Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

анализ аминокислот количественное определение

    Нингидринная реакция широко используется для анализа аминокислот. Реакция протекает количественно. Образующийся альдегид является характерным для каждой аминокислоты Специфическое определение альдегида позволяет установить соответствующую аминокислоту. Колориметрия окрашенного комплекса в сочетании с хроматографией и ионо-форезом является сейчас одним из самых распространенных методов аминокислотного анализа белковой молекулы. [c.469]


    Другим методом количественного определения азота является метод Кьельдаля. При ЭТОМ вещество подвергают разложению нагреванием с концентрированной серной кислотой в присутствии ртуть- или селеносодержащего катализатора при этом происходит во.сстаиовление до аммиака. После добавления едкого кали и перегонки ацидиметриче- ски определяют количество образовавшегося аммиака в дистиллате. Метод Кьельдаля с успехом применяется для количественного определения азота в аминокислотах и аминах, однако он неприменим для анализа нитро- и азосоединений. [c.33]

    Второй раздел практикума ставит своей целью познакомить студентов с особенностями выделения, фракционирования, идентификации и количественного определения различных природных азотсодержащих < оединений. белков, пептидов, аминокислот, нуклеиновых кислот, нуклеотидов и пр Предлагаемые экспериментальные работы включают аиболее широко используемые в лабораторной практике современные методы разделения и анализа этих соединений различные виды электрофореза, хроматографии, спектрофотометрии, колориметрии и др. Работа проводится как на готовых коммерческих препаратах высоко- и низкомолекулярных азотсодержащих соединений, так и на препаратах, выделяемых студентами из различных тканей лабораторных животных. [c.79]

    Эта очень чувствительная реакция используется для обнаружения а-аминокислот на хроматограммах и в спектрофотометрическом анализе при количественном определении а-аминокислот. [c.413]

    В последние годы благодаря использованию ферментов функции ионселективных электродов удалось существенно расширить и сделать их применимыми для быстрого клинического анализа на глюкозу, мочевину, аминокислоты и другие метаболиты. Такие электроды называются ферментными электродами или электрохимическими сенсорами. Создание электродов с указанными свойствами оказывается возможным благодаря тому, что ряд ферментов обладает высокой специфичностью, т. е. способностью катализировать превращения одного единственного вещества из многих сотен и даже тысяч веществ близкой химической природы. Если, например, фермент катализирует реакцию, в ходе которой изменяется pH среды, то рН-чувствительный электрод, покрытый пленкой геля или полимера, содержащей этот фермент, позволит провести количественное определение только того вещества, которое превращается под действием данного фермента. Из мочевины в присутствии фермента уреазы образуются ионы МН+. Если ионселективный электрод, чувствительный к ионам ЫН , покрыть пленкой, содержащей уреазу, то при помощи его можно количественно определять мочевину. Ферментные электроды — один из примеров возрастающего практического использования ферментов в науке и технике. [c.138]


    Для разделения и количественного определения аминокислот особенно эффективными оказались методы распределительной, адсорбционной и ионообменной хроматографии. Большое применение, в частности, получил метод Мура и Стейна, в котором исследуемый раствор пропускают через колонку, наполненную или крахмалом (твердый полярный адсорбент), или ионообменной смолой (сочетание адсорбции с ионным обменом), и затем связанные на колонке вещества вымывают с различной скоростью подходящими растворителями. Сбор и анализ отдельных фракций осуществляются при помощи автоматических приспособлений. Метод Мура и Стейна позволяет получить через 24 часа данные о полном аминокислотном составе образца белка, используя при этом только 2,5—3,5 мг белка. Для оценки эффективности и значения этого метода полезно напомнить, что старые и более грубые аналитические приемы требовали для получения данных о полном аминокислотном составе белка нескольких недель трудоемкой работы, связанной с расходованием десятков граммов белка. [c.35]

    Количественное определение аминокислот методом распределительной хроматографии на бумаге. Цель работы — определить концентрацию аминокислоты в анализируемом растворе методом колориметрического анализа раствора, полученного при элюировании хроматографического пятна. [c.529]

