Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма молекул высокомолекулярных веществ

    ФОРМЫ МОЛЕКУЛ ВЫСОКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ [c.181]

    Молекулы высокомолекулярных веществ могут быть линейными и разветвленными, причем длина молекулярных цепей может быть сравнительно большой — превышать 1 мкм. Именно линейной формой макромолекул определяются типичные свойства полимеров каучукоподобная эластичность, способность образовывать прочные пленки и нити, набухать, давать при растворении вязкие растворы и т. д. [c.426]


    Из сказанного видно, что pH и введение электролитов влияют на заряд и форму молекул высокомолекулярных электролитов. Очевидно, эти факторы также должны влиять и на те свойства раствора, которые зависят от формы растворенных макромолекул. К таким свойствам относятся вязкость, осмотическое давление и объем студня набухшего высокомолекулярного вещества, если он не растворяется в данной среде. [c.471]

    Для низкомолекулярных веществ, как правило, не характерно аморфное состояние, так как их молекулы обладают большой подвижностью, при охлаждении легко изменяют свое первоначальное пространственное положение и образуют упорядоченную структуру. Молекулы высокомолекулярных веществ менее подвижны. Кроме того, при кристаллизации может изменяться форма молекул. Эти два обстоятельства, а также то, что высокомолекулярное вещество может содержать молекулы различной длины, т. е. состоять из различного числа атомов, затрудняют кристаллизацию. Чтобы приведенные рассуждения применить к сере и селену, необходимо иметь в виду, что в расплаве эти вещества могут состоять из больших молекул (молекулярная масса серы может достигать 1,5 миллиона), которые сохраняются при быстром охлаждении расп.тава. Большие многоатомные молекулы серы менее устойчивы, чем молекулы селена, и могут превращаться в восьмиатомные. Поэтому сера кристаллизуется легче селена. [c.300]

    Способность жидкости находиться в переохлажденном состоянии, т. е. образовывать аморфное твердое вещество, зависит от размера ее молекул. Для низкомолекулярных. веществ, как правило, не характерно аморфное состояние, так как их молекулы обладают большой подвижностью и при охлаждении легко изменяют свое первоначальное пространственное положение. Молекулы высокомолекулярных веществ менее подвижны. Кроме того, следует иметь в виду, что при кристаллизации их должна изменяться форма молекул (геометрическая конфигурация отдельных молекул жидкости может отличаться, молекулы же кристалла имеют строго определенную конфигурацию). Эти два обстоятельства, а также то, что всякое [c.140]

    Единственный путь определения формы молекул состоит в том, чтобы сделать их тем или иным способом видимыми , например с помощью рентгеновской кристаллографии. При исследовании высокомолекулярных веществ в растворе в настоящее время можно лишь выяснить, в какой степени их гидродинамическое поведение согласуется с принятой молекулярной моделью. Реально возможно рассматривать лишь те модели, которые поддаются обработке методами теоретической гидродинамики. Этому условию отвечают только модели эллипсоидов вращения (вытянутых или сплюснутых у полюсов) и модели гауссовых клубков. Последний тип моделей более близок физико-химикам, работающим в области полимеров, чем химикам, специализирующимся но белкам. Действительно, подобные конформации характерны скорее для длинных гибких нитевидных молекул, которые в растворе под влиянием броуновского движения принимают конфигурации неупорядоченных клубков, занимающих приблизительно сферическую область пространства. Свойства растворов молекул такого типа рассмотрены Флори [13] и Тенфордом [189]. Ограничения, налагаемые теорией, приводят к тому, что рассматриваемые модели лишь весьма приближенно описывают форму молекул. Реальные макромолекулы очень редко имеют форму правильных эллипсоидов вращения и никогда не бывают нитями незначительной толщины. В настоящее время детально выяснена форма молекул нескольких белков, например миоглобина [190] и рибонуклеазы [191], причем очень трудно подобрать подходящий эллипсоид, который аппроксимировал бы форму молекул этих веществ. Молекулы белков и, по-видимому, гликонротеинов могут иметь неправильную форму. Более того, нет оснований предполагать, что они являются вполне жесткими и непроницаемыми для растворителя. [c.73]


