Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ртуть реакции на одновалентную

    Осадительное титрование объединяет титриметрические методы, основанные на реакциях осаждения. В основном используют реакции титрования, при которых ионы титана и титруемого компонента взаимодействуют в молярном отношении 1 1. Осадительное титрование имеет ограниченное применение, что связано с неколичественным и нестехиометрическим протеканием многих реакций. Требованиям, которые предъявляются к реакциям титрования, удовлетворяют реакции осаждения галогенидов и тиоцианата серебра (аргентометрия), а также хлорида одновалентной ртути (меркурометрия). В аргентометрии кривые титрования строят обычно в координатах рГ-т, где Г СГ, ВГ или Г. Общий вид кривых титрования для каждого ониона в отдельности приведена на рис. 5.2.9. Кривые титрования симметричны относительно ТЭ. [c.699]


    Эти синтезы протекают в сравнительно мягких условиях. По первому методу вместо фосфина можно использовать фосфит и вместо соли двухвалентной ртути — соль одновалентной ртути. Этими методами получено ограниченное число ангидридов, выходы которых колебались в пределах 60—80% [62, 63]. Детали механизма реакции можно найти в цитируемых работах. [c.370]

    Микрокристаллоскопическая реакция образования o[Hg(S N)4]. Описываемая реакция позволяет проводить открытие как двухвалентной, так и одновалентной ртути. Реакция основана на образовании характерно окрашенного осадка o[Hg(S N)4]. [c.172]

    Растворы соединений других элементов взаимодействуют со всеми производными дитиофосфорной кислоты следующим образом. Белый осадок вольфрамовой кислоты, образующийся при добавлении соляной кислоты к раствору вольфрамата натрия, медленно восстанавливается всеми реагентами до вольфрамовой сини, а желтый солянокислый раствор ванадата аммония довольно быстро переходит в зеленый. Соли уранила и титана не дают реакций окрашивания. Серебро, двухвалентная ртуть, свинец, одновалентный таллий, кадмий, мышьяк выделяются в виде белых, а висмут и олово — желтых аморфных осадков. Сурьма образует осадки желтого или слабо-желтого цвета. Одновалентная ртуть и трехвалентное железо дают черные, а медь желто-зеленые осадки. Соли никеля образуют муть сиреневого цвета, растворимую в этиловом эфире с образованием красно-фиолетового раствора. Соли кобальта образуют соединения грязно-оранжевого цвета, растворимые в эфире с образованием оранжевого раствора. Соли многих других элементов не дают осадков или окрашивания. Таким образом, большинство изученных производных дитиофосфорной кислоты можно считать селективными реагентами на молибден, поскольку при определенных условиях они образуют с молибденом характерное малиновое или красное окрашивание. [c.79]

    Теоретически сернокислая ртуть должна была бы сохранять свои каталитические свойства неограниченно долго, так как она в конце реакции вновь выделяется в первоначальном виде. Фактически за счет побочных реакций происходит восстановление двухвалентной ртути до одновалентной и даже до металлической ртути, которую повторно превращают в сернокислую ртуть. Образование сернокислой ртути из металлической происходит непосредственно в самом реакторе. Окислителем является раствор сернокислого железа в серной кислоте, называемый контактной кислотой. Схематически образование катализатора можно описать следующим уравнением  [c.225]


    Этот процесс используют как придаток к окислению пропана и бутана воздухом. Первую стадию процесса — реакцию ацетилена с уксусной кислотой — проводят при 60—90° и атмосферном давлении в присутствии солей одновалентной ртути как по периодической, так и по непрерывной схемам. Отрегулировав определенным образом отношение ацетилена к уксусной кислоте, можно добиться того, что основным продуктом реакции будет винилацетат (стр. 349). [c.337]

    Те же самые продукты образуются, если реакцию проводят с солями одновалентной ртути при атом одновременно выделяется металлическая ртуть. [c.650]

    При растворении металлической ртути в концентрированной азотной кислоте при комнатной температуре образуется смесь нитратов одно- и двухвалентной ртути. В присутствии мочевины реакция протекает с образованием только нитрата одновалентной ртути. [c.166]

