Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия проницаемости

    Полагая T > для 6,8 > О, получим < 0. Это означает, что энергия переходит из фазы а, имеющей более высокую температуру, в фазу р, имеющую более низкую температуру. На основе аналогичных рассуждений можно доказать, что один компонент переходит через проницаемую перегородку из фазы с более высоким химическим потенциалом в фазу с более низким химическим потенциалом. В соответствии с этим очевидно, что подвижная перегородка, разделяющая две фазы, будет сдвигаться в сторону более низкого давления. В обоих рассмотренных случаях энергия должна переходить через проницаемую перегородку вместе с компонентом. [c.30]


    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    Это уравнение определяет изменение свободной энергии при переносе сферического иона из вакуума в растворитель с диэлектрической проницаемостью О (т. е. свободную энергию сольватации иона). Заметим, что эта величина всегда отрицательна, так что ионы более устойчивы в растворителях, чем в вакууме. Для одновалентных ионов с / = 2 Л эта величина составляет около 150 ккал/моль при О > 10. [c.456]

    Для того чтобы выразить коэффициенты активности полярных молекул через три параметра — радиус, дипольный момент растворенного вещества и диэлектрическую проницаемость растворителя, —можно воспользоваться простой электростатической моделью. Для нахождения величины свободной энергии сольватации сферической молекулы радиусом г с точечным диполем в центре можно использовать обычную модель растворителя. Величина / в, полученная Кирквудом [62] из электростатической теории, равна [c.457]

    Обычно при расчетах полярность и поляризуемость молекул определяют в зависимости от диэлектрической проницаемости, молекулярной массы и плотности ПАВ и растворителя. Однако применительно к маслорастворимым ПАВ эти расчеты оказываются недостаточно точными, поскольку такие ПАВ, попадая в малополярную среду, принимают участие в межмолекулярных взаимодействиях между собой и средой, а энергия этого взаи-. модействия может быть весьма значительной. Поэтому для определения дипольного момента предлагают определять относи- [c.202]

    Энергия двойного электрического слоя, как следует из теории ДЛФО, играет первостепенную роль применительно к стабильности и коагуляции дисперсных систем. Так, раствор любой присадки в масле является олеофильным коллоидом, в котором плотность заряда значительно ниже, чем в лиофобных коллоидах. Снижение плотности заряда в масле сопровождается уменьшением диэлектрической проницаемости, что приводит к образованию более проч- [c.216]


    Твердые вещества, при растворении которых в воде и других полярных растворителях, образуются электролиты, являются, как правило, кристаллическими телами, имеющими ионные или близкие к ионным решетки. В чисто ионных решетках не существует молекул вещества, и кристалл любой величины можно рассматривать как одну огромную молекулу. Ионы противоположных знаков, составляющие такую решетку, связаны между собой большими электростатическими силами. При переходе ионов Е раствор, энергии электростатического взаимодействия ионов в решетке противопоставляется энергия взаимодействия ионов с дипольными молекулами растворителя, который втягивает ионы решетки в раствор. При этом ионы окружаются молекулами растворителя, образующими вокруг иона сольватную (в частном случае — гидратную) оболочку. Энергия взаимодействия ионов различных знаков, перешедших в раствор и окруженных сольватными оболочками, уменьшается по сравнению с энергией их взаимодействия в решетке (при равных расстояниях г между ионами) обратно пропорционально диэлектрической проницаемости растворителя О в соответствии с законом Кулона  [c.391]

    Потенциальная энергия двух противоположно заряженных ионов на этом расстоянии равна 2 кТ, при этом кинетическая энергия недостаточна для преодоления взаимного притяжения ионы остаются связанными в пару, которая не участвует в электропроводности, хотя и не является настоящей молекулой. Можно подсчитать число ионов, которые находятся вокруг иона противоположного знака между критическим расстоянием д и расстоянием наибольшего сближения. Таким способом определяется число ионных пар, степень их диссоциации и константа диссоциации ионных пар по закону действия масс. Б воде при 25° С для одно-одновалентного электролита критическое расстояние невелико (( = 3,57 А), число ионных пар очень мало, имеется почти полная диссоциация. Для ионов с большими зарядами, а также в растворителях с небольшой диэлектрической проницаемостью величина д имеет большие значения, и ассоциация увеличивается. Ассоциация зависит также от радиуса ионов и растет с уменьшением этого радиуса (т. е. увеличением расстояния наибольшего сближения), Так, в растворах ЬаРе (СМ) 6 в смешанных растворителях, диэлектрическая проницаемость которых О <57, константа диссоциации ионных пар уменьшается с уменьшением О в количественном согласии с теорией. Это падение константы лежит в пределах от 10" до 10 . В растворе с /п=0,01 степень диссоциации ионных пар по мере уменьшения О изменяется от 0,3 до 0,03 число ионных пар очень велико. В водных растворах с 0 = 81 содержание ионных пар при малых концентрациях составляет доли процента. [c.416]