    Смолистые вещества, согласно этому взгляду, есть, так сказать, еще недоработанная нефть, или растворимые остатки нефтематеринского вещества. Многие неясные вопросы решаются в общем плане с принятием этой точки зрения достаточно просто. Присутствующие в нефти гетерогенные соединения, кислородсодержащие ароматические углеводороды, гибридные формы углеводородов являются продуктами ранних стадий превращения органического вещества, а высокие удельные веса нефтяных фракций, рапным образом и оптическая деятельность, свидетельствуют о неполной завершенности процессов превращения органического вещества. Высокомолекулярные соединения смолистых веществ в ходе процессов разукрупнения молекул образуют углеводородные вещества циклической структуры, переходящие из высших фракций в средние и низшие, вследствие чего бензиновые и керосиновые фракции тяжелых нефтей имеют высокие удельные веса. Таким образом, эта характеристика фракций непосредственно связана с природой смолистых веществ. Принцип наименьшего изменения молекул не позволяет думать, что разукрупнение молекул смолистых веществ сразу дает только удельно легкие осколки, которые могли бы образовать фракции с теми низкими удельными весами, которые характерны для нефтей значительного нревращения. [c.158]

    Причиной набухания является диффузия молекул растворяемого вещества в растворитель и, наоборот, молекул растворителя в высокомолекулярное вещество. Последнее связано с тем, что молекулы аморфных ВМВ обычно упакованы неплотно, расстояния между ними в результате теплового движения увеличиваются, и в пустоты могут проникнуть маленькие молекулы растворителя. Так как последние более подвижны, то сначала происходит, главным образом, диффузия молекул растворителя в высокополимер это сопровождается увеличением объема последнего, и когда связь между макромолекулами будет ослаблена, они также начинают диффундировать в среду, и образуется однородный истинный раствор. Так набухают каучуки в бензоле, нитроцеллюлоза в ацетоне, белок в воде. Чем больше молекулярный вес ВМВ, тем медленнее идет процесс набухания и растворения. Имеют значение форма и размеры молекулы. Например, высокополимеры со сферическими молекулами при растворении не набухают или набухают очень слабо. Это указывает, что диффузия не может рассматриваться как единственный фактор, управляющий набуханием. В данном случае малая когезионная энергия ВМВ со сферическими частицами облегчает их растворение. [c.360]

    Эти законы перестают действовать при турбулентном течении. Оба закона применимы для чистых жидкостей, истинных растворов и некоторых коллоидов. В растворах высокомолекулярных веществ обнаруживается аномальная вязкость она очень высока и в противоположность первой группе жидкостей уменьшается с увеличением давления на протекающую жидкость (рис. 99). Большая вязкость этих растворов зависит от степени сродства между молекулами силы сцепления гидрофильных молекул белков и полисахаридов с молекулами воды очень высоки, и вязкость их даже в очень разбавленных растворах также будет высокой. Кроме того, большое значение имеет форма частиц. Если вытянутые частицы располагаются поперек потока, то они оказывают наибольшее сопротивление. При увеличении внешнего давления на жидкость эти частицы ориентируются вдоль потока, в результате вязкость раствора уменьшается. [c.221]

    Определение строения высокомолекулярных веществ и описание их свойств долгое время затруднялись невозможностью выделения их методами классической органической химии в химически чистом состоянии и нахождении их точных физических констант (температуры плавления, температуры кипения, молекулярной массы). На основе же данных элементного анализа можно было определить лишь состав вещества, но не его строение. Изучение строения и свойств высокомолекулярных соединений стало возможным только с развитием физической химии и появлением таких методов исследования, как рентгенография, электронография и другие физические методы. Были созданы также специальные методы определения молекулярной массы, формы и строения гигантских молекул, неизвестных в классической химии. [c.49]