    Первая стадия является лимитирующей, так что скорость реакции V = A [Hg ][B]. Так протекает реакция Hg2 с V , Сг , Ре . Окисление одновалентной ртути протекает в несколько стадий, из которых первая лимитирует весь процесс  [c.310]

    Соли соляной кислоты. Соли соляной кислоты называются хлоридами. Большинство из них хорошо растворяется в воде, нерастворимы только хлориды серебра, соли одновалентных ртути и меди. Образование осадка Ag l при взаимодействии ионов С1 с ионами Ag+ — характерная реакция на иопы хлора. Важнейшими солями соляной кислоты являются хлориды натрия, калия, цинка и кальция. Хлорид натрия, или поваренная соль, находит широкое применение в пищевой промышленности, а также служит сырьем для получения хлора, натрия, соляной кислоты, гидроксида натрия, соды и т. д. Хлорид калия — важнейшее минеральное удобрение. Раствор хлорида цинка используют для пропитки железнодорожных шпал с целью предохранить их от гниения, а также при паянии. Хлорид кальция служит для приготовления охладительных смесей. Безводный a la используют для осушки газов, [c.179]

    Однако эти реактивы мало чувствительны к солям одновалентного таллия, а главное, — недостаточно селективны реакцию дают также серебро, висмут, медь, одновалентная ртуть, палладий и др. [c.28]

    Ртуть склонна к реакциям восстановления особенно легко наблюдается ее восстановление до металла из растворов солей одновалентной ртути. Величины окислительно-восстановительных потенциалов систем Hg(II)/Hg и Hg(I)/Hg свидетельствуют [c.42]

    Сообщалось о некоторых других случаях применения хлорной кислоты и ее солей. Так, перхлорат одновалентной ртути используют для определения железа титрованием и определения хлоридов и бромидов известны цветные реакции хлорной кислоты со стероидами с ее помощью определяют титр раствора тиосульфата натрия, проводят микроопределение иона меди (II) и т. д. [c.119]

    Для ацетиленида меди (а также серебра) очень специфично присоединение ацетилена по С=0-связи карбонильных соединений с образованием ацетиленовых спиртов [687—697, 1177]. Ацетилен выступает здесь в качестве донора водорода, который присоединяется к кислороду карбонильной группы, в то время как к ее углеродному атому присоединяется этинильный остаток —С=СН (реакции этинилирования). Родственным процессом является димеризация (тримеризация) ацетилена [624—629], легко протекающая при низких температурах в растворах хлоридных комплексов одновалентной меди. Соединения меди являются, вероятно, наиболее активными катализаторами реакций этинилирования. Соли серебра ускоряют присоединение перекиси водорода к аллиловому спирту, значительно уступая по активности солям ртути, железа и вольфрамовой кислоте [951]. [c.1219]

    Система с ионом Ре" наиболее хорошо изучена и наиболее часто применяется другие металлы или ионы металлов (как, например, двухвалентный хром, ртуть, одновалентная медь, трехвалентный титан и двухвалентный марганец) также эффективны при полимеризации, индуцированной перекисью водорода. На практике для эмульсионной полимеризации в окислительновосстановительных системах вместо перекиси водорода часто применяются органические иерекиси [123]. Обычно принимается следующая схема реакции  [c.208]

    Следует отметить, что электрохимическое диспропорциони-рование представляет собой, по существу, сочетание отдельных стадий суммарного процесса In=f In +- -3e, протекающих в катодном (16) и анодном (17) направлениях. Поэтому при протекании суммарного процесса в стационарных условиях определенном направлении представление о диспропорционировании, как одной из последовательных стадий этого процесса, теряет смысл. Кроме того, само электрохимическое диспро-порционирование может протекать на поверхности ртути только в том случае, если образующийся при растворении основного электрода одновалентный индий является промежуточным продуктом стадийной реакции окисления индия, который способен как восстанавливаться на ртути, так и окисляться. [c.72]


    К растворам солей цинка, кадмия, двухвалентной и одновалентной ртути, взятых по 0,5 мл, прилить по несколько капель раствора едкого натра. Отметить цвет образующихся осадков. Прилить избыток едкого натра. Какие осадки растворяются Слить с осадка гидрата окиси кадмия раствор, добавить концентрированный раствор едкого натра и нагреть до кипения. Сделать выводы об амфотерности гидратов окисей и написать уравнения реакций в ионном виде. [c.163]

