобутилена и 1,2-эпоксибутаном. [c.91]

    Механическая прочность простого сополимера стирола и акрилонитрила (содержащего 28% акрилонитрильных звеньев) может быть повышена блоксополимеризацией его с простым сополимером бутадиена и акрилонитрила (содержащего 25% акрилонитрильных звеньев). Удельная ударная вязкость такого блоксополимера дости- [c.544]

    Остов органических высокомолекулярных соединений может быть довольно сложным остов поликарбонатов (I) еще нельзя считать очень сложным. Остов может быть гомоатомным, как, например, в случае полифенилена, или гетероатомным, как в целлюлозе (II) и полипептидах (III) остов может состоять из разных комплексов, как, например, (IV) и (V) в блоксополимере поли-этиленоксида и полиэтилентерефталата или (VI) в сульфированном сополимере стирола с дивинилбензолом — одном из синтетических катионитов  [c.79]

    Помимо активации полипропилена излучением высокой энергии, для модификации его свойств можно использовать и другие физические факторы. Так, при действии ультразвука на высокомолекулярный атактический полипропилен в растворе, содержащем, в частности, стирол [64], образуется блоксополимер, одну часть макромолекулы которого составляет полипропиленовая цепочка, а другую — сегмент полистирола. Точно так же можно модифицировать полипропиленовую пленку другим полимером (в виде эмульсии) в электрической дуге [65]. Деструкция связей С—С может быть вызвана также и механическими воздействиями в процессе смешения полипропилена с другим, по крайней мере частично совместимым полимером, причем при соответствующих условиях не исключена возможность образования блоксополимера. [c.153]

    Звено связанного стирола в каталитическом сополимере с бута диеном-1,3 (блоксополимер) [c.21]

    Следует отметить, что технологические и физико-механические свойства растворных каучуков зависят от содержания связанного стирола. Так, блоксополимеры при содержании стирола в концевом блоке 10% и вязкости по Муни 30—35 относятся к новому классу каучуков — термоэластопластам. Наполненные техническим углеродом с меси на основе таких полимеров могут перерабатываться методом литья под давлением. Термоэластопласты обладают высокой стойкостью к воде, щелочам, кислотам, спиртам, аммиаку, ограниченно стойки к маслам и не стойки к бензину, толуолу, ацетону. [c.187]

    Наряду с одновременной сополимеризацией мономеров возможно вначале полиме-ризовать один из мономеров, а затем вводить другой или их смесь . В результате получаются бутадиен-стирольные графт- и блоксополимеры. Блоксополимеры, имеющие звенья стирола на конце цепи, получили название термоэластопласты , которые [c.33]

Рис. 7. Температурная зависимость тангенса угла механических потерь (tg б) блоксополимера бутадиена и стирола. Молекулярные веса блоков бутадиена — 1,58 105, стирола — 0,58 105 (j) и бутадиена — 9,56 104, стирола — 6,94 104 (2) [212]. Рис. 7. <a href="/info/26121">Температурная зависимость</a> тангенса угла <a href="/info/21906">механических потерь</a> (tg б) блоксополимера бутадиена и стирола. <a href="/info/3779">Молекулярные веса</a> блоков бутадиена — 1,58 105, стирола — 0,58 105 (j) и бутадиена — 9,56 104, стирола — 6,94 104 (2) [212].
    В связи с изложенным выше целесообразно обратиться к поли-стирол-полиизопрен-полистирольным блоксополимерам (СИС), механические характеристики которых представлены на рис. 13, Сравним [c.107]

    Скорость агрегации зависит от природы использованного растворителя. Если примененный низкомолекулярный компонент является осадителем для одного типа блоков и если эти блоки охватывают большую часть макромолекулы, их агрегация происходит уже в разбавленных растворах. Блоксополимер 15% стирола с бутадиеном (мол. вес 8,3-10 ) в и-гексане при 60 °С образует истинный раствор с приведенной вязкостью 0,56 дл/г. Значение молекулярного веса, полученное по данным светорассеяния, равно 8,2-10 . При быстром охлаждении такого раствора (с концентрацией 0,08 г/дл) он сильно мутнеет в течение долей секунды и после этого остается неизменным. Кажущийся молекулярный вес в таком растворе составляет 2,55-10 по светорассеянию и 1,6-10 по осмометрическим данным (при характеристической вязкости 0,53 дл/г). Таким образом, в разбавленном растворе образование агрегатов происходит очень быстро, причем они характеризуются широким распределением по размерам. Данные светорассеяния указывают, что диаметры сфер при с = = 0,03 г/дл составляют 720 А. Это хорошо согласуется с удвоенной толщиной единичного макромолекулярного клубка в гексане (/ в = [c.188]