    Для растворов высокомолекулярных веществ наблюдаются отклонения от закона Вант-Гоффа нет линейной зависимости между осмотическим давлением и концентрацией. Объясняется это асимметрией формы больших молекул, их гибкостью, а также взаимодействием с молекулами растворителя. После введения соответствующей поправки Ь уравнение (1) применяют в следующем виде  [c.70]


    Органические вещества имеют обычно молекулярные кристаллические решетки, в которых можно определить группы атомов, образующих молекулу. Силы, действующие между молекулами, в большинстве случаев являются силами Ван-дер-Ваальса. По Эвансу и Гольдшмидту, в зависимости от формы молекул, можно все кристаллы (за исключением высокомолекулярных соединений) разделить на четыре большие группы. [c.69]

    Если введенные в систему макромолекулы несут заряд, разноименный с зарядом коллоидных частиц, сенсибилизация объясняется как одна из форм взаимной коагуляции, механизм которой будет рассмотрен ниже. Однако сенсибилизация наблюдается и тогда, когда частицы золя и молекулы полимера имеют одноименный заряд. Такая сенсибилизация объясняется тем, что различные участки одной и той же макромолекулы адсорбируются на поверхности разных коллоидных частиц и таким образом как бы склеивают частицы, образуя из них агломераты. При этом адсорбция происходит обычно уже после добавления коагулирующего электролита, способствующего адсорбции высокомолекулярного вещества. [c.306]

    Свойства высокомолекулярных веществ зависят не только от размера, ио и от формы молекул. [c.418]

    С точки зрения химии полимеров глобулярные белки обладают рядом необычных свойств как уже упоминалось, каждый белок характеризуется точным молекулярным весом. Структура таких макромолекул, вообще говоря, жесткая и довольно компактная. Удельная плотность у разных веществ этого типа одинакова и, следовательно, можно считать, что каждой единице молекулярного веса свойствен определенный объем а это является обязательной предпосылкой для определения молекулярного веса путем сравнения объемов исследуемых молекул с объемом молекул стандартных соединений. Поэтому некоторые авторы [58, 65], которые, количественно оценивая поведение белка при элюировании, пытались исходить из теоретических представлений, связывали радиусы по Стоксу с объемом выхода. Почти во всех рассмотренных выше работах, касающихся определения молекулярного веса с помощью гель-хроматографии, несколько настораживает тот факт, что установленные соотношения предполагают наличие у молекул белков симметричной (сферической) формы. Однако в действительности форма молекул нативных белков не настолько отличается от симметричной, чтобы это могло повлиять на разделение, основанное на различии в размерах. Лишь Зигель и Монти [66] описали два предельных случая, когда высокомолекулярные белки, имеющие небольшой радиус (по Стоксу), элюировались на сефадексе 0-200 после низкомолекулярных компонентов. Однако эти белки — фибриноген (мол. вес 330000), ферритин (мол. вес 1 300000) и уреаза (мол. вес 483 ООО) — еще настолько мало [c.169]

    Из вышеприведенного перечня высокомолекулярных соединений можно видеть, что соединения этого класса обладают самыми различными свойствами. Так, натуральные и синтетические каучуки высокоэластичны (обратимо растягиваются на сотни процентов), а большинство синтетических смол жестки, как стекло. Некоторые высокомолекулярные соединения растворяются в различных растворителях и дают ценнейшие для промышленности растворы в виде лаков, клеев и пленкообразователей, другие же не растворяются ни в чем. Одни обладают кислотостойкостью или диэлектрическими свойствами, у других этого нет и т. д. В настоящее время установлено, что свойства высокомолекулярных веществ зависят от условий их получения, температуры испытания, химического строения, размеров и формы молекул, агрегатного состояния, интенсивности межмолекулярных связей и других факторов. [c.165]

    Для производства стабильных конденсационных смол необязательно получать высокомолекулярные продукты, и большинство этих смол — типичные низкомолекулярные вещества, обладающие сферической формой молекул. Благодаря этому растворы конденсационных смол даже при высоких концентрациях сохраняют не только сравнительно низкую вязкость, но и нормальную текучесть [c.236]

