Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции предпосылки протекания

    Предпосылки протекания химической реакции [c.68]

    Прямое определение концентрации проводится гравиметрическим или масс-аналитическим методами. В современной химической кинетике эти методы почти полностью заменены физико-химическими методами, с помощью которых измеряют некоторый физический параметр, пропорциональный концентрации вещества. Например, в газовых реакциях прослеживают изменение давления газа в системе в ходе протекания реакции. Впрочем, предпосылкой использования последнего метода является разность в количестве молей исходных веществ и продуктов реакции тогда протекание реакции сопровождается заметным изменением давления. В последнее время для изучения газовых реакций используют масс-спектрометрический анализ, а также методы, основанные, в частности, на измерениях теплопроводности газов (например, газовая хроматография). [c.167]


    Предпосылки протекания химической реакции Наличие частиц исходных веществ. [c.68]

    Эти условия создали предпосылки для протекания бурной нерегулируемой реакции, которая и привела к взрыву. [c.115]

    Таким образом, параллельное протекание гетеролитического и гомолитического распада гидропероксидов под действием се-ро- и фосфорсодержащих соединений — широко распространенное явление. Гидропероксид окисляет в таких соединениях атом (S или Р), имеющий неподеленную пару р-электронов. Это создает предпосылку для протекания термохимически выгодных экзотермических реакций типа [c.124]

    Основная предпосылка, лежащая в основе понимания механизма гетерогенного катализа, состоит в том, что при протекании каталитической реакции происходит адсорбция (почти всегда хемосорбция) одного или нескольких реактантов на твердой поверхности, перераспределение связей п десорбция продуктов. [c.10]

    Качественный аспект проблемы подбора катализаторов. Теоретические предпосылки качественного этапа прогнозирования каталитической активности в значительной мере опираются на классификацию механизмов гетерогенного катализа. Самая общая классификация предполагает разделение механизмов гетерогеннокаталитических реакций на локальные и коллективные. Локальный механизм проявляется, когда взаимодействие субстрата с катализатором в ходе каталитического акта обусловлено индивидуальными свойствами атома поверхности твердого тела, играющего роль активного центра, при этом на гетерогенный катализ полностью переносятся представления гомогенного катализа. Если протекание реакции определяется свойствами катализатора как твердого тела, то говорят, что проявляется коллективный механизм [2]. [c.58]

    По традиционным представлениям процесс висбрекинга, в том числе и с выносной реакционной камерой с восходящим потоком сырья, считается одной из разновидностей термического крекинга, реализуемого в более мягких температурных условиях и с большим временем пребывания. Однако анализ балансовых показателей процесса и свойств получаемых продуктов позволил нам предположить, что в реакторе висбрекинга, наряду с процессами термического разложения, протекают в значительной мере процессы, обусловленные реакциями присоединения между легкими промежуточными продуктами, находящимися в паровой фазе. Термодинамическими предпосылками этому являются относительно низкая температура (400 - 450 °С) и высокое давление (7 - 9 атм) в реакционной камере, что способствует протеканию реакций, идущих с уменьшением объема (конденсации, уплотнения и присоединения), а также более низкие энергии активации реакций присоединения по сравнению с реакциями крекинга [3]. [c.63]


    В результате сильных электрических разрядов возникают частицы плазмы, которые обладают высокой химической активностью. Это обстоятельство, в свою очередь, создает предпосылки для протекания таких реакций, которые невозможны при обычных условиях. По мнению Воробьева, метан, выделяющийся из органических соединений, при воздействии подземного электрического разряда может подвергнуться частичному дегидрированию, то есть потерять некоторую долю водорода. В результате образуются свободные углеводородные радикалы СН, СН2 и СНз. Соединяясь между собой, они образуют ацетилен, этилен и другие углеводороды, входящие в состав нефти. [c.28]

