Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция пассивность металлов

    Из таких пассивных металлов, как медь, серебро, выход ионов в раствор почти не происходит. Поэтому, например, в случае медного электрода, погруженного в раствор соли меди, преобладает адсорбция ионов металла на поверхности электрода. Схематично процесс можно изобразить следующим образом  [c.193]


    Существует тесная взаимосвязь между теоретической электрохимией и такими разделами прикладной электрохимии, как гальванотехника, защита от коррозии, создание новых электрохимических источников тока и хемотронных устройств. Роль электрохимической кинетики для решения прикладных задач в этих областях возрастает с каждым годом. Вместе с тем потребности практики являются мощным стимулом для дальнейшего развития теоретических направлений. Так, загрязнение окружающей среды коррозионно-активными агентами, широкое использование новых металлов и сплавов, зачастую достаточно дорогих, в современных технике и строительстве все более остро ставят проблему защиты металлических конструкций от коррозии. Это способствует постановке новых задач при теоретическом исследовании коррозии и пассивности металлов. Значительный интерес к явлениям адсорбции и кинетике электродных процессов на платиновых металлах был вызван в первую очередь практическими работами по созданию топливных элементов. [c.390]

    Пленочной теории пассивности противоречит обнаруженное резкое торможение скорости растворения платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, что его поверхность изолируется от раствора окисной пленкой. Наступление пассивного состояния в рамках этой теории связывается с изменением энергетического состояния поверхностных атомов металла. При обсуждении механизма анодного растворения металлов в активном состоянии было показано, что этот процесс протекает преимущественно на наименее прочно связанных атомах дислоцированных в дефектных местах кристаллической решетки. Именно такие атомы в первую очередь вступают в адсорбционное взаимодействие с кислородом воды, в определенной степени теряя свойственный им избыток энергии. Такой атом, связанный с кислородом, переходит иа более глубокий уровень энергии, что влечет за собой повышение энергии активации ионизации и, в конечном счете, торможение скорости ионизации металла. [c.203]


    Способность посылать ионы в раствор у различных металлов выражена неодинаково. При одинаковых условиях она зависит от энергии сублимации металла, энергни ионизации его атомов и энергии гидратации ионов. Чем меньше энергия сублимации и энергия ионизации и чем больше энергия гидратации, тем выше способность металла посылать ионы в раствор и тем ниже его равновесный потенциал. Из таких пассивных металлов, как медь, серебро, выход ионов в раствор почти не происходит. Поэтому, например, для медного электрода, погруженного в раствор соли меди, преобладает адсорбция ионов металла на поверхности электрода. Схематично процесс можно изобразить следующим образом  [c.238]

    Двойной электрический слой (ДЭС), возникающий на любой межфазной границе, определяет большинство равновесных свойств этой границы (поверхностное натяжение, потенциал, заряд, емкость и др.) и в значительной степени кинетику электродных реакций. Поэтому теория равновесного ДЭС системы металл-электролит лежит в основе почти всех разделов электрохимии гальваностегии и гальванопластики, коррозии и пассивности металлов, адсорбции и катализа и др. [c.245]

    Пленочной теории пассивности противоречит обнаруженное Эршлером резкое торможение скорости растворения, платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, [c.119]

    Анодная пассивность, так же как и пассивность металлов в различных средах при отсутствии тока, связана с возникновением на поверхности металлов защитных пленок фазового, или адсорбционного характера, содержащих кислород и называемых кислородным барьером. Окислы и другие соединения образуют достаточно плотные фазовые пленки. При адсорбции кислорода поверхностью металла возникают пленки адсорбционного типа, причем между кислородом и металлом образуются химические связи хемосорбция). Благодаря этому адсорбированный кислородный слой может перейти в окисел, если имеется определенное соответствие между кристаллическими решетками металла и окисла. В общем случае вследствие неоднородности кристаллического строения поверхности металла одни ее участки в состоянии пассивности покрыты окислами, на других сохраняется слой хемо-сорбированного кислорода. [c.341]