    Ценность высокомолекулярных соединений определяется в первую очередь размерами и особенностями строения молекул этих веществ, и разработка научных проблем, связанных с исследованием природы высокомолекулярных соединений, является одной из основных задач современной химии и физики. Эти вопросы тесно связаны с исследованием растворов высокополиме-ров, так как почти все известные методы определения размеров и формы молекул высокомолекулярных веществ основаны на исследовании растворов этих соединений. С другой стороны, растворы высокомолекулярных соединений представляют непосредственный практический интерес. Дело в том, что переработка и применение значительного числа полимеров возможна только путем их предварительного растворения. Поэтому возможность растворить полим ) и получить растворы с необходимыми свойствами часто определяет возможность технического использования полимера. [c.5]

    Представления о вяутреннвм вращеяии были перенесены на молекулы высокомолекулярных веществ. Кун, Марк и Гут считали, что ка1Ждое звено цепи полимера может св( одно вращаться относительно соседнего звена (рж. 4) и рассматривали линейные макромолекулы как со верш нно гибкие нити, могущие "принимать любые формы, совместимые с неизменной длиной звеньев и неизменной величиной валентных углов (109° 28 ). С другой стороны, Штаудингер предполагал, что линейная макромолекула имеет форму жесткой вытянутой палочки [c.23]

    Классифицируя растворы неэлектролитов, принимают во внимание характер межмолекулярных взаимодействий в системе, а именно природу и интенсивность сил притяжения, а также размеры и форму молекул, передаваемых потенциалом отталкивания. Учет размеров молекул оказывается чрезвычайно существенным для объяснения свойств растворов высокомолекулярных веществ. Большое различие в размерах молекул растворителя и растворенного вещества заметно влияет на энтропийные характеристики раствора. Играют роль специфические черты длинных молекул, связанные с внутренними вращениями и выражающиеся в гибкости цепи, в наличии множества возможных конфигураций цепи. Теория растворов высокомолекулярных веществ предствляет собой относительно самостоятельную область теории растворов. [c.396]

    Функциональные производные адамантана вызывают всё возрастающий интерес исследователей, работающих в различных областях синтетической органической химии, химии высокомолекулярных соединений, фармакологии и других направлениях. Наиболее значимые успехи отмечены в области создания лекарственных средств, содержащих в своей структуре ядра адамантана. Это прежде всего антивирусные препараты ремантадин, адопрамин, мидантан, -биостимуляторы бромантан, кемантан и другие соединения различного терапевтического действия. Особенности геометрического строения молекулы адамантана (наличие в его структуре 3-х сконденсированных ненапряжённых циклогексановых колец, шарообразная форма молекулы), её липофильность, наличие нескольких реакционных центров, отличающихся друг от друга по реакционной способности и ряд других моментов открывает широкие синтетические возможности по использованию этого вещества для получения на его основе разнообразных функциональных производных. [c.89]

    Выше отмечалось, что, начиная с Хаггинса, огромную роль в стабилизации пространственной формы белковой цепи стали отводить пептидным водородным связям. Считалось, что именно они формируют вторичные структуры - а-спираль и р-складчатые листы. Но что в таком случае удерживает эти структуры в глобуле и под влиянием каких сил белковая цепь свертывается в нативную конформацию в водной среде, где пептидные водородные связи N-H...O= и электростатические взаимодействия малоэффективны Можно поставить вопрос иначе. Почему внутримолекулярные взаимодействия у природной гетерогенной аминокислотной последовательности превалируют в водном окружении над ее взаимодействиями с молекулами воды Фундаментальное значение в структурной организации белковой глобулы стали отводить так называемым гидрофобным взаимодействиям. Само понятие возникло в начальный период изучения коллоидного состояния высокомолекулярных веществ, в том числе белков. Первая теория явления, правда, не раскрывающая его сути, предложена, в 1916 г. И. Ленгмюром. Ему же принадлежит сам термин и разделение веществ на гидрофобные, гидрофильные и дифиль-ные. Природа гидрофобных взаимодействий была объяснена У. Козманом (1959 г.). Он показал, что низкое сродство углеводородов и углеводородных атомных групп к водному окружению обусловлено не неблагоприятными с энергетической точки зрения межмолекулярными контактами, а понижением энтропии. На энтропийный фактор обращали внимание еще в 1930-е годы для объяснения причин образования мицелл моющих средств в водных коллоидных растворах (Дж. Батлер, Г. Франк, Дж. Эдзал), однако такая трактовка формирования компактных структур не была перенесена на белки. Впервые это сделал Козман, поэтому гидрофобная концепция носит его имя. [c.73]

