Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность неводных сред

    Вольт-амперометрия во всех ее многочисленных разновидностях — основной метод при исследовании электродных процессов. Вольт-амперные методы подробно описаны в литературе, часто применительно к неводным средам [322, 134, 129, 320, 659]. Кратко остановимся лишь на тех методах, какие наиболее часто применяются в неводных растворах, укажем некоторые особенности электрохимических измерений, связанные с низкой электропроводностью неводных сред. [c.71]


    Электропроводность расплавов, в противоположность электропроводности неводных сред, достаточно велика, и трудность получения хорошо выраженных полярографических волн вызвана другими причинами невозможностью применения при высоких температурах жидкого капельного электрода с обновляющейся поверхностью, образованием возле электрода соединений (сплавов) между выделяющимися на электроде металлами и рядом других явлений. [c.68]

    Электропроводность раствора H I в метиловом спирте почти в 4 раза меньше, чем в воде, что трудно объяснить уменьшением скорости движения ионов. Низкая электропроводность в неводных средах определяется в основном малой степенью диссоциации веществ в этих растворителях. Так, если хлористый водород в водном растворе диссоциирован полностью, то в спир-то шм растворе степень его диссоциации гораздо меньше единицы, а в бензоле он образует совсем слабый электролит. [c.439]

    Из уравнения следует, что любое изменение диэлектрической постоянной среды существенно влияет на проводимость раствора. Эта сторона проводимости имеет чрезвычайно важное значение для объяснения электропроводности неводных растворов, [c.195]

    Электропроводность неводных растворов электролитов. Электропроводностью обладают не только водные, но и неводные растворы. Проводимость неводных растворов также определяется концентрацией ионов и скоростью движения. Электропроводность неводных растворов электролитов зависит от вязкости и диэлектрической проницаемости среды. [c.274]

    Измерение электропроводности можно использовать для определения концентрации электролита. Особенно удобно применять его в случае разбавленных растворов, а также когда электролит является микрокомпонентом в присутствии большого количества неэлектролитов, в частности в неводных средах. Определения можно проводить и в окрашенных, мутных и совсем непрозрачных растворах. [c.196]

    При работе в неводных средах в основном используют Н-об-разные ячейки с плоскопараллельными электродами одинаковой площади, вследствие чего достигается равномерное распределение тока Пример такой ячейки, снабженной электродом сравнения, приведен на рис. 5.4. Малое межэлектродное расстояние позволяет работать в средах с низкой электропроводностью. [c.174]

    В методе разностной осциллополярографии не требуется высокой электропроводности раствора, что делает этот метод особенно выгодным для исследования неводных сред [68]. [c.74]


    Используя установленные теоретические закономерности по влиянию сольватации, диэлектрической проницаемости и вязкости на электропроводность, можно, направленно подбирая компоненты смешанного растворителя, добиваться максимальной для данного электролита электропроводности в неводных средах. [c.131]

    Известны работы, посвященные электролизу солей рзэ в неводных средах [629, 1124, 1478, 1479]. При этом обнаружено, что из спиртовых сред, пиридина, этилендиамина элементы выделяются в металлическом состоянии на катоде. Такие осадки сильно загрязнены органическими продуктами восстановления, и выделение металла из-за малой электропроводности среды далеко неполное. Поэтому последние способы и не нашли практического применения. [c.147]

    Неводные растворители должны очищаться тщательной перегонкой, причем следует обращать особое внимание на удаление следов влаги. Значения электропроводности водных растворов заметно отличаются от значений электропроводности растворов тех же веществ в неводной среде кроме того, в некоторых случаях, в частности, если раствор электролита содержит ионы водорода, гидроксила или алкоксила, небольшие количества воды оказывают очень сильное влияние на электро- [c.79]

