Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы катодное выделение из водных

    При хромировании (а в меньшей степени и при никелировании) не весь ток используется на осаждение металла. Одновременно выделяется водород. На основании ряда напряжений следовало бы ожидать, что металлы, стоящие перед водородом, вообще не должны выделяться из водных растворов, а напротив, должен был бы выделяться менее активный водород. Однако здесь, как и при анодном растворении металлов, катодное выделение водорода часто тормозится и наблюдается только при высоком напряжении. Это явление называют перенапряжением водорода, и оно особенно велико, например, на свинце. Благодаря этому обстоятельству может функционировать свинцовый аккумулятор. При зарядке аккумулятора вместо РЬОг на катоде должен бы возникать водород, но, благодаря перенапряжению, выделение водорода начинается тогда, когда аккумулятор почти полностью заряжен. [c.130]


    Изучение водородного перенапряжения позволяет выяснить механизм этой реакции и представляет большой интерес с теоретической точки зрения. Установленные при этом закономерности можно частично распространить и на другие электрохимические реакции, что значительно повышает теоретическую значимость работ по водородному перенапряжению. Изучение водородного перенапряжения имеет также большое практическое значение, потому что современная промышленная электрохимия является преимущественно электрохимией водных растворов, и процессы электролитического разложения воды могут накладываться на любые катодные и анодные реакции. Водородное перенапряжение составляет значительную долю напряжения на ваннах по электролизу воды и растворов хлоридов. Знание природы водородного перенапряжения позволяет уменьшить его, а следовательно, снизить расход электроэнергии и улучшить экономические показатели этих процессов. В других случаях (электролитическое выделение металлов, катодное восстановление неорганических и органических веществ, эксплуатация химических источников тока) знание природы водородного перенапряжения позволяет успешно решать обратную задачу — нахождение рациональных путей его повышения. Все эти причины обусловили то, что изучение процесса катодного выделения водорода и природы водородного перенапряжения всегда находилось и находится в центре внимания электрохимиков. [c.397]

    Электролиз водных растворов — важная отрасль металлургии тяжелых цветных металлов меди,висмута, сурьмы,олова, свинца, никеля, кобальта, кадмия, цинка. Он применяется также для получения благородных и рассеянных металлов, марганца и хрома. Электролиз используют непосредственно для катодного выделения металла после того, как он был переведен из руды в раствор, а раствор подвергнут очистке. Такой процесс называют электроэкстракцией. Электролиз применяется также для очистки металла — электролитического рафинирования. Этот процесс состоит в анодном растворении загрязненного металла и в последующем его катодном осаждении. Рафинирование и электроэкстракцию проводят с жидкими электродами из ртути и амальгам (амальгамная металлургия) и с электродами из твердых металлов. К электролитическим способам получения металлов относят также цементацию — восстановление ионов металла другим более электроотрицательным металлом. Цементация основана на тех же принципах, что и электрохимическая коррозия при наличии локальных элементов. Выделение металлов осуществляют иногда восстановлением их водородом, которое также может включать электрохимические стадии ионизации водорода и осаждение ионов металла за счет освобождающихся при этом электронов. [c.227]


    Так как марганец самый электроотрицательный металл, получаемый электролизом водных растворов, для подавления выделения водорода на катоде необходимо pH католита поддерживать в пределах 4—7. Это достигается питанием ванн раствором с pH = 5, разделением анодного и катодного пространств диафрагмой, введением в состав электролита сульфата аммония— буферной добавки, стабилизирующей величину pH. Кроме того, добавка сульфата аммония повышает электропроводность раствора. [c.269]

    Для прецизионных измерений необходимо использовать трехэлектродную ячейку. Полный литературный обзор по электродам сравнения в неводных средах в целом и в отдельных растворителях составлен в работах [1116, 1224, 949, 807, 1275, 1153]. В качестве электродов сравнения используются различные электроды первого и второго рода как в исследуемом растворе, так и выносные. При исследованиях катодного выделения металлов наибольшее распространение здесь получили электроды — водный насыщенный каломельный и серебряный (первого и второго рода) — выносной, а также в исследуемой среде. Применение выносных электродов особенно целесообразно при сопоставлении поведения различных деполяризаторов в одном растворителе. Возникновение -скачка потенциала в месте соприкосновения водного и неводного растворов препятствует количественному сопоставлению поведения [c.71]