    Молекулярно-ситовая хроматография. При данном виде хроматографии используется способность материалов с контролируемой пористостью сортировать и разделять компоненты смеси в соответствии с размерами и формой их молекул. Для осуществления процесса гель-хроматографии используются гели поперечно-емкостного декстрана (сефадексы и сефакрилы), поперечно-сшитые полиакриламидные гранулы (биогели), агарозные гели с выраженными в них цепями акриламидного полимера (ультрагели) и более жесткие поперечно-сшитые агарозы (СЬ-агарозы и сефакрилы-8), с помощью которых можно быстро разделить макромолекулы в соответствии с их размером. Степень удерживания растворенного вещества на колонке зависит от его способности проникать в поры геля. Поэтому при гель-фильтрации сначала выходят высокомолекулярные вещества, а затем вешества в порядке убывания их моле- [c.55]

    С появлением гибкости цепи молекул, что характерно для высокомолекулярных веществ, в растворах ПАВ протекает процесс структурообразования с возникновением различных по форме надмолекулярных структур. Так, критические концентрации формирования надмолекулярных структур, их агрегирования и образования объемной структуры в растворах полиэлектролитов — сополимеров акриламида с акр иловой кислотой равны 3,0 10"" 1,0 10 и 4,2 10 г/100 амидирован-ного стиромаля— 4,0- 10 , 1,0 10 1,0 анилинмаленатформальде-гида —5 0 10 3,2 10 3,0 10°, антранилфенолформальдегида— [c.197]

    Белки как вещества высокомолекулярные образуют коллоидныё растворы. Растворимость белков в воде определяется наличием гидрофильных групп (несущйх заряд или незаряженных) в аминокислотах, входящих в состав белка Имеют также значение наличие у моле кул одноименного суммарного Заряда и форма молекул (отношение длинной й короткой осей). Воздействия, влияющие на гидратацию, заряд или форму белковых молекул, изменяют и растворимость. К числу таких воздействий относится, в частности, добавление в раствор солей. [c.24]

    Полиакриламид—растворимый в воде полимер, содержащий в своей цепочечной молекуле ионогенные группы. При его диссоциации образуются высокомолекулярный поливалентный анион и много простых маловалентных катионов, поэтому такие вещества называют полиэлектролитами. Действие ПАА объясняют адсорбцией его молекул на хлопьях гидроокиси, образующейся при гидролизе коагулянтов. Из-за вытянутой формы молекулы адсорбция происходит в разных местах несколькими частицами гидроокиси, в результате чего последние оказываются связанными вместе [66]. [c.93]

    Разработан новый метод определения молекулярных весов высокомолекулярных соединений. Вследствие коллоидного характера этих веществ или их производных в растворенном состоянии измерение вязкости оказалось наиболее подходящим приемом определения молекулярных весов многих природных и синтетических высокомолекулярных соединений. Химическим определением характера концевых групп высокополимерных молекул полиоксимети-лена установлено, что эти молекулы построены таким же образом, как и молекулы низкомолекулярных соединений с преобладанием в молекуле цепей, т. е. молекулы имеют нитеобразную форму. Это было применено к изучению многих синтетических высоко полимер ных веществ и послужило основанием для определения структуры природных высокомолекулярных веществ. На основании крио ско пи ческих и осмотических определений молекулярного веса, а также гидрсгенизации и получения производных или переосаждения высокомолекулярных молекул было сделано заключение, что частицы полимеров не большие мицеллы, а молекулы в смысле классической органической химии. Дальнейшее исследование полимерных соединений направляется на выяснение 1) элементарных частиц (мономерных молекул), образующих полимер, 2) типа связи и 3) размера, а также формы частиц. [c.654]