    Первым методом превращения аминокислот для использования в ГХ-анализе была реакция с нингидрином. Как известно, в этой реакции наряду с окрашенными веществами и СОг образуются и упоминавшиеся выше альдегиды, имеющие на один углеродный атом меньше, чем в исходной молекуле. Опираясь на метод количественного определения аминокислот, разработанный на основе этой реакции [92], с помощью ГХ удалось разделить и идентифицировать эти летучие альдегиды [37]. Очевидно, этот метод пригоден только для тех аминокислот, которые в реакции с нингидрином дают летучие альдегиды, и, следовательно, из этой группы, естественно, исключаются Про и родственные ему аминокислоты [61]. Побочные реакции при ГХ, такие, как полимеризация, затрудняют или вообще делают невозможным идентификацию определенных аминокислот [130]. Чтобы преодолеть указанные трудности, альдегиды окисляли [3] до карбоновых кислот и хроматографировали в виде метиловых эфиров. Несмотря на отмеченные недостатки, Златкис и др. [130] указывают, что этот процесс модификации аминокислот интересен в техническом отношении. По принципу реакций, используемых в ГХ, превращение аминокислот, а затем разделение и количественное определение альдегидов, переводимых в результате каталитического гидрокрекинга в метан, может происходить [c.326]

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]

    Для анализа редких аминокислот из некоторых источников разработаны специальные условия элюирования. Системы, предназначенные для анализа аминокислот из животных тканей, приходится модифицировать при анализе аминокислот растительного происхождения, что связано с разным количественным и качественным составом экстрактов [44—46]. Разработаны также таблицы для идентификации компонентов, содержащихся в экстрактах из насекомых [47]. Для контрольных анализов изделий пищевой промышленности разработан специальный метод аминокислотного анализа гидролизатов пищевых продуктов и муки [48, 49], пива и солода [50]. Метод определения аминокислотного состава травы и силоса разработан с целью определения их кормовой ценности [51]. Для промышленных целей раз- [c.348]


    Важное значение белков и составляющих их аминокислот обусловило большой интерес к определениям аминокислот методом ГХ. Существуют различные методы автоматического анализа с использованием хроматографии на колонке, однако ГХ обеспечивает более быстрый анализ и позволяет уменьшить величину анализируемой пробы, Было предложено большое число различных по типу производных, чтобы осуществить количественное определение двадцати аминокислот, обычно обнаруживаемых в белках. Выбор наилучшего производного осложняется большей частью тем, что эти аминокислоты содержат 12 различных функциональных групп, а желательно получить метод, применимый для анализа все>с [c.137]

    Для определения Мет в природных веществах можно использовать гидролизаты, полученные описанным выше методом. Они, как правило, содержат значительно большие количества Лиз, чем Мет. В связи с этим в образце с низким содержанием Мет довольно трудно на одной пластинке провести количественное определение этих двух аминокислот. Целесообразно проводить анализ Лиз и Мет в одном гидролизате на двух пластинках. [c.258]

    Первоначально радиохимические методы интенсивно применялись для количественного определения микро- и полумикроколичеств аминокислот путем получения производных по соответствующим аминогруппам. При ЭТОМ в качестве реагента использовался г-иодбензолсульфо- Ч-хлорид. С тех пор появилось много других реагентов и радиохимических методов анализа первичных и вторичных аминов путем превращения их в производные. Были определены даже третичные амины, которые не столь легко превратить в производные. Из радиореагентов наиболее широко применяют хлориды сульфо- и карбоновых кислот, уксусный ангидрид и динитрофторбензол. В настоящее время имеется несколько мак-роколичественных, а также различные микро- и полумикроколиче-ственные методы определения соединений, а также смесей меченых производных. [c.307]