    Следует отметить, что полимерный каркас может образоваться не только за счет химич. связей, но также благодаря присутствию в полимерной цепи участков, между к-рыми существует сильное межмолекулярное взаимодействие. Прп этом достигается термолабильность поперечных связей между макромолекулами. Примером таких материалов являются тер.ноэласто-пласты — полпмеры, обладающие свойствами эластомеров п термопластичностью, напр, блоксополимеры эластомеров со стиролом, блоксополимеры, имеющие кристаллизующиеся и некристаллизующиеся участки, и нек-рые полиуретаны, у к-рых роль термолабильных узлов пграют сегрегированные диизоцианатные блоки. К образованию полимерного каркаса может приводить также введение в полимерную цепь кислотных групп с последующей нейтрализацией их ионами металлов (см. Иономгры). [c.117]

    Описанный метод синтеза бутадиен-а-метилстирольного тер-моэластопласта позволяет осуществлять полимеризацию бутадиена в неполярной среде. Это обеспечивает получение диеновой части блоксополимера с высоким содержанием 1,4-звеньев. Если на третьей стадии процесса вместо а-метилстирола подавать стирол, то получаются смешанные а-метилстирол-бутадиен-стирольные термоэластопласты [42]. [c.286]

    Полибутациен Блоксополимер бутадиена с изопреном Сополимер бутадиена со стиролом Сополимер бутадиена с акрилонитрилом [c.451]

    Недавно синтезированы альтернантные блоксополимеры путем радикальной полимеризации стирола с метилметакрилатом или акрилонитрила с применением в качестве фотосенсибилнзатора полимерного дисульфида [30]  [c.529]

    Каждый блок цепи содержит различное и достаточно большое количество звеньев, которое зависит от числа разрывов макромолекул исходных полимеров. В простых сополимерах, получаемых из смеси мономеров, хаотично чередуются довольно короткие участки звеньер5 или отдельные звенья сополимеризуемых мономеров. Свойства блоксополимеров отличаются от свойств п[юстых сополимеров, несмотря на то, что в цепи макромолекул обоих сополимеров чередуются звенья, идентичные по химическому составу. Например, блоксополимер, полученный совместным вальцеванием полистирола и полибутадиена, отличается по свойствам от продукта обычной сополимеризации стирола и бутадиена. [c.184]

    Большое количество исследований проведено в направлении модифицирования свойств полистирола. Существенным недостатком этого полимера является возникновение в нем больших внутренних напряжений уже в процессе изготовления изделий. В связи с низкой упругостью полистирола даже при сравнительно небольшой внешней нагрузке на изделиях из полистирола могут появиться многочисленные трещины. Простой сополимер стирола с мономером, придающим полимеру большую внутреннюю пластичность, обладает пониженной температурой стеклования (для полистирола 7 =80°). Низкая теплостойкость, свойственная полистиролу (и без внутренней пластификации), ограничивает его широкое практическое применение. Значительно большей теплостойкостью обладают блоксополимеры полистирола с сополимером стирола (40%) и бутадиена (60%) или акрилонитрила (40%) и бутадиена (60%). Блоксополимеризацию проводят методом механической деструкции смеси полистирола и указанных сополимеров. После 20-минутного перетирания этой смеси полимеров в атмосфере азота при 120—150° в закрытом смесителе образуется блоксополимер. Блоксополимер имеет значительно более высокую прочность, особенно при ударных нагрузках, чем полистирол (удельная ударная вязкость блоксополимера составляет 25—30 кг-см1см , полистирола 5—15 кг-см см ), в тоже время температура его стеклования заметно не изменяется. [c.544]