    ЗАЩИТА ОТ КОРРОЗИИ, осуществляется след. осн. методами 1) созданием условий для образования на пов-сти металла при взаимод. с агрессивной средой защитных слоев (оксидов, солей), обеспечивающих пассивность металлов. Формирование таких слоев достигается легированием металла, введением в среду пассиваторов и ингибиторов коррозии или с помощью анодной электрохим. защиты. Защитные слои могут образовываться также при адсорбции орг. ингибиторов из среды 2) нанесением лакокрасочных, эмалевых, пластмассовых и др. защитных покрытий на пов-сть металлич. изделий 3) понижением содержания в среде в-в, вызывающих или ускоряющн с коррозию, путем спец. очистки или введением добавок, реагирующих со стимуляторами коррозии 4) электрохим. защитой 5) гомогенизирующей термич. обработкой металлов и сплавов с целью получ. возможно более однородной структуры 6) рациональным конструированием, исключающим наличие или сокращающим число и размеры особо опасных с точки зрения корро,зии зон в изделиях и конструкциях (щелей, сварных швов, застойных участков, электрич. контактов разнородных металлов и др.) илн обеспечивающим усиленную защиту таких зон (см. Контактная коррозия. Коррозионная усталость, Коррозия под напряжением, Фреттинг-коррозия)] 7) повышением термодинамич. стабильности сист. металл — среда, напр, использ. благородных и полублагородных металлов, подбором равновесного состава газовых атмосфер, в к-рых производится обработка металлов и т. д. Часто использ. комбинированные методы 3. о. к. В кач-ве нер защиты рассматривают также замену металлич. конструкц. материалов химически стойкими неметаллическими. [c.205]

    Книга посвящена проблемам защиты металлов от коррозии ингибиторами. Рассмотрены механизм действия ингибиторов в нейтральных и кислых электролитах, адсорбция ингибиторов, электрохимическая кинетика коррозионных процессов и пассивность металлов. Описаны защитные свойства ингибиторов и практика их применения в промышленности и быту для травления металлов, водоподготовки, защиты теплообмен,ной аппаратуры, оборудования нефтяных и газовых месторождений, изделий машиностроения и др. [c.2]

    Необходимо указать, что пленочная и адсорбционная теория не противоречат, но лишь дополняют одна другую. По мере того, как адсорбционная пленка, постепенно утолщаясь, будет переходить в фазовую пленку, на торможение анодного процесса вследствие изменения строения двойного слоя постепенно будет накладываться также торможение этого процесса, вызванное затруднением прохождения ионов непосредственно сквозь защитную пленку. Таким образом, более правильно говорить об объединенной пленочно-адсорбционной теории пассивности металлов. Несомненно, что в зависимости от физических внешних условий окружающей среды и характера взятого металла возможны самые различные градации толщины защитных слоев. Исходя из анализа многочисленных экспериментальных исследований, можно, по-видимому, полагать, что в отдельных случаях, особенно в случае пассивирования благородных металлов, например платины, воздействие кислорода может и не завершаться образованием фазовых слоев, но останавливаться на стадии чисто адсорбционного кислородного слоя. Однако в других случаях за стадией адсорбции кислорода следует стадия образования сплошной пленки адсорбционного соединения и далее — пленки фазового окисла. При этом не обязательно, чтобы окисел, образующий пленку, был вполне иден-, тичен с существующими компактными окислами для данного ме- талла. После возникновения подобного защитного слоя (пленки) ч существенное и даже в некоторых условиях превалирующее зна-чение может иметь торможение анодного процесса, определяемое <3 пленочным механизмом. [c.17]


    Может возникнуть вопрос, за счет чего происходит растворение пассивного металла, если поверхность блокирована адсорбированным кислородом. Известно, что адсорбционное равновесие характеризуется равенством скоростей процессов адсорбция десорбция (гл. II). Скорость обмена Ме [c.237]

    Механизм действия окислительных И. определяется гл. обр. переходом защищаемого металла в устойчивое, пассивное состояние. Однако действие этих И. более сложно, нежели простое окисление поверхности металла, и связывается также в ряде случаев с адсорбцией поверхностью металла непосредственно окислительного аниона. Подтверждением этого является то, ято эффективность действия этих И. не связана простой зависимостью с их окислительно-восстановитель-ным потенциалом (см. Пассивирование металлов). [c.115]

    Адсорбционная теория объясняет пассивность металла как явление, связанное с поверхностной адсорбцией некоторых веществ (особенно кислорода) из раствора [103]. Вторая теория объясняет пассивность образования на поверхности металла тонкого слоя соединения — третьей фазы [152, 234, 254]. И хотя эта теория пока более подробно разработана и подтверждается экспериментально [152], вероятно, не существует четкой границы между пассивностью, вызванной явлениями адсорбционного характера, и пассивностью, вызванной трехмерным слоем третьей фазы, так как оба эти явления связаны между собой. [c.12]