    Поскольку оценка этих величин обычно сопряжена с большими трудностями, вопрос о проницаемости той или иной породы по данному механизму может быть решен либо в прямом эксперименте, либо на основе косвенных критериев. Так, если считать, что межзеренная энергия в ионно-ковалентных кристаллах в грубом приближении равна половине поверхностной, то комбинация соотношений Гиббса — Смита и Гриффитса приводит к выводу, что проникать в поликристаллы могут жидкости, снижающие их прочность не менее, чем вдвое. С учетом уравнения Юнга легко показать, что межзеренная пропитка наиболее вероятна в системах, в которых наблюдается полное растекание по свободной поверхности. Отсюда ясно, что при обычной температуре межзеренное проникновение воды и водных растворов должно быть свойственно породам типа калийных и натриевых солей. [c.99]

    В тех случаях, когда свободная энергия границы зерен недостаточна для образования на ней жидкой прослойки, она может быть повыщена за счет приложенных извне сдвиговых или растягивающих напряжений, и граница становится проницаемой [302]. Совместное действие напряжений и повыщенных температур, по-видимому, является причиной развитой межзеренной трещиноватости, наблюдаемой в образцах керна из сверхглубоких скважин. Существенно, что породы из участков, долго контактировавших с буровым раствором, оказываются сильнее проработанными по границам, чем свежий керн, извлеченный в конце рейса. [c.100]

    Приведенные соображения можно проиллюстрировать ориентировочным расчетом на примере каменной соли в контакте с водой. Анализ шлифа, а именно измерение углов в стыках межзеренных границ, дает для энергии границ, в среднем равной 75 мДж/м2, среднеквадратичное отклонение 25 мДж/м . Если о.,ж 40 мДж/м2 и распределение можно считать нормальным, то доля проницаемых границ получается равной 30%, [c.100]

    Роль реактивного поля не всегда учитывается, хотя, как показано М. И. Шахпароновым, его вклад в энергию межмолекулярного взаимодействия может быть значительным. Так, для воды соотношение (15.1) дает Ец = — 18 кДж/моль, что составляет около 40% всей потенциальной энергии межмолекулярного взаимодействия в воде [664]. Существенно, что зависит не только от статической диэлектрической проницаемости е , принимающей большие значения для полярных жидкостей, но и от Еоо. Поэтому вклад реактивного поля в энергию межмолекулярного взаимодействия может быть значительным и для слабополярных жидкостей. [c.247]


    Для исследований ЭПР не следует выбирать такие растворители, кяк вода, спирты и т.д., так как они отличаются высокой диэлектрической проницаемостью и сильно поглошают энергию микроволнового излучения. Их можно использовать только в тех случаях, когда образец дает сильный сигнал и помещается в специальную ячейку (с очень небольшим диаметром ампулы для образца). Методом ЭПР можно изучать газы, растворы, порошки, монокристаллы и замороженные растворы. Проводить исследование замороженных растворов удобнее всего, когда [c.6]

    Последовательное возрастание энергии связи в указанном выше ряду мембранных систем влияет на основные газоразделительные свойства мембран — проницаемость и селективность. [c.14]

    Увеличение энергии связи компонента с матрицей приводит к снижению подвижности молекул газа и, следовательно, к уменьшению эффективных коэффициентов молекулярного переноса (например, коэффициенты диффузии газов в полимерах на несколько порядков меньше коэффициентов взаимной диффузии в газовой смеси). В результате резко снижается проницаемость мембран. Действительно, наибольшей проницаемостью обладают газодиффузионные мембраны, в которых энергия связи проникающего газа с матрицей близка к нулю. [c.15]

    Увеличение энергии связи приводит к усилению роли сорбционных явлений в общем процессе разделения. В частности, скачкообразное изменение концентрации компонентов на границах мембраны не только повышает проницаемость целевого компонента, но может принципиально изменить процесс разделения смеси. В полимерах коэффициенты диффузии более легких растворенных газов, как правило выше, а растворимость их ниже, чем у более тяжелых газов. В итоге скорость проницания последних часто превосходит проницаемость той же мембраны по более легким газам. [c.15]