    Интересные блоксополимеры получены сочетанием блоков полистирола и полиметклметакрилата путем сополимеризации метилметакрилата с бирадикалами макромолекул полистирола. Бирадикалы образуются из макромолекул полистирола, на концах которых находятся гидроперекисные группы. Для образования таких ма кромолекул стирол полимеризуют в присутствии дигидроперекиси, например дигидроперекиси ж-диизопропилбензола. При распаде дигидроперекиси образуются три типа радикалов инициирующих полимеризацию стирола  [c.545]

    Диенвинилароматические Т.- блоксополимеры, полученные гл. обр. анионной сополимеризацией винил-ароматич. (стирол, а-метилстирол) и диеновых (1,3-бутадиен, изопрен, реже пиперилен, метилметакрилат и др.) [c.548]

    Известен сорбент на основе волокнистого материала в виде ватина, низкосортной технической ваты, технических остатков производства ваты, отходов текстильного производства, модифицированных термоэластомером ДСТ, наносимым на поверхность волокон путем его сорбции из раствора в ароматических углеводородах (например, толуоле) с последующей сушкой от растворителя [146]. ДСТ представляет собой блоксополимер стирола с бутадиеном с содержанием стирола от 10 до 50 масс. %. Наличие двойных связей линейной структуры и ароматических групп в полимере позволяет создавать прочную связь за счет образования координационной связи между карбоксильными группами целлюлозы и активными группами ДСТ, что обеспечивает высокую устойчивость полимера к вымачиванию нефтепродуктами и высокую гидрофобность адсорбента. Кроме того, при свя- [c.140]

    Метод может быть применен для исследования статистических и блок-сополимеров [50]. Спектр ЭПР радикала-зонда в полистироле свидетельствует о том, что вращение радикала заморожено стеклообразной матрицей. При той же температуре частота вращения в бутадиеновом каучуке (СКД) значительно выше. Спектры блоксополимеров бутадиена и стирола являются суперпозицией спектров радикалов, находящихся в блоках полистирола и быстро вращающихся в полибутадиеновых областях сополимера. Относительное количество замороженных радикалов возрастает с увеличением общего содержания стирола в блок-сополимере. Таким образом, анализ спектров ЭПР парамагнитного зонда в термоэластопластах подтёерждает [c.292]

    Y = Ph) — 100% [45] . Выход мономерного продукта при деструкции полимерной цепи тем выше, чем меньше возможность разрыва цепи, сопровождающегося миграцией водорода. Поэтому, например, сополимеры бутадиена со стиролом, а-метилстиролом, нитрилом акриловой кислоты или блоксополимеры стирола с бутадиеном или изопреном при деструкции образуют исходные мономеры— бутадиен, винилциклогексен, изопрен и дипентен, стирол или а-метилстирол, нитрил акриловой кислоты. В то время как разрыв полимерной цепи этиленпропилена (каучуки СКЭП и СКЭПТ), в котором С—С-связи равноценны, подчиняется закону случая, т. е. следует ожидать набора различного класса углеводородов, в том числе этилена и пропилена. [c.12]

    Привитые и блоксополимеры в отличие от сополимеров, полу ценных обычными способами, обладают свойствами обоих гомопо-лимеров. Так, привитой сополимер крахмала и стирола обладает свойствами Крахмала и полистирола, Блок- и привитые сополимеры получают в промышленном масштабе, например Привитые сополимеры акрилонитрила с целлюлозой и натуральным каучуком, [c.53]

    Для подошвенных резин применяются также блоксополимеры бутадиена и стирола. Сополимер Солпрен Х-40 , обладая высокой температурой хрупкости (—66° С), используется для изготовления кожеподобных монолитных резин, имеющих срок носки 18 месяцев2 . Термоэластопласты регу лярной структуры, не требующие вулканизации, являются также перспективным материалом для детской обу- [c.53]

    Применение литийорганических соединений для сополимериза-ции 1,3-бутадиена со стиролом в растворах позволили получить как статистические каучуки (ДССК-3), так и блоксополимеры — термоэластопласты. [c.71]

    Определение микроблочного стирола в статистических сополимерах и блочного стирола в блоксополимерах  [c.199]