    Для широкого круга физикохимиков, в том числе и для электрохимиков, значительный интерес представляет вторая глава, посвященная сольватации протона и процессам протонного перехода в водных и неводных средах. На основании анализа большого количества данных, полученных различными экспериментальными методами, включая и метод ядерного магнитного резонанса, автор этой главы проф. Конуэй сделал интересные выводы относительно реальности существования иона НзО , кинетики подвижности протонов в водных средах, электропроводности льда и аномальной протонной подвижности в неводных системах. [c.6]

    УП. АНОМАЛЬНАЯ ЭЛЕКТРОПРОВОДНОСТЬ В НЕВОДНЫХ СРЕДАХ [c.157]

    Расходование катализатора в ходе реакции приводит к изменению электропроводности реакционной среды во времени (рис. 2). При переходе алкоголятов в недиссоциированные в неводной среде ацетаты снижается концентрация электропроводящих частиц. [c.26]

    При экспериментальном определении окислительного потенциала в неводных средах имеются как общие с водными растворами трудности (учет потенциала жидкостного соединения и рациональный выбор электрода сравнения), так и специфические — уменьшение скорости гомогенных и гетерогенных реакций электронного обмена и необходимость обеспечить достаточную электропроводность растворов. [c.92]

    Ионные двойники могут ассоциироваться со свободными ионами, образуя заряженные ассоциаты (тройники). Наличие в растворах подобных ассоциатов является причиной особенного поведения сильных электролитов в неводных средах уменьшение изотонического коэффициента, снижение осмотического давления, электропроводности и т. д. по сравнению с водными растворами равнозначных концентраций. [c.202]

    Эквивалентная электропроводность изменяется с температурой. Для большинства электролитов с повышением температуры электропроводность увеличивается, что объясняется повышением подвижности ионов. Однако для некоторых электролитов, особенно в неводных средах, возможно и снижение электропроводности. Это связано с уменьшением диэлектрической проницаемости растворителя. [c.205]

    Для измерения сопротивления раствор помещается в сосуд с платиновыми электродами. Различные конструкции сосудов представлены на рис. 77. Обычно пользуются электродами, покрытыми платиновой чернью. Гладкие электроды используются при работе в неводных средах. Поскольку электропроводность очень чувствительна к температурным изменениям, ячейка, в которой производятся измерения, тщательно термостатируется. Зная постоянную сосуда, определяют [c.207]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]


    Эквивалентная электропроводность изменяется с температурой. Для большинства электролитов с повышением температуры электропроводность увеличивается, что объясняется повышением подвижности ионов. Однако для некоторых электролитов, особенно в неводных средах, возможно и снижение электропроводности. Это связано с уменьшением диэлектрической проницаемости растворителя. Величина эквивалентной электропроводности зависит также от амплитуды и частоты приложенного электрического поля. Особенно заметно это проявляется в растворах сильных электролитов, где на перемещение ионов оказывает влияние окружающая противоионная атмосфера. При высоком напряжении ион движется значительно быстрее, чем образуется ионная атмосфера, и поэтому отсутствуют, катафоретиче-ские и релаксационные эффекты. Электропроводность растворов в этих условиях резко возрастает. Релаксационное торможение снижается, кроме того, при повышенных частотах (эффект Дебая—Фаль-кенгагена). В растворах слабых электролитов электропроводность также растет с увеличением градиента поля, однако природа этого явления связана с изменением равновесия диссоциации. При высоком градиенте потенциала равновесие сдвигается в сторону образования ионов. [c.225]

    Из данных по электропроводности видно [25], что ионы 0+ (симметричные катионы типа Bu4N+) в неводной среде не сольватированы или сольватированы очень слабо, а ионы щелочных металлов — сильно. В водных растворах картина обратная. Из этого следует, что при переходе катиона из водного слоя в органический необходимо затратить энергию на сбрасывание водной шубы . Процесс этот не может протекать легко, так как необходимая энергия не компенсируется образованием новой сольватной оболочки. Если этот процесс и происходит в разбавленных растворах, то он крайне мало вероятен в случае концентрированных растворов ониевых солей и тем более щелочей. В то же время не столь гидратированные анионы могут переносить гидратную оболочку в органическую фазу и там терять ее, насыщая органическую фазу водой. Действительно, показано [26], что количество воды, переносимой анионом в органическую фазу, зависит от его структуры. Наличие этой воды может сказываться на абсолютной и относительной скоростях реакций. Так, в системе вода —бензол при = С1бНззР (С4Н9)з ион С1 переносит в органическую фазу 3,4 моль воды, ион Вг —2,1 моль воды, а I — 1,1 моль воды на 1 г-ион. Следует отметить, что присутствие воды может не только изменять скорость реакции, но иногда вообще останавливать процесс или направлять его в другую сторону. [c.21]