    Адсорбция кислорода или другого окислителя сопровождается поглощением электронов из металла и образованием незаполненных электронами d-уровней в металле, что переводит его в пассивное состояние. Адсорбция водорода или другого восстановителя сопровождается отдачей металлу электронов и заполнением электронами -уровней, что переводит его в активное состояние. [c.309]

    На некоторых пассивных участках происходят адсорбция и восстановление пассиватора, процесс пассивации постепенно распространяется на всю поверхность металла, причем скорость восстановления пассиватора становится равной скорости растворения металла в пассивном состоянии /пас- [c.76]

    Выведите соотношение lg = К 1ё анион + onst, где — минимальная активность аниона, необходимая для ингибирования питтинговой коррозии пассивного металла в растворе хлорида с активностью Принять, >гто количество ионов а, адсорбируемых на единице поверхности, определяется изотермой адсорбции Фрейндлиха, (а = АхДаниоя константы), и что при критическом отношении концентраций адсорбированных С1 -ионов к адсорбированным анионам С1 -ионы внедряются в пассивирующую пленку и вызывают питтинг. [c.390]

    ИНГИБИТОРЫ КОРРОЗИИ, вещества, введение к-рых в относительно небольших кол-вах в агрессивную среду, полимерное покрытие, смазку или упаковочный материал вызывает заметное замедление коррозии. Условно подразделяются на адсорбционные и пассивирующие. Первые защищают металл благодаря воздействию на кинетику электродных процессов, происходящих при коррозии. Торможение м. б. обусловлено неносредств. исключением пов-сти, покрытой И. к., из коррозионного процесса изменением структуры двойного электрич. слоя блокировкой активных центров и изменением условий адсорбции участников коррозионного процесса. Пассивирующие И. к. способствуют образованию на металле оксидных, гидроксидных и др. пленок и переводят металл в пассивное состояние (см. Пассивность металла). Различают ингибиторы кислотной коррозии и ингибиторы атмосферной коррозии (т. н. летучие ингибиторы). Последние обладают повьпп. упругостью пара, что позволяет им насыщать окружающую металл атмосферу илн пространство между металлом и упаковочным материалом. Применение И. к. — эффективный метод борьбы с коррозией, особенно в машиностроении, приборостроении, нефте- и газодобывающей пром-сти. [c.219]

    ПАССИВНОСТЬ МЕТАЛЛОВ, повышенная стойкость металлов против коррозии в условиях, когда термодинамически металл реакционкоспособен. Обусловлена образованием защитных поверхностных соединений при взаимодействии металла с компонентами среды в процессе анодного растворения. Переход металла в пассивное состояние наз. пассивацией, образующийся на его пов-сти слой-пассивирующим слоем. Пассивирующие слои тормозят, помимо окисления металлов, также протекание на их пов-сти электродных окислит.-восстановит. р-ций. По составу пассивирующих слоев различают оксидную П. м. и солевую (возможны слои более сложного состава). Термин П. м. нередко используют для описания торможения поверхностными слоями нек-рых др. гетерог. р-ций газовой коррозии (оксидные пленки и окалины), электрокристаллизации (адсорбц. пленки ПАВ). [c.448]

    Адсорбционная концепция исходит из представлений об энергетич. неоднородности пов-сти металла предполагается, что П.М. может обеспечиваться долями монослоя кислорода, к-рый образуется при диссоциативной хемосорбции воды на металле. Хемосорбированный кислород изменяет строение двойного электрического слоя или блокирует активные центры на пов-сти, образуя прочные хим. связи с металлом (частично ковалентного типа). Пассивация долями. монослоя экспериментально подтверждена для ряда систем, напр. Fe в щелочных р-рах, Pt и Ni в кислых. К тому же пассивирующие оксидные слои в нек-рых случаях настолько тонки, что их трудно считать фазовыми (Сг в к-та,к), В пользу адсорбц. концепции свидетельствует тот факт, что, напр.. Ni ведет себя как пассивный металл в серной к-те с добавлением ионов I или в диметилсульфоксидных р-рах в условиях, когда на его пов-сти образуются адсорбц. слой ионов I или молекул диметилсульфоксида (фазовые оксидные пленки отсутствуют). Кривая анодного растворения в области перехода к пассивному состоянию (участок AB D на рис.) м. б. рассчитана, на основе представлений о конкуренции анодного растворения (р-ции 2,3) и пассивирующей адсорбции кислорода (р-ции 2, 4, 5)  [c.449]