    Особенно это прослеживается 1 КОВ, где зародышем дисперсной фазы служит полимер, в данной случае блоксополимер бутадиена и стирола типаСБС марки ДСТ-50 (табл. 5). [c.198]

    Важным доказательством наличия переходного слоя является третий максимум потерь в бинарной смеси полимеров. В качестве примера на рис. 7 показана температурная зависимость tg 8 для блоксополимера стирола и бутадиена, имеющего двухфазную структуру подобно обычным смесям полимеров. Подобного рода максимум наблюдался для блоксоиолимеров бутадиена и стирола и в других работах [107, 108]. В смеси ПЭ низкой плотности и ПЭ высокой плотности Клэмпит [109] обнаружил три пика потерь — при 115, 124 и 135 °С. Площадь среднего пика не зависела от соотношения полимеров в смеси, так же как сохранялось при этом и положение пика на температурной шкале. Видимо, состав промежуточного слоя [c.30]

    Во многих случаях сополимеризации возникающая композиционная неоднородность на межмолекулярном или внутримолекулярном (или обоих) уровнях является следствием особенностей кинетики сополимеризации. Частным случаем является анионная сополимери-зация стирола и бутадиена, при которой можно получить образцы почти с любой степенью распределения компонентов [3]. По механическим характеристикам блоксополимеры легко отличить от статистических сополимеров [1, 4, 5]. Однако небольшие различия в поведении должны, вероятно, возникать и из-за композиционной це-однородности статистических сополимеров, у которых отсутствуют длинные последовательности любого из мономеров, но тем не менее состав изменяется по цепй. В связи с этим было бы желательно установить некоторые пределы совместимости макромолекул одинакового состава, но различающихся распределением мономеров, по цепи. Были исследованы смеси полимеров, приготовленные из однородных статистических сополимеров бутадиена и стирола. (Термин однородные статистические используется для обозначения сополимеров, состав которых не зависит от степени конверсии композиционная неоднородность таких сополимеров не выходит за пределы, большие, чем несколько мономерных звеньев.) В настоящем сообщении обсуждаются результаты измерений механических динамических характеристик и зависимостей между напряжением и двойным лучепреломлением смесей. У бинарных смесей указанных выЬае компонентов, различающихся по составу более, чем на 20%, явно проявляется микрогетерогенность, которая иногда наблюдается даже и у полимерных смесей, менее различающихся по составу. Полученные результаты анализируются с позиций однопараметрических моделей, одна из которых сравнительно успешно объясняет динамические и оптические характеристики смесей при известных свойствах входящих в них компонентов. [c.83]

    Количественные соотношения между молекулярной структурой и свойствами блоксонолимеров могут быть получены лишь с учетом сведений об их надмолекулярной организации. Для образования хорошо выраженного дальнего порядка необходимо располагать полимерами с высокорегулярной молекулярной структурой. Этим требованиям удовлетворяют блоксополимеры бутадиена и стирола, получаемые методом анионной полимеризации [33]. Их можно рассматривать как модельные некристаллизующиеся соединения. [c.181]