    В настоящее время для осаждения щелочных металлов может быть использована большая группа апротонных растворителей, таких, как пропиленкарбонат, 7-бутиролактон, тетрагидрофуран, диметоксиэтан, диметнлсульфоксид, диметилформамид, диглим и другие, а также и их смеси. В качестве солей в основном применяют перхлораты щелочных металлов, тетрахлоралюминаты, гексафторфосфаты, растворимость которых не превышает 1,5 М/л, а максимум удельной электропроводности находится вблизи концентрации 1 М/л и равен 2—5-10 3 Ом -см-. Плотности тока, при которых происходит осаждение щелочного металла, 0,1 — 3 мА/см при этом, как правило, осадки получаются достаточно пористые. Выход по току, определенный путем анодного. растворения щелочного металла, например лития, близок к 90%. Это может быть связано с взаимодействием свежеосаждениого щелочного металла с растворителем, примесями и неудаленной водой, а также с осыпанием при анодном растворении. Процесс разряда лития в неводных средах протекает, нв-видимому, с участием простых сольватирован-пых ионов по простой одноэлектронной схеме [c.13]

    В предыдущей главе был подробно рассмотрен вопрос об электропроводности очень, сильно диссоциированных электролитов в средах с высокой диэлектрической постоянной. С помощью уравнения электропроводности Онзагера можно показать, что поведение большей части таких растворов свидетельствует о полной диссоциации растворенного вещества при малых концентрациях, В неводных средах, согласно теории ассоциации ионов Бьеррума (гл, 1П, 7)., по мере уменьшения диэлектрической постоянной растворителя увеличивается стремление ионов всех электролитов к ассоциации. Экспериментальные результаты, которые будут рассмотрены ниже, подтверждают предетавления Бьеррума. В соответствии с этими представлениями в средах с малой диэлектрической постоянной все электролиты являются частично ассоциированными или слабыми и деление электролитов на сильные и слабые становится до некоторой степени условным. Тем не менее деление электролитов на сильные и слабые в соответствии с тем, являются ли они сильно или слабо диссоциированными в водных растворах, обычно сохраняется при описании свойств электролитов независимо от того, какая среда выбрана в качестве растворителя. [c.182]

    Электролит может содержать самые разнообразные соединения, которые образуют проводящий раствор. Электропроводность раствора должна быть, конечно, достаточно высокой, чтобы исключить потери электрической энергии обусловленные выделением тепла. Можно ирименя1ь водные и неводные растворы. Наиболее распространенными электролитами являются растворы серной кислоты, соляной кислоты, едкого натра и едкого кали и растворы солей неорганических и органических кислот. В качестве неводных сред применяются ледяная уксусная кислота и метиловый спирт. [c.322]