    Изучение влияния строения двойного слоя на твердых электродах в водных растворах обычно затруднено образованием хемосорбированных пленок водорода или кислорода (см. также гл. X), однако существует несколько металлов, наприме.р кадмий, свинец, таллий и цинк, которые даже в области катодного выделения водорода практически свободны от адсорбированного атомарного водорода. Хемосорбированный кислород в этих условиях также отсутствует, поскольку потенциалы, при которых [c.257]

    В водных растворах некоторые металлы термодинамически неустойчивы, так как их равновесный потенциал отрицательнее потенциала обратимого водородного электрода в то.м же растворе. На таких электродах возможно протекание сопряженных реакций анодного растворения металла и катодного выделения водорода, их бестоковый потенциал может быть сдвинут в положительную сторону от равновесного значения (см. разд. 3.7). [c.328]

    Реакция катодного выделения водорода — одна из самых распространенных электрохимических реакций. Она является основной реакцией при электролитическом производстве водорода, вспомогательной при производстве большинства веществ, образующихся на аноде, в том числе при производстве хлора, побочной реакцией многих катодных процессов, в частности в гидроэлектрометаллургии. Она играет значительную роль при коррозии металлов. Характерная особенность этой реакции — возможность протекания в любом водном растворе, без добавления специальных реагентов. Обратную реакцию анодной ионизации молекулярного водорода используют в ХИТ. [c.358]

    В уравнении (3.21) а и являются постоянными. Постоянная а изменяется для одного и того же электродного процесса с изменением состава электролита и материала электрода. Константа Ь для одного и того же электродного процесса в водных растворах остается всегда постоянной. Для случая катодного выделения водорода на различных металлах в водных растворах различных электролитов значение постоянной Ь колеблется около величины, равной [c.88]

    Катодное выделение металлов из водных растворов [c.412]

    Электрохимическое выделение металлов из водных растворов всегда происходит при более электроотрицательном потенциале, чем равновесный потенциал соответствующего металла в данных условиях. Разность между величинами потенциала электрода под током (т. е. при катодном выделении металла) и соответствующего обратимого электродного потенциала отвечает электродной поляризации [c.417]

    Все металлы, приведенные в табл. 49, можно разделить на три группы. К первой из них относятся металлы, выделяющиеся из водных растворов или совсем без перенапряжения (ртуть), или с очень малым перенапряжением, не превышающим при обычных плотностях тока нескольких милливольт (серебро, таллий, свинец, кадмий и олово). Для этой группы металлов (кроме ртути) наиболее отчетливо проявляются неустойчивость потенциала во времени, сложный характер роста катодного осадка и другие особенности, свойственные процессу катодного выделения металлов. При промышленных плотностях тока эти металлы дают грубые осадки с крупными зернами, линейные размеры которых достигают нескольких десятков микронов. Токи обмена для металлов этой группы очень велики. Так, например, ток обмена между металлической ртутью и раствором ее нитрата превышает 4-10" а см , между серебром и раствором нитрата серебра достигает 1 10 а см , между кадмием и раствором сульфата кадмия — 10 а/см . [c.420]


    По другой точке зрения происхождение металлического перенапряжения связано с процессом выделения водорода. Разряд водородных ионов является потенциально конкурирующей катодной реакцией при электролизе любых водных растворов, в том числе и растворов, содержащих соли металлов. Если на катоде наряду с металлом происходит также образование водорода, то последний может влиять и на кинетику электрохимического выделения металла, и на свойства его катодных осадков. Известно, что электролитические осадки железа, никеля и кобальта всегда содержат заметное количество водорода. Включения водорода можно рассматривать как одну из возможных причин искажения кристаллической решетки осадков этих металлов, появления в них внутренних натяжений, хрупкости и т. п. В меньших количествах водород присутствует в осадках меди и цинка. Его практически не удается обнаружить в электролитически осажденных кадмии или свинце. Из этого следует, что металлическое перенапряжение увеличивается параллельно с количеством водорода, включенного в осадок металла, т. е. водород, по-видимому, затрудняет процесс катодного выделения металла. Предполагалось, что водород выступает здесь в роли отрицательного катализатора, тормозя разряд за счет создания поверхностной пленки или образования гидридов металлов. [c.439]