Рис. 1. Дифрактограмма малоуглового рассеяния рентгеновских лучей сопо- лимера 41% стирола с бутадиеном а. — блоксополимер получали из раствора СНаСХг + СНзСОСНз быстрым испарением растворителя в вакууме б — блоксополимер получали испарением растворителя при комнатной температуре, образец отжигали в течение 1 ч при 100 °С в — блоксополимер получали испарением растворителя при 120 С, образец отжигали в течение 1 ч при 120 С. Рис. 1. Дифрактограмма <a href="/info/128570">малоуглового рассеяния рентгеновских лучей</a> сопо- лимера 41% стирола с бутадиеном а. — блоксополимер получали из раствора СНаСХг + СНзСОСНз <a href="/info/891557">быстрым испарением</a> растворителя в вакууме б — блоксополимер <a href="/info/764384">получали испарением</a> растворителя при <a href="/info/22443">комнатной температуре</a>, образец отжигали в течение 1 ч при 100 °С в — блоксополимер <a href="/info/764384">получали испарением</a> растворителя при 120 С, образец отжигали в течение 1 ч при 120 С.
Рис. 2. Электронная микрофотография смесей (1 1) образцов блоксополимера, 15% стирола с бутадиеном (мол. вес. 8,3 10 ) и полибутадиена (мол. вес. 6,7 104), оттененных 0з04 в парах над 0,1%-ным водным раствором (экспозиция 6 ч, температура 25 °С) Рис. 2. <a href="/info/73091">Электронная микрофотография</a> смесей (1 1) образцов блоксополимера, 15% стирола с бутадиеном (мол. вес. 8,3 10 ) и полибутадиена (мол. вес. 6,7 104), оттененных 0з04 в парах над 0,1%-ным <a href="/info/6274">водным раствором</a> (экспозиция 6 ч, температура 25 °С)
Рис. 5. Электронные микрофотографии пленок блоксополимеров, полученных из алифатических углеводородов (С5 — Се) при 25 и контрастированных при этой температуре в течение 1 ч в парах 0з04 а — сополимер 17% стирола с бутадиеном б — 26% стирола в — образец сопо.пимера 26% стирола с бутадиеном, полученный медленным Испарением из раствора в бензоле. Рис. 5. <a href="/info/73091">Электронные микрофотографии</a> пленок блоксополимеров, полученных из <a href="/info/11995">алифатических углеводородов</a> (С5 — Се) при 25 и контрастированных при <a href="/info/425586">этой температуре</a> в течение 1 ч в парах 0з04 а — сополимер 17% стирола с бутадиеном б — 26% стирола в — образец сопо.<a href="/info/270025">пимера</a> 26% стирола с бутадиеном, полученный <a href="/info/890840">медленным Испарением</a> из раствора в бензоле.
    В табл. 3 представлены данные по молекулярной структуре, а в табл. 4 — по надмолекулярным структурам полимеров, полученные различными способами. Как это ни странно, но каждый полимер обладает несколькими конечными структурами. При рассмотрении 50 образцов диблочного сополимера 17% стирола с бутадиеном оказывается, что частота появления пятнистой и полосатой структур одинакова. Разность энергий этих двух форм, по-видимому, не очень велика. Таким образом, в общем случае для конкретного блоксополимера может существовать более чем одна характерная структура. Сравнительно легко определить диаметры, а следовательно, и расстояния между доменами для структур каждого типа, поскольку они хорошо воспроизводимы. Для обоих структур обнаруживается узкое распределение по размерам составляющих ее элементов со средним отклонением 13% (для рассматриваемых диблочных сополимеров). Толщины же агрегатов зависят от молекулярного веса различным образом. Интерпретация данных по размерам агрегатов оказалась не столь простой, как это считали до настоящего времени [4, 6, 7, 9, 21, 22, 31, 32, 39, 47, 49-51, 54, 63, 64, 68]. [c.194]

    Вопрос о возможности и корректности применения метода температурно-временной суперпозиции, основанного па одинаковом смещении всей кривой до ее совмещения с соседней (т. е. па предположении об одинаковости температурных зависимостей всех времен релаксации материала), к термореологически сложным материалам типа тройных блоксополимеров бутадиена со стиролом подробно рассмотрен в статье Д.Дж. Феско и Н. Чогла, вошедшей в переведенный на русский язык сборник Вязкоупругая релаксация в полимерах , Изд. Мир , М., 1973). На основании этой работы следует признать такой метод, приводящий к построению единой температурной зависимости коэффициента приведения lgaJ, (см. ниже рис. 5 и 6 настоящей работы),-чисто эмпирическим приемом, лишенным физического смысла. При этом форма вязкоупругих характеристик тнпа показанных на рис. 2 и 4 оказывается существенно зависящей от выбора температуры приведения, что не позволяет рассматривать получаемые таким образом обобщенные характеристики материала как истинные. — Прим. ред. [c.211]


Смотреть страницы где упоминается термин Стирол блоксополимер: [c.119]    [c.546]    [c.53]    [c.371]    [c.37]    [c.153]    [c.185]    [c.305]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.379 , c.389 , c.451 ]




ПОИСК





Смотрите так же термины и статьи:

Блоксополимеры



© 2024 chem21.info Реклама на сайте