    Потенциал полуволны, диффузионный ток, число и форма волн зависят от состава исследуемого раствора. Необходимость растворять образец в подходящем инертном растворителе, обеспечивающем достаточную электропроводность, сильно ограничивает применение полярографической методики к анализу. полимеров. За исключением относительно небольшого количества водорастворимых полимеров, измерения чаще всего проводят в смесях воды с 1,4-диоксаном, N,N-димeтилфopмaмидoм, моноалкиловыми эфирами этиленгликоля (целлозольвы), в тройных смесях вода — этанол (или метанол) — бензол или в неводных средах. Для того чтобы увеличить растворимость в смесях органических растворителей с водой, применяют аэрозоль МА и аэрозоль АУ (дигексил- и диамнлсульфосукцинат натрия), которые оказались эффективными для таких соединений, как тре/п-бутилгидроперекись [210]. Вследствие того что величина диффузионного потенциала между исследуемым раствором и электродом сравнения неизвестна, значения потенциалов включают некоторую неопределенную величину. Если в качестве анода используют слой ртути, то его потенциал изменяется в зависимости от среды и должен измеряться отдельно. Четвертичные аммониевые соли при использовании в качестве фона можно растворять в 30—85%-ном диоксане. Однако этот растворитель трудно очистить, и при стоянии он быстро образует перекиси. Четвертичные соли растворимы в этаноле, имеющем концентрацию вплоть до 80%. Целлозольвные растворители легко очищаются, не ухудшаются при хранении и растворяют достаточное количество электролита для образования проводящих растворов. Наиболее подходящими для анализа являются концентрации определяемых компонентов, равные [c.361]

    Использование смешанных растворителей приводит к появлению двух общих проблем. Если происходит селективная сольватация [11, 181а], то константы ассоциации, полученные в двух разных средах, относятся к разным реакциям. Вероятно, если молярная доля воды больше, чем примерно 0,8, селективной сольватации комплексов металлов не происходит, так как вальденовское произведение предельной электропроводности и вязкости постоянно для ряда систем с большим содержанием воды [75, 148, 149]. В неводных средах ионы металлов и их комплексы не гидратируются и, вероятно, даже не сольватируются, и многие реакции ассоциации были изучены в безводных средах [86, 152, 199, 224, 257, 301]. Стандартное состояние для стехиометрических констант ассоциации выбирается для каждой конкретной среды (растворенные вещества плюс растворители). Предпринимались попытки элиминировать зависимость от концентрации электролита (вторичный эффект среды по Оуэну [123]), с тем чтобы относить стандартное состояние только к смеси растворителей [62, 75, 148, 149], но эти попытки вызывают возражения, изложенные в разделе II, 1, А. За исключением, возможно, амминов металлов, константы ассоциации большого числа разнообразных комплексов металлов, содержащих неорганические [284] и органические [283] лиганды, возрастают при уменьшении диэлектрической проницаемости среды. Это изменение происходит в направлении, ожидаемом на основании электростатических соображений, но влияние органических растворителей (первичный эффект среды по Оуэну [123]) на константы ассоциации не проанализировано. [c.69]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    Главными преимуществами этих детекторов при использовании с большинством водных элюатов являются отсутствие отклика на подвижную фазу, довольно высокий сигнал, величину которого можно предсказать по данным о проводимости, нечувствительность к умеренным изменениям температуры и скорости потока, недеструктивный характер детектирования и, что особенно важно, простота изго--товления и использования. Хотя, как утверждают, большинство детекторов по электропроводности имеет линейную зависимость сигнала от концентрации, ячейка малого объема, описанная Пексоком и Сондерсом /27/, не обладала такой характеристикой, и возможно, что при работе этого детектора в частично или полностью неводных средах нелинейность станет серьезным ограничением. [c.229]

    Для проведения полярографических определений в неводных средах с малой электропроводностью используют различные соли, растворимые в данном растворителе. В качестве неводных растворителей чаще всего применяют метиловый и этиловый спирты, диоксан, уксусную кислоту и различные водные и другие смеси с этими растворителями. Применяют также сильные минеральные кислоты Н2804, НР и др. В качестве сред, в которых возможны полярографические измерения, могут быть названы также глицерин, этиленгликоль, безводный этилендиамин, муравьиная кислота, формамид и его смеси с уксусной кислотой, смесь, состоящая из равных частей метилового спирта, бензина и бензола, и др. В последней смеси растворяется нитрат аммония, который обеспечивает достаточную электропроводность раствора [26]. [c.37]