    Кроме детекторов, предназначенных для количественного анализа аминокислот и пептидов по реакции с нингидрином или другими реагентами, дающими цветную реакцию, были описаны Также и другие детекторы. Полярографическое определение аминокислот в виде их медного комплекса основано на образовании из двух молекул аминокислоты и одного иона меди темно-синего комплекса. Этот комплекс пропускают через ячейку поляро-графа, где определяется количество меди [122]. Аминокислоты можно также определять путем использования динитрофторбен-зола с последующим фотометрическим определением ДНФ-ами-нокислот при 420 нм [123]. [c.27]

    Для количественного определения аминокислот в отличие от обычной количественной ГХ важно парциальное содержание в смеси не аминокислотного производного, а исходной аминокислоты. Ошибки всех операций, проводимых перед разделением и идентификацией, оказываются включенными в общую ошибку конечного аналитического результата. Поэтому превращение аминокислот должно быть количественным или по крайней мере количественно воспроизводимым. Большие различия в выходах, даже если они воспроизводимы, заведомо усложнят работу и сделают ее чрезвычайно трудоемкой. Как показано при исследовании образования бутиловых эфиров ТФА-аминокислот, средние выходы для определенных аминокислот почти не отличались друг от друга и составляли около 96% [16, 53]. Однако при получении летучих ТФА-метиловых эфиров Ала, Гли и Вал происходили значительные потери вещества даже при аккуратном концентрировании образцов [19, 53]. Если для аминокислотного анализа выбраны производные с высокой летучестью, подобных операций лучше изрыгать. [c.336]

    Количественный анализ аминокислот методом ГХ представляет несомненный интерес. Как правило, количественное определение аминокислотного состава пептида является одним из решающих моментов анализа последовательности. Поскольку при деградации крупного белка образуется большое число фрагментов, желательно затрачивать на анализ каждого из них минимальное количество времени и вещества. Привлечение в данном случае ГХ достаточно хорошо удовлетворяет этим условиям. Многочисленные исследования по ГХ аминокислот в конечном итоге направлены на решение этой задачи. Однако к действительно эффективному количественному методу предъявляются несоизмеримо более высокие требования, чем к качественному. Если учесть к тому же трудности получения и разделения производных аминокислот, станет ясно, почему до сих пор не разработан стандартный метод их количественного определения с помощью газового хроматографа. Основные трудности связаны, как подчеркивалось в разделе о получении производных, с полифункциональными аминокислотами. Метод, игнорирующий их идентификацию, может найти лишь ограниченное применение. Количественный анализ только простых аминокислот не может удовлетворять экспериментатора [40]. Вопрос о том, все ли аминокислоты, встречающиеся в белках, можно определять ГХ с достаточной точностью, все еще остается открытым. Здссь можно только вкратце рассмотреть имеющиеся условия и возможности. Проблемы, связанные с аппаратурой, необходимой для количественной ГХ, уже обсуждались ранее (см. стр. 302). [c.335]

    Методы количественного определения гексозаминов . Ввиду исключительно важной роли, которую играют 2-амино-2-дезоксигексозы в построении биополимеров и в биохимических процессах, необходимы надежные методы количественного определения этих моносахаридов. Однако ни один из известных методов количественного определения гексозаминов не является специфическим получаемые результаты зависят от наличия в смеси обычных моносахаридов и аминокислот, которые наряду с аминосахарами всегда образуются при гидролизе мукополисахаридов и гликопептидов. Поэтому все современные методы анализа аминосахаров включают стадию отделения их от аминокислот, других моносахаридов и неорганических солей с помощью ионообменной хроматографии [c.280]

    Количественное определение белков производят, как правило, определением общего азота по Кьельдалю. Исходным веществом в этом анализе могут служить осадки белков, полученные при номощи описанных выше осаждающих реактивов. Свободные ННа-группы белка определяются методом Ван-Слейка (см. Аминокислоты ).  [c.442]

    Измерение количества выделившегося диоксида углерода служит основой количественного определения аминокислот [67, 68]. Кроме того, обнаружение и определение аминокислот, а также аминов и пептидов можно проводить по анализу окрашенного продукта [69]. [c.486]