    Многие особенности полярографического анализа определяются свойствами ртутного катода. Очень важное значение имеет то обстоятельство, что катодное выделение водорода на ртутном катоде сильно затрудняется высоким перенапряжением. Высокое перенапряжение при выделении водорода на ртутном катоде позволяет выделять электролизом электроотрицательные металлы. В водных растворах ионы водорода и молекулы воды всегда соприкасаются с поверхностью катода. Если бы выделение водорода начиналось при равновесном потенциале водородного электрода, то этот процесс маскировал бы и перекрывал катодное выделение электроотрицательных металлов. Кроме того, для полярографического метода важное значение имеет образование амальгам многих металлов. Растворение многих металлов в ртути указывает на наличие энергии взаимодействия между этими металлами и веществом катода. К электрическим силам, вызывающим разряд катионов, присоединяются химические силы. Это ведет к понижению катодного потенциала выделения таких металлов на ртутном катоде. Как известно, [c.282]

    Если в качестве меры активности металла в катодном выделении водорода принять ток обмена /о, металлы можно разделить на 3 группы приводим значения токов обмена разряда ионов НзО+ на различных металлах из кислых водных растворов [76]  [c.41]

    Амальгамы щелочных металлов значительно удобнее и безопаснее готовить электрохимиче-ским путем. Основной промышленный способ получения амальгам щелочных металлов — электролиз водных растворов хлоридов соответствующих металлов. Однако выделение хлора на аноде, сопровождающее катодное образование амальгамы, делает этот способ неудобным для исследовательских целей. В связи с этим в лаборатории целесообразнее получать амальгамы электролизом соответствующих гидроокисей. Простейший прибор для приготовления амальгамы представлен на рис. 60. Электролизером служит толстостенный стеклянный сосуд, имеющий в нижней части кран для слива амальгамы. На дно воронки наливают отвешенное количество ртути (200—400 г), поверх которой заливают 25—30% водный раствор гидроокиси щелочного металла, из которого необходимо получить амальгаму. Устанавливают мешалку, лопасти которой расположены в два ряда. Верхний ряд лопастей находится в растворе щелочи, нижний ряд в ртути. Затем в электролизер вводят никелевый перфорированный анод. Для того чтобы никелевый анод не разрушался, концентрация гидроокиси в растворе не должна быть ниже 1,5 г-э/св/л. Электролиз ведут при плогности тока 0,1—0,2 а/сл . Амальгамы калия, рубидия и цезия лучше готовить при более высоких плотностях тока, чем амальгаму натрия, а для получения [c.114]

    Явление перенапряжения сильно влияет на характер и течение электрохимических процессов. Так, при больших плотностях тока перенапряжение водорода достигает такой величины, что потенциал выделения водорода становится близким к потенциалу выделения таких химически активных металлов, как цинк, железо, никель. Это явление используется на практике для катодного выделения цинка, железа и никеля из водных растворов. [c.226]

    При катодном выделении металлов из водных растворов на ртутном катоде, если металлы растворяются в ртути, образуя амальгамы, возможно осуществить выделение металла с высоким выходом по току, так как перенапряжение водорода на ртути весьма велико. Так, при промышленном получении чистых растворов щелочи на ртути происходит разряд ионов натрия  [c.164]

    Выделение водорода. Катодное выделение водорода всегда имеет место при электролизе водных растворов электролитов. Реакция катодного восстановления водорода протекает на некоторых металлах со значительным перенапряжением, существенно превышающим перенапряжение многих других электродных реакций. Величина водородного перенапряжения зависит от многих факторов, и в первую очередь от состава раствора, материала катода и состояния его поверхности, плотности тока и температуры. Рассмотрим возможные пути выделения водорода из кислых и щелочных растворов. [c.57]