    СН2)б—С0]я-2—НН—(СНг)5—СООН или в сокращенной записи Н—[—NH—(СН2)5—СО—ОН, где п — число остатков мономера. Молекулу, состоящую из большого числа последовательно связанных друг с другом мономерных фрагментов, часто называют полимерной цепочкой (цепью), а отдельные фрагменты мономера — звеньями цепи. Сам процесс образования полимера путем последовательного присоединения остатков мономера к растущей полимерной цепи называют полимеризацией. Существенно, что каждое такое присоединение создает предпосылку для следующего присоединения, а в рассмотренном случае приводит к появлению на растущем конце цепи новой аминогруппы. Поэтому, раз начавшись, полимеризация протекает самопроизвольно до тех пор, пока в реакционной смеси имеется неиспользованный мономер или пока условия протекания реакции не изменены в сторону, неблагоприятную для дальнейшего роста полимерной цепи (например, резко понижена температура смеси). Следует отметить, что разные молекулы растут с неодинаковой скоростью и к моменту прекращения полимеризации могут содержать разное число мономерных звеньев. В результате образовавшийся полимер не является индивидуальным веществом в обычном смысле этого слова, а представлен набором однотипно построенных молекул разного размера. [c.139]

    Химическую систему с химико-аналитической точки зрения можно охарактеризовать как свойствами самого вещества, так и параметрами химического процесса [1]. Из методов, основанных на химических реакциях, включая реакции, сопровождающиеся изменением агрегатного состояния, исключительно широкое распространение получили классические методы анализа. Важнейшими предпосылками использования какой-либо химической реакции в аналитических целях являются полнота ее протекания и возможно большая скорость реакции, [c.42]

    Создание теории строения сыграло важнейшую роль в развитии органической химии из науки преимущественно аналитической она превращается в синтетическую. Теория строения создала предпосылки для объяснения и прогнозирования различных видов изомерии органических молекул, а также направлений и механизмов протекания химических реакций. [c.272]

    На рис. 2.2 и 2.5 уже пояснялся принцип электрохимического способа защиты. Необходимой предпосылкой для осуществимости такого способа защиты является наличие области потенциалов, в которой коррозионные реакции либо не идут вообще, либо идут с такой скоростью, что в технике ими можно пренебречь. К сожалению, нельзя заранее утверждать, что при любом виде электрохимической коррозии такая область обязательно будет существовать, поскольку области потенциалов для различных видов коррозии накладываются одна на другую и к тому же теоретические области защитного потенциала иногда вообще не могут установиться вследствие протекания побочных мешающих реакций. [c.62]

    Предпосылкой того, что металл в данном состоянии (Ме, Ме или Ме О ) самопроизвольно вступит в реакцию и перейдет в другое состояние, является выделение энергии при протекании реакции, т.е. наличие термодинамической движущей силы реакции. Если бы реакция превращения требовала подвода энергии, то это означало бы, что превращение не может происходить самопроизвольно, или, другими словами, что у него нет термодинамической движущей силы. 20 [c.20]

    Схема раздельной активации кислорода и углеводорода хотя и позволяет в ряде случаев объяснить протекание реакции окисления углеводородов, однако за последнее время все большую значимость приобретают теоретические предпосылки, подтвержденные экспериментальными данными, в пользу активации кислорода и углеводорода на одном центре, которым является катализатор — металл переменной валентности, способный образовывать комплексные соединения. В работах [12 13 с. 16 16] показало, что активный комплекс кобальта может принимать участие в активации молекул углеводорода и кислорода вследствие их координации с металлом предполагается возможность не только радикального, но и молекулярного механизма. По отношению к атому металла кислород является акцептором, а молекула ДН — донором. При активации их на одном центре оба процесса должны взаимно усиливать друг друга  [c.13]

    В химической промышленности, особенно в производстве крупнотоннажной продукции, применяются преимущественно непрерывные процессы. Основными предпосылками для непрерывного оформления технологических процессов являются большие скорости протекания основных химических реакций, минимальное количество образующихся побочных продуктов, что достигается часто проведением процессов с малой конверсией. Однако, для этого необходимо, чтобы продукты реакции легко разделялись и непрореагировавшие компоненты вновь возвращались в цикл. Так как большие скорости реакций достигаются чаще всего при высоких температурах, реагирующие и образующиеся соединения должны быть термостабильны. К достоинствам непрерывных реакторов относится возможность проведения процессов при постоянных технологических параметрах, что обеспечивает получение продуктов с постоянным качественным составом. Высокая эффективность работы непрерывных реакторов достигается при их полной автоматизации и механизации трудоемких работ. Несмотря на целый ряд преимуществ, для производства многих душистых веществ непрерывные процессы невыгодны или даже невозможны. [c.232]