    В мембранных системах с возрастающей энергией связи повышение селективности сопровождается снижением проницаемости и, следовательно, производительности мембранных модулей. В ряде случаев этого удается избежать путем формирования оптимальной структуры матрицы мембраны, направленного синтеза полимерных материалов для разделения газовых смесей определенного состава, причем особенно перспективны реакционно-диффузионные мембраны, в которых возможно максимальное приближение к природным мембранным системам за счет сопряжения процессов диффузии, сорбции и химических превращений. [c.15]

    Общий характер температурной зависимости коэффициента проницаемости определяется суммой энергии активации и энтальпии сорбции ДЯ , условно называемой энергией активации проницания  [c.85]

    Диоксид углерода занимает промежуточное (между пропаном и метаном) положение по растворимости, а его коэффициенты диффузии Dim.iT, im-> 0) И энергия активации примерно такие же, как для метана. Этим объясняется промежуточное значение коэффициента проницаемости и сдвиг зоны изменения температурной зависимости в область больших давлений, где влияние сорбции особенно значительно. [c.90]

    Исследуем влияние температуры на идеальный фактор разделения. Температурная зависимость проницаемости чистых компонентов, как это следует из уравнения (3.76), зависит от энтальпии растворения и энергии активации диффузии Однако избирательность сорбционного процесса а //, как показано в разд. 2.2, при изменении температуры оказывается более консервативной характеристикой, чем проницаемость А(Т). [c.107]

    При гармоническом изменении поля с круговой частотой и в несовершенных диэлектриках, обладающих электропроводностью (V > 0) и замедленными механизмами поляризации, происходящими с рассеянием энергии, вводится комплексная диэлектрическая проницаемость, равная [c.35]

    Велики трудности создания математически разработанной теории растворов электролитов. Было бы очень просто, если бы можно было рассматривать такую систему, как совокупность заряженных шариков-ионов в растворителе, представляющем собой непрерывную среду с диэлектрической проницаемостью е. Такая модель не может дать согласия с опытом. Ведь надо учесть совокупное действие ряда факторов изменение а растворителя в зависимости от природы ионов и их концентрации, влияние собственного объема ионов, влияние концентрации несвязанного растворителя, возможность формирования сложных (тройных и др.) частиц, изменение энергии сольватации ионов с концентрацией раствора, неполноту диссоциации электролита, изменение структуры раствора с его концентрацией. Обилие этих факторов и различный их вклад (в зависимости от природы компонентов раствора, его концентрации и температуры) делает невозможным их строгий количественный учет во всей совокупности. Современный уровень квантовомеханического и электростатического подходов совершенно недостаточен для этого. [c.173]

    При фонтанном способе эксплуатации нефть и газ поднимаются по стволу скважины под действием природной энергии пласта. Основной технической задачей при этом является обеспечение надежной герметизации ствола и устья скважины. Кроме этого, большое внимание уделяется обработке призабойной зоны с целью повышения проницаемости составляющих ее пород. [c.40]

    В теории ионной ассоциации предполагается, что ионы образуют ассоциат, если они находятся на таком расстоянии, что энергия их электростатического взаимодействия не ниже, чем 2kT. Энергия электростатического взаимодействия U ионов с зарядами и на расстоянии г в среде с диэлектрической проницаемостью е определяется уравнением [c.446]

    Степень смещения равновесия в сторону образования независимых друг от друга ионов определяется, в первую очередь, диэлектрической проницаемостью среды. Энергия взаимодействия между разноименными единичными зарядами равна  [c.163]

    Таким образом, по теории Борна энергия сольватации иоиа определяется его зарядом и размерами, а также диэлектрической проницаемостью растворителя. Урапнеиия (2.7) и (2.9) можно применять к любым растворам, если только известны их диэлектрические проницаемости. [c.54]

    Так как электролиты диссоциируют за счет энергии сольватации, то, если признать представления Борна справедливыми, дис-социируюигая способность растворителя и его диэлектрическая проницаемость должны находиться между собой в прямой зависимости. Подобное соотношение было обнаружено П. И. Вальденом (1903) еще до появления теории со.1ьватации Борна. Для ряда тет-разамещенных аммония Вальденом было установлено следующее эмпирическое правило  [c.54]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Суммарные энергии сольватации электролитов для ряда растворов приведены в табл. 2.7. Они получены Измайловым на основе измерений электродвижущих сил соответствующих электрохимических систем. Нз табл. 2.7 следует, что энер1 ия сол1)Ватации электролита изменяется несущественно при переходе от одного растворителя к другому. Так, папример, для хлорида водорода максимальное отклонение энергии сольватации от его среднего значения (1382 кДж-моль- ), наблюдаемое в т(зм случае, когда растворителем служит аммиак, составляет 67 кДж.моль , т. е. около 5% обычно же оно не превышает 1—2%. Поскольку диэлектрические проницаемости растворителей, собранных в табл. 2.10, сильно отличаются друг от друга, такой результат указывает на их второстепенную роль в энергетике сольватации и на несовершенство метода Борна и других методов, в которых используется его модель растворителя. [c.67]