    Катодное выделение металлов является наиболее сложным разделом электрохимической кинетики, что связано с образованием новой фазы (осадка) на электроде, с непрерывным обновлением поверхности катода и ее энергетической неоднородностью. При изучении кинетики этой реакции практически всегда нужно учитывать протекание сопряженной реакции выделения водорода, причем большее значение имеет не величина перенапряжения водорода, а механизм выделения его на металле [5]. Кроме того, ряд электроотрицательных металлов вообще не может быть выделен из водных растворов. Со 100%-ным выходом по току можно выделить металлы, обладающие достаточно электроположительным равновесным потенциалом. [c.59]

    Известно, что при совместном осаждении металлов потенциал выделения сплава часто оказывается более положительным, чем потенциалы выделения отдельных компонентов. Более того, такие металлы, как, например, вольфрам или молибден, которые невозможно выделить электролизом из водных растворов, осаждаются совместно с металлами группы железа. Подобные явления обычно объясняются деполяризующим действием, связанным с изменением парциальной молярной свободной энергии при образовании сплавов. Однако такое объяснение в ряде случаев является неубедительным, поскольку электрохимическим путем можно соосаж-дать даже взаимно нерастворимые металлы. Так, например, свинец и серебро не образуют сплавов, однако при электрохимическом осаждении из водных растворов солей этих металлов в катодном осадке серебра обнаруживается около 7% свинца [8]. [c.143]

    Усовершенствованием описанного метода является электрохимическое окисление. При электролизе насыщенных олефином водных растворов хлористого водорода или хлоридов щелочных металлов в анодном пространстве получается хлор, взаимодействующий с олефином с образованием хлоргидрина. В катодном пространстве хлоргидрин разлагается с выделением окиси олефина, водорода и хлора. [c.248]

    При электролизе водных растворов катодный выход по току чаще всего определяется возможным выделением водорода одновременно с получаемым металлом. При электролизе обезвоженных расплавленных сред снижение выхода по току по сравнению с теоретическим обусловлено специфическими для расплавов причинами, вследствие которых выход по току в отдельных случаях может быть даже ниже, чем в водных растворах. [c.470]

    Электрохимическое выделение мета [Лов из водных растворов происходит при более отрицательном иотегщиале, чем равновесный потенциал соответствующего металла в данных условиях. Разность между ноте1щиалом электрода под током (прп катодном выделении металла) и соответствующим обратимым электродным потенциалом дает электродную нолярнзанию [c.453]

    Автор работы [75], наоборот, совсем не учитывает кристаллизационного перенапряжения при оценке электродного потенциала деформированного медного электрода в водном растворе Си504. При этом он утверждает, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. не-деформированный). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопере-носа сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [76], свидетельствующими о большом кристаллизационном перенапряжении (до ста милливольт). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кри- [c.89]

    В работе [83], наоборот, совсем не учитывается кристаллизационное перенапряжение при оценке электродного потенциала деформированного медного электрода в водном растворе Си304. При этом утверждается, что деформированный металл (медь), погруженный в раствор собственных ионов, никогда не принимает обратимого потенциала. Предполагается, что в прямой анодной полуреакции растворения участвует деформированный металл, а в сопряженной обратной катодной полуреакции осаждения — равновесный электровосстановленный (т. е. недеформированный металл). В результате между ними устанавливается не обратимый, а смешанный потенциал, хотя баланс массопереноса сохраняется. Такое предположение находится в прямом противоречии с известными экспериментальными данными о катодном выделении меди на поверхности медных усов [84], свидетельствующими о большом кристаллизационном перенапряжении (до 100 мВ). При этом анодное растворение кристаллов меди происходило в определенных слабых местах, на которых затем обратно осаждался металл при последующем включении катодной поляризации, тогда как на остальной поверхности выделения металла не происходило. Возвращение ад-атома в кристаллическую решетку при катодном процессе, связанное с преодолением кристаллизационного перенапряжения, переводит атом в первоначальное состояние напряженного металла, и элементарный акт растворения — восстановления является обратным при соответствующем равновесном потенциале. [c.92]