    П.к. протекает по электрохим. механизму (см. Коррозия металлов). Линейная скорость углубления питтинга при стабилизировавшейся П.к. металла М может достигать 10-10 мм/год. Это обусловлено тем, что в питтинге локализуется анодная р-ция М = М -Ь ге (z-зарядовое число иона), а катодная р-ция чаще всего протекает в намного большей по размерам зоне пов-сти вокруг питтинга, если защитный слой достаточно электропроводен. Таким св-вом обладают мн. пассивирующие слои (см. Пассивность металлов), окалина, возникающая при высокотемпературной газовой коррозии, катодные металлич. покрьггия и др. Наиб, специфична по своему механизму П.К. пассивных металлов, обычно связанная с воздействием того или иного активирующего аниона А (СГ, Вг", NS, SOj, СЮ и др.) на активные центры пассивирующего слоя (дефекты). Такие центры периодически выходят на пассивную пов-сть по мере ее растворения, образуя участки с кратковременно повыш. локальной скоростью растворения, к-рые могут стать зародышами питтингов. В водных и мн. водно-орг. средах превращение зародыша в устойчиво развивающи я питтинг обычно происходит при условии, что потенциал коррозии металла превышает нек-рое значение, наз. критич. потенциалом питтингообразования (миним. потенциал П.к.). Для металла, потенциал коррозии к-рого находится в пассивной или активной области (Я, р илн соотв., рис. 1) (см. Анодное растворение), при достижении происходит резкий рост анодного тока растворения. Вероятность развития зародыша питтинга превышает вероятность его гибели (репассиваций) вследствие того, что вблизи активных центров из-за ускоренного миграц. подвода анионов-активаторов А повышена их локальная концентрация в р-ре, а на самих центрах соотв. адсорбция. В результате при Е , пасси- [c.547]

    Вопрос о том, какое количество кислорода должно быть на поверхности металла для того, чтобы он перещел в пассивное состояние, до сих пор остается дискуссионным. Проблема пассивного состояния рассматривалась нами до сих пор, исходя из пленочной теории пассивности, связывающей переход металлов из активного состояния в пассивное с возникновением на поверхности металла окисных пленок, образующих отдельную фазу (толщина пленки на пассивных металлах достигает часто 50—100 А). Между тем имеется ряд наблюдений, указывающих на то, что можно сильно снизить скорость растворения металлов при адсорбции на поверхности металла такого количества кислорода или другого агента, которого явно недостаточно даже для образования одного атомного слоя. Впервые это было продемонстрировано Эршлером [22] при исследовании анодного растворения платины он показал, что скорость процесса убывает с увеличением количества кислорода на поверхности платины по экспоненциальному закону при заполнении 6% поверхности кислородом скорость растворения уменьшилась в 4 раза. В дальнейшем Кабанов и Лейкис [23] показали, что железо при анодной поляризации может быть переведено в пассивное состояние в 0,5 М МаОН, если через него пропустить 1-+1,5 мКл/см электричества. Этого количества электричества явно недостаточно для того, чтобы возник одноатомный слой кислорода или одно молекулярный слой -РегОз, который, как было выше указано, ответствен за пассивное состояние. [c.23]

    Вместе с тем следует учитывать, что изучение анодной защиты на основе детального рассмотрения явления пассивации и пассивности металлов может открыть новые возможности этого метода. В качестве примера можно привести недавно предложенный метод [39] импульсной анодной защиты, позволяющий в некоторых случаях значительно увеличить эффективность защиты. Использование начальной пассивации, возникающей от действия импульса тока на фоне поляризации постоянным током [41], позволяет заметно снизить мощность поляризующих устройств. Рассмотрение конкурирующей адсорбции С1 и МОз ионов дает возможность рекомендовать анодную защиту для борьбы с питтинговой коррозией [35] и т. д. [c.87]

    Возрастание тока, соответствующее активации электрода, происходит при некотором критическом значении потенциала фкр. Величины Фкр и Афп зависят от природы металла, среды и концентрации аниона Г. Чем более устойчива пассивность металла в данном электролите и чем меньше концентрация Г", тем, вообще говоря, ноложительнее ф р и тем больше участок Афп- Ход анодной кривой можно объяснить тем, что при Фп и Фпп происходит адсорбция кислорода, как было описано выше, и металл пассивируется. В этих усло- о с )-о— ВИЯХ анионы Г не препятствуют пас- [c.242]