    В работе [290] дана оценка необходимой степени обогаще ния аминокислот, меченных N, С, 0, Н, при анализе ме тодом СИД Анализировались N ацетил к-пропиловые эфиры аминокислот, которые в случае ХИ (газ реагент метан) образу ют интенсивный пик иона МН+ Результаты исследования сви детельствуют что для определения аминокислот в образце сыворотки крови объемом 100 мкл изотопный избыток N должен быть не менее 0,08% (ат ) В работе [291] было пока зано, что количественный анализ аминокислот, меченных с избытком 0,1 % ( т) можно проводить методом СИД при ГХ—МС ХИ на уровне концентраций О 1 нмоль [c.199]

    Анализ аминокислотного состава включает полный кислотный гидролиз исследуемого белка или пептида с помощью 5,7 н. соляной кислоты и количественное определение всех аминокислот в гидролизате. Гидролиз образца проводится в запаянных ампулах в вакууме при ПО "С в течение 24 ч. При этом полностью разрушается триптофан и частично серии, треонин, цистин и цистеин. а глутамин и аспарагин превращаются соответственно в глутаминовую и аспарагиновую кислоты. В то же время пептидные связи, образованные аминокислотными остатками с разветвленной боковой цепью (Val, Не. Leu), из-за стерических препятствий гидролизуются частично. Особенно стабильны связи Val—Val. Ile—Ile, Val—De и Ile—Val. [c.34]

    В биологии и агропромышленной сфере хроматографическое разделение и концентрирование используют перед количественным определением микроэлементов, а также для обнаружения пестицидных соединений в окружающей среде. При технологическом контроле пищевых производств хроматография служит для очистки веществ, анализа смесей органических кислот, аминокислот и других продуктов. [c.417]

    Работа 112. Количественный анализ аминокислот путем хроматографирования. Определение значений аминокислот [c.172]

    Лучшим методом анализа аминокислотного состава белковых гидролизатов является хроматографическое фракционирование на колонках из крахмала (Мур и Штейн , 1948) или при помощи ионообменных смол (Мур и Штейн, 1951). Количественное определение на ионообменных смолах с применением автоматической схемы (1958) делает возможным за несколько часов провести полный анализ смеси аминокислот, со,цержащей лишь 10 —10 моль каждого компонента. [c.656]

    ТСХ модифицированных ароматическими заместителями аминокислот в последние годы предпочитают вести на пластинках с полиамидным покрытием, поэтому из обзора Нидервизера процитируем только методы фракционирования немодифицированных аминокислот. Разумеется, ни по чувствительности и воспроизводимости результатов, ни тем более по точности количественных определений ТСХ аминокислот не может конкурировать с современными аминокислотными анализаторами. Однако существует немало ситуаций, когда возможности ТСХ оказываются вполне адекватными поставленной задаче определение аминокислотного состава, сопоставление родственных полипептидов, выявление генетических различий, проявляющихся в замене каких-либо аминокислот, клинические анализы физиологических жидкостей и др. На рис. 160 показана приведенная в цитируемом обзоре картина распределения пятен носле двумерной ТСХ модельной смеси аминокислот на иластинках с сп-ликагелевым покрытием. На старт вносили но 1 мкг каждой из ал1И-нокислот в 0,5 мкл 0,1 М раствора НС1. Элюцию в нервом направленип проводили смесью хлороформа, метанола и 17 %-ного аммиака (2 2 1), а во втором — смесью фенола и воды (3 1 но массе). [c.482]

    Ряд количественных определений разделяемых веществ (аминокислот, сахаров, пуринов, красителей и т. д.) основан на элюировании пятна соответствующего вещества с бумаги с последующим анализом элюата колориметрически, спектрофотометрически и т. д. Иногда элюированное вещество подвергается ряду последующих операций для идентификации или установления его структуры. [c.476]