    О2 + 2НаО + 4в = 40Н-лимитируется его диффузией к поверхности металла, чему соответствует горизонтальный участок предельного тока на поляризационной кривой. В насыщенных воздухом водных растворах упред 20ч-40 мкА/см . Ек1 — равновесный потенциал системы О2/ОН . При Е < Е 2 происходит катодное выделение водорода 2Й2О + 2е = Нц + 20Н". 3 — отвечающий ему равновесный потенциал. Если коррозия протекает автономно, т. е. без наложения внешнего тока, то скорости анодного и суммарного катодного процессов одинаковы и равны/ ор- Коррозионный потенциал при этом ( кор) отвечает равенству /а = / . Если при катодной поляризации от внешнего источника или с помощью протектора потенциал будет уменьшен до Е, плотность тока анодного растворения металла снизится до /а и будет достигнут защитный эффект, %  [c.57]

    Из водных растворов лантаноиды и актиноиды катодно либо не осаждаются совсем, что используется для их отделения от примесей либо осаждаются в форме преимущественно аморфных гидроксидов [702, 414, 641, 387, 385]. Многочисленные попытки осадить РЗЭ и актиноиды из неводных растворов в элементарном виде также пока безуспешны. В лучщем случае катодные осадки состоят приблизительно из 50 % металла и 50 % органических продуктов. Утверждения о катодном выделении данных металлов в отдельных работах недостаточно обоснованы. Например, в работе [1077] предположение об электроосаждении металлического лантана основывается лишь на факте взаимодействия термически обработанного катодного осадка с водой и кислотами. Дифракционные линии Х-лучей, соответствующие лантану, в этом осадке не обнаружены. Необоснованы сведения также о выделении металлического урана [800]. Электролизом спиртовых растворов солей РЗЭ с ртутным катодом удается получить амальгамы редких земель [702, 414, 464]. Максимальная концентрация РЗЭ в этих амальгамах составляет 3 %, их разложением получают металл. [c.155]

    Электроосаждение из неводных сред металлов четвертой группы представляет интерес прежде всего для германия и подгруппы титана, поскольку эти металлы электролитически из водных растворов не осаждаются [484, 404]. Наилучшие результаты получены в случае германия. Из спиртовых растворов (преимуш ественно в двухатомных спиртах) галогенидов германия выделены тонкие катодные пленки металлического германия [702, 641, 1225, 482, 381, 292, 650, 291, 293]. Наряду с осаждением германия на катоде происходит выделение водорода, на последний процесс расходуется основная часть тока. Выход по току германия низкий (порядка 1—3 %) Большое влияние на процесс злектроосаждения оказывает природа металлической подложки. При определенных концентрациях галогенида германия, повышенных плотностях тока и температурах возможно катодное образование диоксида германия [482, 196]. Пример оптимальных условий получения металлического германия растворитель — этиленгликоль, концентрация ОеСи — 3—5 %, температура — комнатная, интервал плотности тока 5—50 А/дм . При этих условиях на подложках из меди, серебра, платины и алюминия осаждаются ровные, хорошо сцепленные с подложкой, компактные германиевые покрытия светло-серого цвета. В качестве анода использовали графит или германий, выход по току германия составляет 2 % [291, 293]. Возможно катодное получение пленок германия и из других неводных сред, например из низкотемпературных расплавов ацетамида [147]. Из растворов в ацетамиде с добавками хлорида аммония при температуре 90—130 °С двухвалентный германий восстанавливается, образуя тонкослойные (1—2 мк) осадки, прочно сцепленные с подложкой. Выход по току еще ниже, чем в спиртовых растворах (приблизительно 0,1—0,5 %) Из-за выделяющегося водорода осадок германия при этом достаточно наводорожен. [c.157]

    Такой эффект катодного выделения более положительных металлов и, вследствие этого, ускорение коррозии наблюдается также, если в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом (Р1, Аи, kg, Си, N1 и, в меньшей степени. Ре). Поэтому в замкнутых полиметаллических системах, по которым циркулируют водные растворы, например, морская вода, наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся медь или медные снлавы, даже при отсутствии электрического контакта с алюминием. Таким образом, сравнительно высокую коррозио1ь ную стойкость чистого алюминия и некоторых его сплавов, кроме основного влияния защитных кроющих иассивны.ч пленок (анодный контроль), в значительной мере объясняют высоким перенапряжением выделения водорода на поверхности алюминия, особенно в пассивном состоянии (катодный контроль). Примеси тяжелых металлов (в первую очередь в практических условиях железа илн меди) сильно понижают химическую устойчивость алюминия не только вследствие нарушения сплошности защитных пленок, но и благодаря облегчению катодного процесса. Присадки более электроотрицательных металлов с высоким перенапряжением водорода (Mg, 2п) в меньшей степени понижают коррозионную стойкость алюминия. [c.261]