    Катализаторами окисления НС1, как видно из изложенного выше материала, могут быть соединения как переходных (Си, Fe, Сг и др.), так и непереходных (Mg и др.) металлов. Поэтому можно предполагать, что для протекания этого процесса необходимой предпосылкой является активация молекулы НС1, которая происходит путем ее координационного связывания с катализатором. Поэтому кислотно-основные свойства катализаторов, обусловливающие их способность образовывать с НС1 соединения координационного типа, являются, очевидно, обязательным условием проявления активности контактов в рассматриваемой реакции. Хлорная медь, как уже отмечалось, и, по-видимому, в меньшей мере, хлориды других элементов, обладают такой способностью. У окиси хрома склонность к координационному связыванию НС1 резко увеличивается после адсорбции кислорода, создающей на поверхности ионы Сг +. [c.280]

    Важнейшей задачей изучения кинетики является получение и анализ кинетического уравнения процесса. В этой главе рассмотрены основные предпосылки и пути, ведущие к получению кинетических уравнений процессов в идеальных адсорбированных слоях и возможная интерпретация таких уравнений. В дальнейшем будут обсуждены возможности применения этих представлений, а также и особенности, вносимые протеканием реакций в реальных адсорбированных слоях. [c.134]

    Как и во всякой другой области наук, перед началом исследований химических процессов следует изучить имеющиеся теоретические предпосылки, а если необходимо, то и провести теоретические расчеты на самых различных уровнях (от квантовомеханического до термодинамического). Такой анализ химических реакций на бумаге и термодинамическая оценка вероятности их протекания является важнейшей и необходимой ступенью исследования. [c.12]

    Предпосылкой возможности применения метода, за редким исключением (стр. 230), является быстрое и обратимое протекание соответствующих реакций на электроде. Во многих случаях это требование не выполняется или выполняется неполностью. Восстановление, при котором не происходит выделения металла из комплекса, а только изменяется степень окисления связанного в комплекс иона металла, как правило, протекает обратимо только в тех случаях, когда окисленная и восстановленная формы комплексного иона имеют одинаковый состав и восстановление является одноэлектронным процессом. Это бывает лишь тогда, когда обе формы представляют собой либо нормальные комплексы, либо комплексы внедрения. Превращение комплекса внедрения в нормальный комплекс (например, [c.249]

    Таким образом, в 40 — начале 50-х годов изучение влияния растворителя на протекание органических реакций шло по нескольким направлениям. На первом историко-химическом этапе, т. е. в начале 40-х годов (см. Введение) преимущественно развивались качественные представления о механизме влияния растворителя. Но в конце 40-х годов на первый план выдвинулись новые способы исследования проблемы — количественные (применение корреляционных уравнений, изучение термодинамических характеристик активированного комплекса в системе растворитель — растворенное вещество, использование теории регулярных растворов). Эти работы создали предпосылки для развития в 50—60-е годы современных (качественных и количественных) теорий влияния среды на протекание жидкофазных (в том числе и органических) реакций. В середине 50-х годов химики обнаружили, что существенную роль в кинетике реакций в растворах играет образование водородных связей между молекулами реагирующих вегцеств и молекулами растворителя и что именно этим в ряде случаев определяется влияние растворителя на скорость химических превращений (подчеркнуто мной.— В. К.) [156, стр. 300]. [c.70]

    Временную зависимость процесса термолиза при заданных температуре и давлении можно представить следующим образом (рис. 5.2). При термолизе ТНО в начале процесса в результате радикально-цепных реакций распада и поликонденсации происходит накопление в жидкой фазе полициклических ароматических углеводородов, смол и асфальтенов (т. е. происходит как бы последовательная химическая эволюция групповых компонентов). Признаком последовательности протекания сложных реакций в химической кинетике общепринято считать наличие экстремума на кинетических кривых для концентрации промежуточных продуктов. Как видно из рис. 5.2, при термолизе ТНО таковые экстремумы имеются для полициклических ароматических углеводородов, асфальтенов и карбенов. Отсутствие экстремума для смол объясняется высоким их содержанием в исходном сырье. В дальнейшем по мере накопления в системе промежуточных продуктов уплотнения происходят два фазовых перехода в жидкой среде. Сначала из карбонизирующегося раствора при достижении пороговой концентрации выделяется фаза асфальтенов, затем в этой среде зарождается фаза анизотропной кристаллической жидкости — мезофаза. Последующая длительная термообработка асфальтенов в растворе в молекулярно-диспергированном состоянии способствует более полному отщеплению боковых заместителей и повышению доли ароматического углеводорода в структуре молекул асфальтенов. Это создает предпосылки к формированию мезофазы с более совершенной структурой, что, в свою очередь, приводит при дальнейшей термообработке к улучшению кристаллической структуры конечного продукта — кокса. [c.580]