    При решении вопроса о форме и взаимном расположении макромолекул ответ в первую очередь следует искать, используя структурные методы и методы непосредственного наблюдения молекул. Небольшая разрешагощая способность световой микроскопии (максимум 200 А) не дает возможности использовать ее при исследовании структуры полимерных веществ, хотя и величины молекул их огромны. Трудно оцепить характер расположения и конфигурацию цепной молекулы полимера по всей длине ее и при использовании структурного метода, поскольку величины расстояний, получаемые из структурного анализа, невелики. Лучшим является, по-видимому, электронно-микроскопический метод, нашедший большое использование при исследовании высокомолекулярных веществ. Применение электронного микроскопа при исследовании высокомолекулярных веществ позволило увидеть отдельные макромолекулы [1.1, размеры которых оказались в пределах разрешения электронного микроскопа, а также исследовать и элементы вторичной структуры высокомолекулярных веществ. [c.110]

    Предел эксклюзии геля определяют по графику зависимости элюируемого объема от молекулярной массы, он соответствует элюируемому объему, который на 10% отличается от свободного объема Уд1,т. е. объема растворителя вне зерен геля (Vм определяют по выходу высокомолекулярного вещества, заведомо не проникающего в гель). Предел эксклюзии в некоторой мере зависит и от формы молекул для линейных полисахаридных молекул предел эксклюзии ниже, чем для глобулярных белков. Точность определения молекулярной массы белков методом ГПХ возрастает, если добавлением карбамида, гуанидина или SDS (додецилсульфата натрия) глобулярные молекулы белков перевести в вытянутую 4юрму. [c.56]

    Свойства высокомолекулярных веществ зависят не только от величины, но и от формы их молекул. Высокомолекулярные соединения с изодиаметрическими молекулами (например, гемоглобин) при растворении не набухают. В то же время соединения с сильно ассиметрическими вытянутыми молекулами (например, желатин, целлюлоза) при растворении очень сильно набухают и образуют высоковязкие растворы. Характерной особенностью соединений с линейными молекулами является волокнистая стрзпктура, обусловливающая высокую анизотропию свойств и механическую прочность. [c.67]

    Считают, что все достаточно высокомолекулярные линейные полимеры можно при определенных условиях превратить в каучукоподобные вещества. С каучукоподобным состоянием, повидимому, связана определенная пр1ед-посылка, которую легко реализовать . Необходимо чтобы каждый атом или каждая группа атомов в одном измерении была жестко связана с двумя соседними атомами, а в двух других могут быть связи, характерные для молекул жидкого вещества. Благодаря этому возможно скольжение одной цепи по другой, если приложено соответствующее усилие. Обратимость процесса обеспечивается тем, что при снятии нагрузки восстанавливается беспорядочное состояние, термодинамически наиболее вероятное (возвращение вытянутых длинных цепей к изогнутой форме). С этим представлением согласуется то, что натуральный каучук, замороженный после растяжения (кристаллизация), теряет способность к сокращению. Гуттаперча, причисляемая в нормальном состоянии к кристаллическим веществам, только при более высоких температурах становится каучукоподобной. Каучукоподобного состояния целлюлозы не удается достичь только потому, что температура, необходимая для уничтожения жестких связей во втором и третьем измерении, выше температуры разложения всего комплекса. Напротив, полистирол и поливинилацетат при нагре-ванни легко становятся каучукоподобными. Аналогично действуют некоторые растворители или вещества, вызывающие набухание. Например, нитроцеллюлоза при смешении с пластификатором иногда дает резиноподобные вещества. [c.135]


Смотреть страницы где упоминается термин Форма молекул высокомолекулярных веществ: [c.12]    [c.70]    [c.232]    [c.192]    [c.418]    [c.575]    [c.347]    [c.253]    [c.266]    [c.126]    [c.103]    [c.76]   
Курс коллоидной химии (1964) -- [ c.181 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные вещества

Форма вещества

Форма молекул



© 2025 chem21.info Реклама на сайте