    Свойства само о элемеита, реакции солсй одновалентной ртути, реакции ртути сухим путем, а также открытие ес в специальных случаях были уже рассмотрены в группе 1. [c.137]

    Поэтому гидрохлорирование ацетилена и его гомологов проводят в присутствии селективных катализаторов, ускоряющих только первую стадию присоединения. Для этой цели оказались эффективными соли двухвалентной ртути и одновалентной меди. Из солей двухвалентной ртути применяют сулему Hg lg. Кроме основной реакции она сильно ускоряет и гидратацию ацетилена с образованием ацетальдегида. По этой причине, а также из-за дезактивирования сулемы в солянокислых растворах ее используют в газофазном процессе при 150—200°С, применяя возможно более сухие реагенты. При этом побочно образуются ацеталь-дегид (за счет небольшой примеси влаги) и 1,1-дихлорэтан, но выход последнего не превышает 1 %. [c.125]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]

    Поэтому гидрохлорирование ацетилена и его гомологов проводят в присутствии селективных катализаторов, ускоряющих только первую стадию присоединения. Для этой цели оказались эффективными соли двухвалентной ртути и одновалентной меди, являющиеся специфическими катализаторами многих реакций ацетиленовых углеводородов, например гидратации, димеризации и др. Из солей двухвалентной ртути применяется сулема Hg la. Она сильно ускоряет кроме основной реакции также гидратацию ацетилена с образованием ацетальдегида  [c.192]

    Метод проверен на образцах искусственнЕ11х смесей, полученных путем разложения слабой амальгамы натрия разбавленным раствором сернокислого хрома. Полученную смесь хрома и ртути обрабатывали серной кислотой (1 4), и подвергали анализу как фильтрат, так и металлическую ртуть на содержание в них хрома. В фильтрате хром определяли по реакции с дифенилкарбазидом. Металлическую ртуть растворяли в концентрированной серной кислоте в присутствии перекиси водорода, восстанавливали ртуть до одновалентной муравьиной кислотой и отфильтровывали осадок сернокислой закисной ртути. Фильтрат после удаления осадка [c.138]

    ХИМИЧЕСКИЙ АНАЛИЗ — анализ материалов с целью установления качественного и количественного состава их. На научной основе используется с 17 в. Осн. разделы X. а,— качественный и количественный анализьь Цель качественного анализа обнаружить, какие элементы, ионы или хим. соединения содержатся в анализируемом веществе. Качественный X. а. неорганических веществ основан на проведении хим. реакций, сопровождающихся каким-либо эффектом, непосредственно воспринимаемым экспериментатором — образованием труднорастворимых или окрашенных соединении, выделением газообразных веществ и др. Обычно анализируемое вещество сначала растворяют в воде или в к-тах, а затем проводят т. н. систематический анализ, к-рый заключается в последовательном выделении из раствора под действием спец. групповых реагентов малорастворимых соединений нескольких хим. элементов. Так, раствор соляной к ты выделяет хлориды серебра, свинца и одновалентной ртути. При действии сероводорода в кислом растворе осаждаются сульфиды мышьяка, олова, сурьмы, ртути, меди, висмута и кадмия. Раствор сернистого аммония выделяет из нейтрального раствора сульфиды и гидроокиси никеля, кобальта, алюминия, железа, марганца, хрома, цинка и некоторых др. элементов. При действии карбоната аммония [c.686]

    Для селективного гидрохлорирования применяют катализаторы— соли двухвалентной ртути и одновалентной меди, которые ускоряют реакцию (1). В зависимости от применяемого катализатора гидрохлорирование проводят в газовой или жидкой фазе. Из солей двухвалентной ртути применяется сулема Hg b, которая является активным и селективным катализатором гидрохлорирования ацетиленовых соединений в газовой фазе. Недостатком этого катализатора является то, что он ускоряет также реакцию гидратации ацетиленового соединения в альдегид, вследствие чего необходимо проводить осушку сырья. Гидрохлорирование в присутствии Hg b в газовой фазе проводят при 150—200 °С. [c.251]