    Проблема особенностей полярографического поведения органических соединений в смешанных водно-органических и неводных средах возникла одновременно с возникновением полярографии органических веществ. Ограниченная растворимость в воде подавляющего большинства органических соединений, не позволяющая достичь даже полярографических концентраций, вызвала необходимость поисков новых сред с высокой растворяющей способностью и обладающих к тому же достаточной электропроводностью. В ряде работ обзорного характера [1—9, 13, 14) освещены основные достижения в решении рассматриваемой проблемы. Уже давно в качестве сред для полярографирования были испытаны смеси воды со спиртами, гликолями, диоксаном, уксусной кислотой, смесь метанола с бензолом, а также неводные среды — этиловый и метиловый спирты, уксусная кислота, глицерин, этиленгликоль и др. Новые возможности для полярографического изучения органических веществ открыло применение высокополярных апротонных растворителей — К, К-диметилформамида, ацетонитрила и диметилсульфоксида, уже прочно вошедших в практику электрохимических исследований. В качестве возможных сред для полярографирования органических веществ за последние годы были изучены также пиридин, тетраметилмочевина, метила-цетамид, 1,2-диметоксиэтап, тетрагидрофуран, сжиженная двуокись серы, нитрометан и др. [c.210]

    Влияние следов воды. Изменение эквивалентной электропроводности неводных растворов сильных электролитов (за исключением кислот) при добавлении небольших количеств воды, как правило, соответствует изменению вязкости. Однако в случае спиртовых растворов сильных кислот вначале наблюдается значительно большее понижение электропроводности, чем понижение, которое могло быть вызвано изменением вязкости при дальнейшем добавления воды электропроводность начинает возрастать, приближаясь к значению, которое наблюдается в водном растворе. Если же растворителем служит ацетон, изменение электропроводности в присутствии воды соответствует изменению вязкости среды. Следует полагать, что аномальное поведение наблюдается в таких растворителях, в которых электропроводность иона водорода определяется механизмом проводимости по Гротгусу. В спиртовом растворе ион водорода существует в виде HOHaROHl", и при добавлении [c.109]

    В рамках упомянутого механизма реакции и традиционных взглядов на природу ионных пар, упомянутые отклонения не находят себе объяснения, В то же время показано [165], что электропроводность НС1 в метаноле и этаноле описывается уравнениями (III.11) и (III. 12). Это позволяет вычислить как степень диссоциации ионных пар, так и отношение концентраций ионных пар в проводящехМ и непроводящем состояниях для каждого конкретного раствора НС1 в метаноле или этаноле. Установлено [65], что этими результатами можно количественно интерпретировать упомянутые выще кинетические данные, предполагая разные скорости реакции для ионных пар в проводящем и непроводящем состояниях. Это служит независимым кинетическим подтверл дением существования указанных двух состояний ионных пар и соблюдения закона разбавления Оствальда (без введения коэффициентов активностей), в данном случае для неводной среды. [c.94]

    Он же устаиовил, что эквивалентная электропроводность Л-электролитов в неводных средах зависит от вязкости среды т) и молекулярного веса электролита М  [c.93]

    При длительном контакте мостика, наполненного раствором КС1, с неводной средой на его конце образуется корка из кристаллов КС1, уменьшающая электропроводность системы. Чтобы устранить образование подобной корки, рекомендовано [16] составлять агар-агаровую пробку из двух частей непосредственно примыкающую к каломельному электроду готовить на 10%-ном КС1, а рядом с ней — примыкающую к неводной среде — на 10%-ном растворе бромида тетраэтиламмопия. [c.332]


Смотреть страницы где упоминается термин Электропроводность неводных сред: [c.57]    [c.140]    [c.222]    [c.164]    [c.527]    [c.559]    [c.166]    [c.197]    [c.213]    [c.281]    [c.20]    [c.222]   
Теоретическая электрохимия Издание 3 (1975) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Аномальная электропроводность в неводных средах

неводных средах



© 2025 chem21.info Реклама на сайте