    Металлические электроды первого рода широко применяют в электрометаллургии для катодного пол) чения различных металлов— цинка, натрия и др. или для электрохимического рафинирования (очистки) металлов путем их предварительногг) анодного растворения и последующего катодного выделения. Катодное выделение. металлов лежит в основе всей гальванотехники. Анодное растворение металлов применяют для электрохимической обработки поверхности металлов. Для многих из этих процессов (особенно для электрометаллургических) в качестве электролитов применяют не водные растворы, а расплавы солей. [c.126]

    Хром, электролитически выделенный из водных растворов хромовых соединений, содержит при обыкновенной температуре до 60 объемов водорода, а при 50° — до 300 объемов водорода на один объем металла. Катодное поглощение водорода связано с сильным возрастанием твердости тем не менее какой-либо определенной зависимости между содержанием водорода и твердостью установить не удалось [371], При нагревании в вакууме около 60° большая часть водорода отдаетох обратно, но для полного удаления водорода необходимо нагревание до 600°. [c.110]

    Однако следует указать, что на катоде в водной среде происходит выделение пузырьков водорода. Скорость и размер выделяющихся пузырьков водорода зависят от типа металла. Пузырьки водорода, как правило, активируют поверхность металла и влияют на пористост электроосажденного осадка. Если пузьфьки водорода, образующиеся в начальный период формирования осадка, велики, в осадке образуются крупные поры. Особенно большая пористость осадка наблюдается при катодном осаждении водных дисперсий полимеров. При катодном осаждении органодисперсий полимеров газообразные продукты выделяются на катоде лишь в случае использования в качестве среды органических соединений, восстанавливающихся с выделением газов (метан, бутан, октан). При использовании в среде высококипящих спиртов выделения газообразных продуктов не происходит. Для снижения активности металла и уменьшения пористости покрытия следует внимательно поддерживать электрические параметры процесса, а также тщательно выдерживать температурные режимы термообработки покрытия. Режимы термообработки покрытия также зависят от типа подложки. [c.33]

    Такой эффект катодного выделения более положительных металлов и вследствие этого ускорения коррозии наблюдается также и в том случае, когда в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом, такие, как Pt, Au, Ag, u, Ni и, в меньшей степени, Fe. По этой причине в замкнутых полиметаллических системах, в которых циркулируют водные растворы (например, морская вода), наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся элементы из меди или медных сплаво , даже если они и не состоят в электрическом контакте с алюминием. [c.544]

    Изучение перенапряжения при электролитическом выделении водорода представляет значительный интерес для теории и практики. Найденные при этом закономерности могут служить в качестве исходных данных для обобщений в области электрохимической кинетики. Величина водородного перенапряжения и зависимость его от различных факторов учитываются при создании технологических электрохимических процессов. Например, при электролизе водных растворов солей цинка на катоде могут протекать реакции разряда тнов Zn (fzn +,zn =—0,76 В) и ионов Н (в нейтральном растворе Фн+.Hj = —0,41 В). Вследствие высокого перенапряжения водорода на цинке потенциал его выделения сдвигается в сторону более отрицательных значений, б"лагодаря чему возможно катодное осаждение металла с выходом по току 90—95%. [c.513]

    Каковы особенности катодного процесса ири электролизе расплавленных солей В чем своеобразие кинетических зако гомерностей выделения раснлавлеиного металла но сравиеиню с кинетикой электроосаждения металла из водных электролитов  [c.296]


Смотреть страницы где упоминается термин Металлы катодное выделение из водных: [c.112]    [c.698]    [c.488]    [c.283]    [c.295]    [c.534]   
Технология электрохимических производств (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Катодное выделение металлов из водных растворов

Металлы выделение из руд

Ток катодный



© 2025 chem21.info Реклама на сайте