    Влияние гетероатома, несущего свободную электронную пару или пары), приводит к тому, что сама по себе достаточно прочная связь С—С или С—Hg (или иные связи) в момент реакции так сильно поляризуется, что создается предпосылка для расщепляющего действия диазокомпонента. Вместо гетероатома такое же действие мэ ет оказывать фенольный гидроксил через электронопроводящее ядрэ, например в случае дифгнилолметана или дифенилолпропана. Поэтому для дифенилолпропана наблюдается та же закономерность в протекании азосочетания, т. е. реакция протекает с расщеплением углерод-углеродных связей. [c.17]

    Основная предпосылка для понимания катализа заключается в том, что при протекании каталитической реакции происходят хемосорбглия одного или нескольких реагентов на поверхности, перераспределение связей и десорбция продуктов. Все теории катализа можно разделить на четыре группы  [c.83]

    Следует иметь в виду, что различные реакции, протекающие в гомогенных условиях по бимолекулярному механизму (например, образование HI) на поверхности металлов, имеют первый порядок. В то время как в гомогенной системе предпосылкой осуществления реакции является столкновение двух молекул, на поверхности возможен непосредствеи-ный распад молекулы ( выиг-мов протекания реакции, отличаю- рыш энергии за счет образо-щихся разной энергией активации при вания адсорбционной СВЯЗИ С высокой и низкой температуре. поверхностью). Поэтому энергия активации гетерогенной реакции оказывается значительно более низкой, чем для той же реакции, протекающей в гомогенной системе. Часто на некоторых типах поверхности реакция идет через параллельные стадии гомогенного и гетерогенного механизма при высокой температуре преобладает гомогенная реакция, при более низкой — гетерогенная. Скорость гомогенной реакции увеличивается с температурой быстрее, чем скорость гетерогенной, вследствие более высокой энергии активации гомогенной реакции поэтому при повышении температуры преобладает гомогенная реакция (рис. Б.14). [c.190]

    Снижение парциального давления водорода в процессе лимитируется увеличением скорости протекания нежелательных реакций полимеризации и конденсации углеводородов, приводящих к дезактивации катализатора. Это явилось предпосылкой для разработки начиная с 50-х гг. технологии непрерывной регенерации катализатора (НРК), которая позволила проводить процесс дегидрирования циклоалканов и дегидроциклизации алканов в арены в [c.8]

    В силу высокой электроотрицательности атома фтора накопление таких атомов в бензольном кольце существенным образом влияет на зарядовые характеристики атомов углерода, увеличивая их положительный заряд. Это создает предпосылки высокой подвижности атомов фтора в полифторированных ароматических соединениях в реакциях нуклеофильного замещения и делает возможным протекание внутримолекулярной нуклеофильной циклизации за счет отщепления атома фтора, находящегося в оршо-положении к функциональной группе, имеющей нуклеофильный центр. Число таких примеров велико, и они легли в основу одного из наиболее важных и общих методов синтеза фторсодержащих конденсированных гетероциклических соединений. В рассматриваемых реакциях, в результате которых получаются гетероциклы, исходными компонентами служат фторсодержащие производные бензола и бинуклеофильные реагенты. Тем не менее работы по синтезу гетероциклических соединений по этой методологии продолжаются, особенно в связи с синтезом лекарственных препаратов. Приведем лишь несколько таких примеров. [c.266]

    Синтез на полимерном носителе. Пептидный синтез в классическом варианте сопряжен со значительными затратами труда и времени. С целью создания более эффективной методологии Р. Меррифилд в 1963 г. предложил твердофазный метод синтеза пептидов. Идея его состоит в закреплении растущей полипептидной цепи на полимерном нерастворимом носителе. При этом значительно упрощаются операции выделения промежуточных продуктов, которые сводятся к экстракции и фильтрованию полимера, полностью снимается проблема нерастворимости пептидов и создаются предпосылки для автоматизвции процесса. Определяющим фактором в твердофазном синтезе является полнота протекания всех химических реакций, которая достигается за счет применения избытка конденсирующего агента и N-зaщищeннoй аминокислоты, отделяемых экстракцией. Естественно, выбор защитнык группировок и методов конденсации должен обеспечить полное отсутствие рацемизации. Наилучшие результаты достигаются при использовании [c.145]