    Для установления количественного состава входящих в гликопротеин моносахаридов и аминокислот биополимер подвергают полному кислотному гидролизу, и состав гидролизата определяют обычными методами количественного анализа. Пептидные связи устойчивее гликозидных по отношению к кислотам, поэтому для полного расщепления на мономеры гликопротеины приходится гидролизовать в более жестких условиях, чем обычные полисахариды (6 н. НС1, 100—ПО °С, 24 ч) . Нужно иметь в виду, что как сахара, так и аминокислоты могут частично распадаться в условиях кислотного гидролиза, причем в ряде случаев можно с помощью ХОЛОСТЫХ опытов внести соответствующие поправки при анализе. Специфической для гликопептидов побочной реакцией в условиях кислотного гидролиза является возможная конденсация сахаров с аминокислотами, приводящая к окрашенной сложной смеси различных веществ, в том числе простейших карбонильных соединений (так называемая реакция Майяоа). Например, по данным Готшалка , потеря аминокислот при кислотном гидролизе богатых сахарами гликопротеинов может составлять до 30 %. Количественное определение моносахаридов проводят с использованием хроматографии, спектрофотометрической и колориметрической техники (см. гл. 14). Для анализа аминокислот применяют обычно методы, хорошо известные из химии белка. Так, количественный анализ аминокислотного состава проводят в автоматических анализаторах или с помощью газо-жидкостной хроматографии . [c.567]

    С точки зрения синтеза практически более полезным представляется метод, в котором индикаторный изотоп вводится в ангидрид. Однако при использовании подходящего способа метки радиоактивными можно сделать и определяемые стероид или стерин. Возможность определения степени превращения по реакции с помощью меченых веществ отмечалась в ранних работах, посвященных использованию радиоизотопных методов в анализе аминокислот [90, 91]. Стероиды и стерины трудно количественно экстрагировать из биологических жидкостей добавление к этим жидкостям радиоактивных субстратов в качестве индикаторов дает удобный способ измерения выхода. Если радиоактивный субстрат добавить в жидкость перед экстракцией, то по относительной радиоактивности выделенного вещества можно точно оценить полные потери целевого соединения в ходе анализа, включая и потери, обусловленные неполным ацетилированием. В работе [92 описано использование в таких анализах стероидов, меченных тритием, имеющих высокую удельную радиоактивность. Приготавливали такие стероиды методом Вильсбаха. В настоящее время большое число стероидов, меченных изотопом С, имеется в продаже. [c.72]

    При хроматографическом анализе аминокислот (см. стр. 35) большое применение нашла реакция с нингидрином. Нингидрин дает окрашивание (обычно сине-фиолетовое) со всеми аминокислотами. На основе нингидриновой реакции разработаны методы количественного определения аминокислот, входящих в состав белков. [c.32]

    Одной из основных причин применения дериватизации в ГХ является перевод нелетучих соединений в более летучие. Особое место здесь занимают методы получения летучих производных аминокислот, которые в натуральном виде не только нелетучи, но и термически нестойки и поэтому их прямой анализ методом ГХ невозможен. В то же время актуальность задач качественного и количественного определения аминоки слот в биологии, биохимии, медицине и микробиологии стимулирует развитие методов получения и анализа летучих производных аминокислот. Использование метиловых эфиров N-тpифтopaцeтил-пpoизвoдныx [c.193]

    Точную аналогию с определением соответствующих элементов с помощью изотопного разбавления представляет использование меченых атомов для определения соответствующих соединений, присутствующих в смеси. Количественное определение содержания данного вещества в смеси обычными методами требует реагента, специфичного для этого вещества. Если такого реагента не существует, то необходимо количественно выделить индивидуал)эНое соединение из смеси. Применение предположительно специфического реагента опасно при наличии в смеси соединений со сходной структурой. Выделение индивидуального соединения обычно ставит нас перед альтернативой выделение малого количества рассматриваемого соединения без примесей либо полное его выделение с примесями чистота и полнота выделения взаимно исключают друг друга. В качестве примера можно привести исследование [1701] гидролизатов белков, содержащих около 24 а-аминокислот, количественное содержание которых должно быть определено для установления структуры белка. При использовании метода изотопного разбавления, представляющего единственный метод полного анализа, необходимо синтезировать каждую из имеющихся а-аминокислот в изотонически обогащенной форме. Например, глицин, содержащий обогащенный азот, образует неразделимую смесь с необогащенным глицином. Выделение малых количеств чистого глицина с последующим измерением отношения в нем позволит точно оценить содержание глицина в смеси. [c.114]