    Пассивация этих металлов обычно начинается после заметного сдвига потенциала в положительную сторону от его стационарного значения в растворе и, очевидно, связана с адсорбцией того или иного промежуточного кислородного соединения. Особую роль щ)и пассивации металла как в отсутствие, так и при наличии на нем фазовой окисной пленки, должны играть однозарядные атомные ионы кислорода О , образующиеся на аноде из молекул воды или из гидроксильных ионов [4, 5]. Являясь анионами, они могут по анионным вакансиям проникать с поверхности внутрь окисной пленки. Пройдя эту пленку насквозь, ионы адсорбируются на поверхности металла под пленной, что и приводит к адсорбционной пассивности металла. Оцновременно избыточные ионы 0 накапливаются в пленке и уменьшают в ней число анионных вакансий. При этом согласно закону об электронейтральности в пленке иерживается также эквивалентное количество катионов и уменьшается число катионных вакансий. Все это вызывает уменьшение дефектности пленки и ее проницаемости для катионов и анионов и может привести к возникновению пленочной пассивности, которая может быть сосредоточена по всей толщине пленки либо в некотором ее слое. [c.18]

    По электрохимическому варианту возникновение пассивности связывается с торможением анодного процесса растворения металла. Принимается, что атомы кислорода при адсорбции на металле образуют диполи в результате ионизации атома кислорода электроном металла. Ионный скачок потенциала (рис. 1.14, а) заменяется адсорбционно-ионным скачком (рис. 1.14,6). Общий электродный потенциал металла при этом сдвигается к более положительным значениям. С увеличением количества атомов кислорода, адсорбированных поверхностью, уменьша- [c.50]

    Пассивностью металлов называется состояние относительно высокой коррозионной стойкости, вызванное резким торможением анодной реакции ионизации металла в определенной области потенциала. Пассивное состояние возникает благодаря образованию на поверхности металла пленки окисла или адсорбции каки.х-либо молекул или ионов, например кислорода или кислотосодержащи.х соединений. Указанные пленки и адсорбированные вещества препятствуют проникновению агрессивной среды к поверхности металла. Некоторые исследователи объясняют пассивное состояние также возникновением на поверхности металла других его модификаций, более устой-Ч1ГВЫХ к коррозии. [c.15]

    Пассивность металлов может иметь место и при отсутствии тока и заключается в их способности переходить в такое состояние в котором они перестают участвовать в процессах, обычно им свойственных и термодинамически возможных. Согласно пленочно-адсорбционной теории пассивность обусловлена образованием на поверхности металлов защитных пленок. Окислы и другие соединения металлов образуют фазоеы пленки. При адсорбции кислорода или других веществ на поверхности металлов образуются пленки адсорбционного типа, причем между кислородом и металлом возникает химическая связь хемосорбция). При определенных условиях адсорбционные пленки могут переходить в фазовые, и в общем случае вследствие неоднородности кристаллического строения металла на поверхности его пленка может иметь сложный адсорбционнофазовый характер. [c.339]

    С этой точки зрения, нул<но ожидать, что адсорбционные слои, имеющие свойства двухмерного газа, не должны существенно замедлять растворение металла. Твердые, по-верхностпо-кристаллические адсорбционные слои (двухмерные кристаллы) должны оказывать различное действие, в зависимости от характера связей в слое. Если при неполном заполнении поверхности атомы адсорбированного вещества прочно связываются между собой в плотные поверхностно-кристаллические островки, по не очень прочно связываются с металлом, то защитное действие таких слоев должно носить характер экранирования части поверхности. Если же связь частиц адсорбированного вещества с кристаллической решеткой металла весьма прочна, прочнее, чем частиц между собой, то адсорбция на неоднородной поверхности металла может приводить к более эффективному замедлению растворения, которое выражается, например, в экспоненциальной зависимости скорости растворения от количества адсорбхфованного кислорода [265]. Надо отметить, что поверхностные, как и объемные, кристаллические структуры не бывают без дефектов. Последние создают локальные изменения энергетического состояния поверхности, что осложняет ожидаемые закономерности. В частности, в таких местах возможно ускоренное проникновение атомов пли понов металла через пассивирующий слой к раствору, что может изменять механизм растворения пассивного металла [275] или приводить к постепенному изменению величины п состояния поверхности. Пассивирующими являются, по-видимо-му, адсорбционные слои, имеющие сравнительно мало дефектов. Представление о дефектах и нарушениях в строении адсорбционного пассивирующего слоя в известном смысле аналогично использовавшемуся в теории коррозии [c.153]