    Из соединений металлов к ацетилену присоединяются соли двухвалентной ртути и одновалентной меди, затем галоидные соли алюминия, фосфора, мышьяка, сурьмы, некоторые соли палладия, золота, хрома и серебра, возможно и некоторые другие. Наиболее важное значение некоторых из этих продуктов присоединения солей металлов заключается в том, что они промотируют присоединение к ацетилену других неметаллических соединений. Хотя соли металлов, применяемых в этих реакциях, обычно считаются просто катализаторами, однако в реакционной смеси всегда может быть доказано присутствие промежуточных продуктов присоединения этих солей к ацетилену, регенерирующихся во время реакции. Как будет описано ниже, металлопроизводные применяются для ускорения и регулирования большинства важных для промышленности реакций присоединения к ацетилену. [c.68]

    Shapiro-Rud реакция Шапиро — Руда на ртуть, медь, серебро, золото и металлы платиновой группы — действие 2% раствора фенилтиомочевины в спирте на испытуемый раствор с одновалентной ртутью образуется серая муть и серо-чёрный осадок, с двухвалентной ртутью — белая муть, с серебром — жёлто-коричневый осадок и жёлтое окрашивание раствора, с медью — белый осадок или помутнение, с золотом, платиной и палладием — жёлтый осадок и муть жёлтого цвета [c.508]

    Границы стабильности растворов. На КРЭ был достигнут максимальный катодный потенциал -0,835 В относительно стационарного ртутного электрода. Но-видимому, лимитирующая реакция включает разряд ионов водорода. Анодная реакция на стационарном ртутном электроде приводит к образованию нерастворимого метансульфоната одновалентной ртути. [c.37]

    Наиболее старый реагент этой группы — пикриновая кислота— применяется по крайней мере с 1827 г [1873] Насыщенный водиый раствор пикриновой кислоты дает с солями калия желтый осадок пикрата калия [1259, 1370, 1511, 1632, 1668, 1840] Предельная концентрация 1 1000—1. 1250 [1370, 1912, 2684] Для повышения чувствительности пользуются 10%-ным этано-ловым раствором пикриновой кислоты или насыщенным водным раствором пикрата натрия [1912] Пикрат калия образует крупные желтые иглы и поэтому часто используется в микрокристаллоскопии [26, 75, 250, 379, 580, 954, 1063, 1250, 1258, 1768, 2161, 2188], открываемый минимум 0,2—0,8 мкг К [250, 379]. Аналогичную реакцию дают соли аммония, рубидия, цезия, бария, серебра [2248], одновалентного таллия, ртути, свинца и большие количества натрия [379, 1963]. [c.18]

    Это приводит к уменьшению второго скачка потенциала. Изучение титрования шестивалентного молибдена с различными электродами из материалов, на поверхности которых наблюдается высокое перенапряжение водорода (металлическая ртуть, вольфрам, графит, тантал), показало следуюш,ее [58] второй скачок потенциала при титровании молибдена в среде серной кислоты резко возрастает в случае замены платинового электрода вольфрамовым и графитовым. При титровании с ртутным электродом наблюдается один большой скачок потенциала, со-ответствуюш,ий окончанию восстановления молибдена до трехвалентного состояния. Кроме того, с ртутным электродом наблюдается еш,е один скачок потенциала до того, как молибден перейдет в трехвалентное состояние. Положение этого скачка изменяется от титрования к титрованию и связано с моментом исчезновения ранее образовавшейся пленки на поверхности ртути. Скачка потенциала по окончании восстановления шестивалентного молибдена до пятивалентного не наблюдается. Это может быть объяснено тем, что ртуть в сильнокислой среде восстанавливает небольшие количества шестивалентного молибдена до пятивалентного с образованием эквивалентных количеств ионов одновалентной ртути (на поверхности ртути наблюдается образование пленки). Реакция протекает на поверхности электрода. При титровании раствором соли двухвалентного хрома происходит восстановление как молибдена, так и образовавшихся ионов одновалентной ртути (пленка на ртути растворяется), поэтому наблюдается скачок потенциала в точке, соот-ветствуюш,ей окончанию восстановления молибдена до трехвалентного состояния. Очевидно, ртутный индикаторный электрод может применяться только при титровании шестивалентного молибдена в чистых растворах и в присутствии таких элементов, [c.197]