    ПАВ, содержащие функциональные группы с положительным суммарным электронным эффектом (например, амины, амиды, имины и др.), несколько меньше, чем ПАВ первой группы, повышают диэлектрическую проницаемость бензола (табл. 6.5). В их присутствии увеличивается энергия выхода электрона из металла (ДКРП отрицательна) (см. рис. 6.13), в [c.300]

    Разрыв ковалентной связи в молекулах газа обычно приводит к образованию двух нейтральных радикалов. Такие реакции называются атомными или гомолитическими. Разрыв ковалентной связи в молекуле может привести и к образованию двух противоположно заряженных ионов. Такие процессы называются гетвролитическими и почти не наблюдаются в газах, но очень характерны для растворов. Объясняется это тем, что гетеро-литический распад в газах требует затраты большой энергии на преодоление взаимного электростатического притяжения ионов. В растворах же большие диэлектрические проницаемости многих растворителей заметно понижают электростатическое притяжение ионов, поэтому энергия гетеролитического разрыва ковалентной связи может стать ниже энергии гомоли-тического разрыва. Кроме того, гетеролитическому распаду способствует поляризация диссоциирующей связи под действием электрических полей полярных молекул растворителя. [c.84]

    Из (7.25) с учетом всех членов разложения согласно табл. 7.5 следует, что при 2<2,48 уравнение (7.26) имеет только одно решение 5 = 0. При большей плотности числа частиц в системе появляются дополнительные решения 5т и —Зт, причем они соответствуют минимуму свободной энергии (7.25). Фазовый переход при плотности sL = 2,48 — переход второго рода, поэтому полученное в рамках самосогласованного поля решение может оказаться некорректным. Отметим, что pa мaтpивae faя модель близка к модели проницаемых сфер, рассматриваемой в [352] с целью изучения критических явлений. [c.130]

    Основное влияние на температурную зависимость коэффициента проницаемости оказывает энергия активации диффузии [см. табл. 3.2 и уравнение (3.55)]. Как показано ранее, величина всегда положительна и обеспечивает рост коэффициента диффузии при повышении температуры. На рис. 3.8 представлена температурная зависимость В т(Т, С т О) для пропана, метана и диоксида углерода в полидиметилсилоксане  [c.89]

    Анализ данных табл. 3.2 и 3.3 позволяет отметить, что введение различных заместителей в полимерные цепи заметно меняет и растворимость, и скорость диффузии, причем энергия активации диффузии, как правило, возрастает. Это сильно воздействует на температурную зависмость проницаемости и, как будет показано далее, на селективность процесса проницания. [c.90]

    По аналогии со сказанным выше, при анализе результатов работы [16] можно допустить, что при Р<0,15 МПа температурная зависимость проницаемости SO2 определяется диффузионным фактором. Энергия активации проницания, определяемая соотношением (3.58), положительна и равна = 4,2кДж/ /моль [17] при Р<0,15 МПа. Это определяет увеличение проницаемости с ростом температуры. [c.91]

    При больших давлениях энергия активации проницания меняет знак за счет энтальпии сорбции, которая является функцией концентрации растворенного газа [17]. Следует заметить, что система полярного газа SO2 и неполярного полимера ПВТМС характеризуется сравнительно слабым энергетическим взаимодействием и, как следствие, малыми значениями параметров сорбции о и уравнении (3.48) (см. табл. 3.1). При большем сродстве газа и матрицы мембраны, например за счет введения заместителей в полимерную цепь или модификации поверхности полимера, возможно усиление роли сорбции и еше более резкое изменение температурной зависимости проницаемости. [c.91]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Этот же процесс, но при обычных температурах, можно осуществить и с помощью лолимерных мембран [102, 103, 107]. Одаако при разработке и реализации этого способа следует иметь в виду, что так как энергия активации проницаемости Ог выше, чем Нз, то селективные свойства полимерных мембран с ростом температуры ухудшаются. Для каждого полимера существует температура, пр которой коэффициенты газ опроницаемости изотопов равны и их смесь не делится — она азеотропна [107]. Поэтому одна из первых задач при разработке установки с использованием полимерных мембран — выбор оптимальной температурной последовательности ведения процесса в многоступенчатом каскаде. [c.318]