    Зарождение цепей происходит в результате взаимодействия 1сислорода со свободными радикалами, выходящими из частиц дисперсной фазы в дисперсионную среду. Компоненты масел превращаются преимущественно в компоненты смол. Не исключено, что в начальном периоде окисления ассоциаты смол могут выполнять роль ловушки для свободных радикалов, которые в ассоциатах рекомбинируют с образованием молекул или менее активных радикалов. В границах следующего этапа происходит прергмущественное окисление наименее полярных компонентов смол, которые превращаются в асфальтены, претерпевающие по мере накопления структурные изменения. Имеются данные, полученные с использованием метода импульсного ЯМР, что структурная перестройка в нефтяных остатках вызвана динамическим упорядочением алифатических цепей и ароматических углеводородов в 01фуже-нии ядер частиц, находящихся в дисперсной фазе. Обнаружен обмен между протонами сольватной оболочки и протонами дисперсионной среды. Важным здесь является то, что во всех случаях уменьшение константы диссоциации соответствует сохранению и накоплению компонента при протекании реакций окисления, а увеличение — наоборот, его расходу. Эти данные можно рассматривать как предпосылку возможной взаимосвязи между явлениями физического агрегирования вещества и его реакционной способностью в реакциях жидкофазного окисления органических веществ кислородом. [c.788]

    Величииы а. А , и находятся из опыта. Теоретические кривые разложения водяного пара в виде зависимостей веса продукта реакции от времени сопоставлены с экспериментальными точками (рис. 53а). Временной ход кривых (см. рис. 206) отвечает предпосылкам о протекании реакции чзрез образование и распад промежуточного комплекса. [c.221]

    Начало исследований по коррозии сплавов было положено Т. Тамманом [1].. Обобщающие работы по этой теме, в разные периоды были сделаны Г. В. Акимовым [21, Ю. Эвансо> [3], Г. Улигом [4], Н. Д. Томашовым [5], Ф. Тодтом [6], Г. Кеще [7] и другими учеными. Исследования последних лет позволяют представить достаточно подробную картину анодного растворения сплавов и особенно их селективную коррозию. Главными в современных представлениях явл яются следующие положения 1) многокомпонентный гомогенный сплав при взаимодействии с раствором электролита ведет себя не как индивидуальная фаза, а скорее как совокупность, атомов различной природы [8, 9] 2) в процессе-растворения в приповерхностных областях кристаллической решетки может создаваться сверхравновес-ная концентрация вакансий и других дефектов [Ю] 3) правильная интерпретация явления может быть достигнута в результате отказа от формального применения принципа независимого протекания анодных реакций на, сплавах [11]. Если первое и второе утверждения определяют термодинамические и кинетические предпосылки селективной (избирательной) коррозии, то третье предопределяет основу качественно новых,для теории коррозии представлений. [c.3]

    Наряду с присоединением окиси углерода и водорода происходит частичное восстанавлен-ие арбонильных соединений в спирты. Гидрирование олефинов в насыщенные углеводороды протекает в значительно меньшей степени, хотя термодинамически реакция гидрирования более вероятна. Так, для этилена термодинамический потенциал реакции гидрирования AZ— = —22 ккал/моль, а реакции гидроформилирования AZ = = — 11,1 ккал/моль. Однако на практике гидрирование двойной связи почти полностью подавляется. Это достигается подбором условий, при которых шздаются благоприятные предпосылки для протекания основной реакции. [c.240]

    Наличие ИСК и накопление в процессе окислевия битума кислородсодержащих продуктов создает предпосылки для протекания реакций укрупнения молекул. [c.41]