    Однако не всегда даже самыми тонкими оптическими методами удавалось обнаружить окиспую пленку на поверхности пассивного металла. Повидимому, в связи с этим возникла вторая точка зрения, которая допускает возникновение пассивности в результате химической адсорбции кислорода на поверхности металлов. [c.139]

    Кончая обсуждение явления пассивности, коснемся путей возникновения пассивирующего слоя. Можно указать два основных пути. Первый, наиболее известный — адсорбция или выпадение вещества, осуществляющего пассивность, из раствора без электрохимического изменения вещества в самом акте нассивации, например, адсорбция на металле газообразного кислорода, выпадение изолирующего слоя соли из пересыщенного раствора на поверхности металла. Этому может предшествовать переход ионов пассивирующегося металла в раствор в результате электрохимической реакции. Второй путь —электрохимическое образование на электроде пассивирующего вещества без предварительного перехода его в раствор. Этим путем, например, происходит анодная адсорбция кислорода из воды на платине в слабокислом растворе, так же нассивируется железо в разбавленных растворах щелочи. При соответствующих условиях такой пассивирующий окисел может медленно растворяться, если возможна, хотя бы и замедленная, химическая реакция между растворенным веществом (например кислотой или щелочью) и окислом. При таком растворении металл активируется. Таким путем, по данным А. И. Зака, протекает также образование окисной пленки при анодном окислении алюминия в щелочи. [c.145]

    Адсорбционная пассивность металла может быть вызвана адсорбцией не только кислорода, но и других элементов. Например, железо пассивируется таким же путем в кислых растворах при наличии в них ионов галоидов. Эти анионы по способности вызывать пасси- [c.62]

    Анодный сдвиг потенциала в поверхностном слое металла и пассивность последнего могут быть обусловлены активированной адсорбцией (хемосорбцией) пассивирующих частиц, в первую очередь пассивирующих анионов, в особенности однозарядного атомного иона кислорода 0 (анион радикала ОН, образующегося из НаО или ОН при анодной поляризации). Адсорбция ионов кислорода уменьшает свободную энергикэ поверхностных ионов металла за счет вытеснения эквивалентного количества свободных поверхностных электронов металла, т. е. создает пассива-ционный барьер. Поскольку поверхностный электронный газ вырожден, вытесняются электроны, находящиеся на самых высоких электронных уровнях, и при этом снижается поверхностный уровень Ферми металла. Изменение свободной энергии поверхности при полном ее покрытии адсорбированным монослоем составляет 3,8-10 эрг на один электрон, что соответствует 2,37 эВ, или 54,6 ккал/г-экв. [c.311]

    Предполагается, что для возникновения пассивного состояния нет иеобходи-мости в полном заполнении всей поверхности адсорбированными кислородными атомами для этого достаточно адсорбции кислорода только на наиболее активных анодных участках (по углам и на ребрах кристаллическо решетки металла). В. этом варианте адсорбционная теория является как бы дальнейшим развитием пленочной теории при допущении пару-и епия сплошности защитного слоя. [c.64]

    Пассивное состояние металлов, согласно работам Фарадея, В. А. Кистяков-ского, Эванса и других, обусловлено образованием на их поверхности защитных пленок. Различают два вида пассивирующих пленок 1) фазовые толщиной в несколько молекулярных слоев (оксиды, труднорастворимые соединения металлов) 2) пленки, образовавшиеся в результате адсорбции металлом чужеродных частиц наиболее часто образуются пленки в результате хемосорбции (адсорбции, сопровождающейся образованием химических соединений) кислорода. На поверхности металла возможно одновременное существование пленок обоих видов. [c.519]


Смотреть страницы где упоминается термин Адсорбция пассивность металлов: [c.15]    [c.58]    [c.2]    [c.102]    [c.33]    [c.174]    [c.484]   
Теоретическая электрохимия (1959) -- [ c.580 , c.590 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.578 , c.588 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы пассивность

Пассивность

Пассивные металлы



© 2025 chem21.info Реклама на сайте