    В теории молекулярных силовых полей учитывается все мно-гообразне взаимодействий, включая диполь-дипольное, квадру-иоль-квадруполь[1ое и диполь-квадрупольное. Исследованиями в этой области было показано, что растворители, обладающие близкими по величине силовыми полями, взаимно растворимы. Распределение по величине силовых полей различных растворителей приводит к петле Семенченко, на одной ветви которой укладываются слабые взаимодействия, на другой ветви — сильные. В качестве критерия, определяющего энергию взаимодействия, предлагается использовать диэлектрическую проницаемость, плотность энергии когезии. Введено понятие об обобщенных моментах, эффективном заряде и эффективном радиусе. Несмотря на то что теория молекулярных силовых полей достаточно строго описывает механизм взаимодействия молекул в растворе, пользоваться ею для расчета систем практически невозможно [59, 60], поскольку математический аппарат не обеспечен исходными данными в справочной литературе. [c.213]

    Дильман В, В., Сергеев С. П., Генкин В. С. Оппсапне движеппя потока в кана.те с проницаемыми стенками на основе уравнений энергии. —Теорет, основы хим. технол,, 1971, т. V, № 5, с. 564—566, [c.338]

    Таким образом, конденсатор в среде вещества имеет больший, запас энергии, чем п вакууме. Это обусловлено тем, что под действием поля происходит ориентация диполей и деформация молекул вещества. Первый эффект зависит от температуры, второй — не зависит. Из температурной зависимости е находят ц с помощью уравнения Ланжевена-Дебая, связывающего температурную зависимость диэлектрической проницаемости и дииольный момеит  [c.71]

    Закрытая система (изолированная непроницаемой вещественной оболочкой) может обмениваться с внещней средой только энергией, а фазово-открытая система (имеющая оболочку, проницаемую для вещества и энергии) обменивается с окружающей средой веществом и энергией, в частном случае, в форме теплоты. В фазово-открытой системе можно выделить внутренние части и части, которые соприкасаются с окружающей срг-дой. В такой системе процессы будут протекать термодинамически необратимо и их условились разделять на внутренние и внешние (Н. И. Белоконь, И. Р. Пригожин). Тогда общий теп-лопоток можно разделить на теплоту, распределяемую между внутренними частями системы Qi и между внешними частями Qe ( — интернел — внутренний, е — экстернел — внешний)  [c.252]

    Начальное направление электродного процесса до установления равновесного состояния, заряды металла и раствора зависят от энергии сольватации потенциалопределяющих ионов. Энергия сольватации определяется индивидуальными свойствами растворителя, в частности его диэлектрической проницаемостью, то электродный потенциал должен иметь неодинаковое значение в различных растворителях. При изучении электрохимических систем с неводными растворами встречаются существенные затруднения из-за выбора электрода сравнения, который должен иметь постоянный потенциал в растворах элек- [c.486]

    В растворах, содержащих заряженные частицы, энергия взаимодействия между ионами убывает пропорционально Юг, где О — диэлектрическая проницаемость среды. Энергия взаимодействия между однозарядными ионами в водной среде при л = 5- 10- м (расстояние, равное среднему расстоянию между ионами в 1 М растворе) и 300 К равна 3,46 кДж/моль. Напряженность электрического поля между ионами равна 7,5 10 В/см. Энергия межмолекулярного взаимодействия, обусловленного ван-дер-ваальсовыми силами, на этих расстояниях практически равна нулю. Заряженные частицы взаимодействуют с нейтральными молекулами растворителя. Энергия такого взаимодействия характеризуется энергией сольватации ионов (см. 161). Энергия сольватации ионов соответствует по по- [c.601]


Смотреть страницы где упоминается термин Энергия проницаемости: [c.83]    [c.245]    [c.207]    [c.111]    [c.93]    [c.34]    [c.301]   
Конструкционные свойства пластмасс (1967) -- [ c.252 ]

Конструкционные свойства пластмасс (1967) -- [ c.252 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние диэлектрической проницаемости на энергию активации

Сольватации ионов энергия зависимость от диэлектрической проницаемости

Энергия активации проницаемости



© 2024 chem21.info Реклама на сайте