    Почвогрунты являются пористыми средами, через которые проходят потоки почвенных растворов и грунтовых вод. Б естественных условиях, таким образом, имеются условия для протекания процессов динамики сорбции и хроматографии. Впервые на возможность использования теории хроматографии в почвенно-мелиоративных исследованиях обратил внимание Гапон [3]. Эта идея была широко использована в наших работах. Были сформулированы общие теоретические предпосылки в изучении движения веществ в почвогрунтах с помощью радиохроматографического метода [146], в том числе при изучении фильтрации жидкостей в пористых средах вообще, и воды в почвогрунтах, в частности [147—149J. Радиохроматографический метод был использован в изучении динамики сорбции фосфатов в почвах [150—153]. Кроме того, Фокиным подробно исследована кинетика и статика сорбции фосфатов почвами [153—156]. Использование реакций изотопного обмена в статических и динамических условиях открыло широкие возможности в изучении состояния питательных элементов в почвах [157]. Методы изотопного обмена и радиохроматографии использованы Фокиным и соавторами для изучения состояния и переноса железа [158—165], кальция и стронция [162, 165, 166], а также серы [167] в почвах. Гелевая хроматография успешно яспользована для фракционирования почвенных фуль-вокислот [168, 169], в частности для определения их молекулярной массы [170]. [c.85]

    Довольно широкие исследо.вания. связи скоростей реакций со строением молекул были проведены в начале 20-х годов XX в. после некоторого углубления представлений об влектронном строении органических соединений [264, стр. 55, 56] и создания первой теории химической кинетики [21, стр. 9]. Однако неправильная предпосылка о слабой зависимости скорости реакции от условий ее протекания, положенная в основу теории соударений (что неверно для многих, в основном органических реакций — медленных превращений ), очень затруднила расчет скоростей взаимодействия органических молекул. Поэтому исследование зависимости реакционной способности от строения органических молекул в 20-х годах XX в. носило преимущественно эмпирический характер, поскольку оно было основано скорее на экспериментальном изучении механизмов реакций [264, стр. 116—1126], чем на расчетных методах первой кинетической теории. [c.76]

    Несомненно, метод обладает достоинствами. Чувствительность, простота выполнения, экспрессность, возможность выполнять анализ в сильнокислых растворах без жесткого контроля pH создают предпосылки для широкого использования метода. Одним из недостатков метода является постепенное уменьшение окраски циркониевого комплекса, явление, обнаруженное при тщательном изучении [93]. Как было найдено, необходимо точно устанавливать время полного протекания реакции и время, в течение которого раствор находится в кювете перед измерением. Ошибки, связанные с флуктуацией времени от момента сливания растворов до завершения измерения, становятся особенно значительными при использовании метода для анализа партии образцов. Однако этот недостаток не сказывается на популярности метода, по спектру применения он уступает лишь методу с использованием ализаринкомплексона. [c.349]

    В 1770-х годах Лавуазье успешно исследовал состав и особенности протекания реакций окисления углерода и содержащих углерод (большая часть горючих ) тел. На этих работах базировалось установление Лавуазье в 80-х годах XVIII в. состава животных и растительных тел, что и создало предпосылки для возникновения органической химии как специальной области химической науки. [c.8]

    Оценивая вклад Баландина в теорию гетерогенного катализа, необходимо разделить его теорию на две части и обсудить их отдельно. В перЕО части доказывается соответствие между строением цикла и структурой поверхности в реакциях шестичленных циклов. Для этого соответствия требуется, чтобы активный ката-лнзатор удовлетворял некоторому чисто геометрическому условию. Вторая часть посвящена вопросу о протекании ката. штических реакций согласно предпосылкам мультиплетной теории. [c.61]

    Д. Элей (D. D. Е1еу, University of Nottingham) Как видно из иллюстраций к докладу Каннингема и Гуотми (см. статью 5), грань (321), на которой гидрогенизация протекает с наибольшей скоростью, является в то же время гранью, испытывающей и наибольшее самоотравление (см. уменьшение скорости по мере протекания реакции). Это самоотравление, по-видимому, обусловлено образованием ацетиленовых комплексов, которые могут создавать предпосылки для отложения углерода. Поэтому представляло бы интерес выяснить, будет ли образование углерода протекать на грани (321) с большой скоростью. [c.103]


Смотреть страницы где упоминается термин Реакции предпосылки протекания: [c.42]    [c.125]    [c.269]    [c.269]    [c.498]    [c.340]    [c.78]    [c.184]   
Аккумулятор знаний по химии (1977) -- [ c.68 ]

Аккумулятор знаний по химии (1985) -- [ c.68 ]




ПОИСК





Смотрите так же термины и статьи:

Предпосылки



© 2025 chem21.info Реклама на сайте