    Известны два основных метода деградации белковой молекулы — частичный кислотный гидролиз и ферментативный гидролиз. Первый метод менее селективен, по с его помощью могут быть получены ценные данные относительно структуры низкомолекулярных белков определенного молекулярного веса. Полный гидро.-лиз белков до составляющих аминокислот не позволяет установить последовательность расположения аминокислот в белке. Однако количественное определение соотношений отдельных аминокислотных, остатков дает возможность судить о гомогенности данного белка. На основе этих данных можно рассчитать эмпирические формулы и сравнить их с формулами, полученными нри помощи элементарного анализа. Это необходимо сделать до проведения частичного гидролиза белка или его ступенчатого расщепления для определения последовательности аминокислот. Подобная методика приведена в статьях Белла и сотр., посвященных определению структуры одного из физиологически активных компонентов кортикотронина [И, 25, 152, 153]. [c.392]

    Резкая интенсификация научной деятельности за последние десятилетия вынуждает исследователя отказаться от чтения множества узкоспециальных публикаций и большую часть информации получать из заслуживающих доверия обзоров. Эта ситуация наблюдается и в области анализа аминокислот, пептидов и белков, где каждые пять лет появляются новые эффективные методы, способные заменить уже существующие. Например, в настоящее время газожидкостная хроматография успешно конкурирует с автоматической ионообменной хроматографией аминокислот по Муру и Стейну, которая полностью заменила микробиологический анализ, хроматографию на бумаге и другие методы количественного анализа, существовавшие до 1958 г. Определение последовательности пептидов — трудоемкая задача при использовании обычных методов — производится на данном этапе автоматически на секвенсере Эдмана, а последовательность небольших пептидов удобно определять с помощью масс-спектрометрии. [c.6]

    Методика ВР. Эта методика ускоренного анализа позволяет определять все основные аминокислоты, обычно обнаруживаемые в физиологических жидкостях. Ее рекомендуется использовать для количественного определения аминокислот при таких патологических состояниях, как болезнь Вильсона, цитруллине-мия, псориаз, а также для определения алиментарных колебаний уровня аминокислот. Анализ проводят по следующему режиму. Буфер и нингидриновый реагент подают со скоростью соответственно 90 и 45 мл/ч. Анализ начинают с 0,38 н. натрийцитратным буфером pH 4,263 при температуре колонки 33,0 °С. Через 125 мин температуру повышают до 55,0 °С и заменяют буфер — на 0,35 н. натрийцитратный с pH 5,360. Продолжительность анализа 240 мин. [c.76]

    С введением газожидкостной хроматографии (ГЖХ) в качестве метода анализа аминокислот, пептидов и родственных соединений значительно возросли возможности новых достижений в области пептидной химии. Значительные усилия были направлены на развитие аминокислотного анализа методом ГЖХ, для чего исследовались различные типы производных. Однако в количественном анализе всем ГЖХ методам приходилось конкурировать с хорошо разработанными методами ионнообменной хроматографии, отличающимися высокой степенью автоматизации, точности и даже скорости анализа (например, метод ли-гандного анализа). По этой причине ГЖХ аминокислот в последние годы нашла практическое применение в большей мере для некоторых специальных задач, где она могла даже превосходить другие хроматографические методы, а не для количественного определения аминокислот в сложных смесях. Однако теперь ГЖХ можно использовать в качестве дополнительного метода и для этой цели благодаря аналитическому подходу, разработанному главным образом Герке и сотр. [1]. [c.142]


Смотреть страницы где упоминается термин анализ аминокислот количественное определение: [c.97]    [c.40]    [c.195]    [c.48]    [c.198]    [c.41]    [c.61]    [c.41]    [c.35]    [c.87]    [c.376]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ количественный

Анализ определение

Количественный анализ аминокислот



© 2025 chem21.info Реклама на сайте