    Молекулярный водород не является в растворе сильным восстановителем в отсутствие катализатора. Молекула водорода может расщепляться либо гомолитнческн на два атома водорода, причем в водном растворе энергия, необходимая для этого процесса, вероятно, приблизительно равна той же величине, что и в газовой фазе (около 103 ккал), либо гетеролитически на сильно гидратированные гидрид-ион Н" и протон Н энергия, необходимая для этого расщепления, составляет приблизительно 33 ккал. Гомолитическое расщепление сильно катализируется поверхностями металлов, которые способны образовывать связь с атомами водорода, а когда эта связь не слишком прочна, такие поверхности являются активными катализаторами для реакции гидрогенизации или восстановления. Коллоидальные платина или палладий, а также тонкораздробленный никель в течение многих лет применялись как катализаторы гидрогенизации. Совсем недавно Кельвин [28] показал, что соли одновалентной меди действуют как гомогенные катализаторы восстановления иона двухвалентной меди или бензохннона в пиридиновом растворе. Аналогичная активность была обнаружена для ряда простых или комплексных ионов металлов в растворах из различных растворителей, а также и для некоторых анионов. Так, например, ионы серебра, двухвалентных меди и ртути, перманганат-и гидроксил-ионы и некоторые комплексы тех же ионов металлов являются в водных растворах катализаторами реакций восстановления ионов бихромата, перманганата, иодата, ионов четырехвалентного церия, двухвалентных меди и ртути, а также катализаторами некоторых реакций обмена и конверсии. В органических растворителях медные или серебряные соли органических кислот выступают в роли катализаторов для аналогичных реакций дико-бальтоктакарбонил Со2(СО)8 служит катализатором реакций гидроформилирования и гидрогенизации, что обсуждается в разд. 4 гл. VIII. В среде аммиака анион является катализатором [c.93]

    Кроме описанных выше, имеется еще много других фотометрических методов определения йода. а-Нафтолфлавон реагирует с йодом с образованием синего соединения, которое пригодно для спектрофотометрических определений [81]. При взаимодействии йода с гидроксиламином образуется азотистая кислота, которая затем диазотирует сульфаниловую кислоту при последующем сочетании с а-нафтиламином образуется красный краситель [23]. о-Толидин, реагируя с йодом, дает сине-зеленую окраску [55]. Йодид можно определять по реакции с диоксаном [87]. В кислом растворе йодат окисляет пирогаллол до пурпурогаллина с образованием красновато-бурой окраски [103] эта реакция очень чувствительна. Можно использовать уменьшение флуоресценции флуоресцеина, поскольку дийодпроизводное не флуоресцирует [37]. Измерение интенсивности мути от йодида серебра позволяет успешно определять малые количества йодида [95]. Йод определяли также по адсорбции йодида одновалентной ртути на хлориде двухвалентной ртути [44, 77] и по образованию йодида палладия [64]. [c.243]

    При использовании алкоксидов ртути в спиртах вместо ацетата ртути в ТГФ происходит перенос вторичных алкильных групп [254]. По-видимому, лучше применять алкоксиды одновалентной ртути, в частности Hg2(O Meз)2 в этих реакциях осуществляется перенос двух вторичных алкильных групп. Например, в случае н-алкил(дициклогексил)боранов перенос циклогек-сильных групп происходит легче, чем первичных алкильных групп [254]. [c.399]


Смотреть страницы где упоминается термин Ртуть реакции на одновалентную: [c.158]    [c.118]    [c.33]    [c.510]    [c.50]    [c.15]    [c.508]    [c.532]    [c.261]    [c.401]    [c.645]    [c.410]    [c.262]    [c.54]    [c.63]    [c.72]   
Качественный анализ (1964) -- [ c.169 ]




ПОИСК





Смотрите так же термины и статьи:

Ртуть реакции



© 2024 chem21.info Реклама на сайте