Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерода азотистые соединения

    Нефть представляет собой жидкость коричневого или темнозеленого цвета, состоящую в основном из смеси многочисленных органических соединений углерода и водорода с некоторым количеством кислородных, сернистых и азотистых соединений. Содержание углерода в нефтях обычно колеблется в пределах от 84 до 86%, водорода — от 12 до 14%. Содержание серы, азота и кислорода в различных нефтях неодинаково. Нефти Урало-Волжского района содержат от 1 до 6% этих элементов, в нефтях остальных районов их суммарное содержание редко превышает 1%. [c.3]


    Одним из важных элементов технологии процесса изомеризации является зашита катализаторов от отравления примесями, содержащимися в углеводородном сырье и водородсодержащем газе, поступающем в реактор. К числу таких примесей относятся сернистые и азотистые соединения, оксид и диоксид углерода, вода. Ароматические и нафтеновые углеводороды, содержащиеся в сырье, также влияют на протекание процесса. [c.85]

    Катализаторы должны обладать механической прочностью, устойчивостью к резким изменениям температуры, к действию двуокиси углерода, воздуха, азотистых соединений и водяного пара. Необходима также достаточная устойчивость к действию сернистых соединений синтетические катализаторы и некоторые особые глины, но-видимому, лучше в этом отношении, чем обычные необработанные природные катализаторы. Известно, что в присут- [c.339]

    Вещества, снижающие активность катализатора вследствие его отравления , называют каталитическими (контактными) ядами. Незначительное количество контактного яда может сильно замедлить или полностью подавить действие катализатора. Для никелевых и платиновых каталпзаторов ядами служат сероводород, соединения мышьяка, окись углерода, галогены для алюмосиликатных — вода и водяной пар, сернистые и азотистые соединения, мышьяк и соли тяжелых металлов, содержащиеся в крекируемом сырье и в применяемых реагентах. Действие каталитических ядов заключается в химической адсорбции их на поверхности катализатора, особенно на его активных центрах они как бы. обволакивают катализатор, затрудняя доступ молекул реагирующих веществ к его поверхности. [c.18]

    Большая плотность указывает на высокое содержание ароматических углеводородов, которые при неполном горении способны образовывать углерод. Алканы сгорают без выделения углерода. Выход углерода уменьшается при наличии в сырье кислородных и азотистых соединений. Обычно коксуемость термического газойля ограничивают—1,5% (масс.), чтобы уменьшить содержание тяжелых асфальтено-смолистых веществ, способных образовывать карбоидные частицы с малой внутрен- [c.166]

    Реакции первой группы противоположны рассматриваемому в последующей главе дегидрированию. При этом сохраняется первоначальное расположение атомов в цепи и кольце. Присоединение водорода может происходить к двойной, тройной и ароматической углерод-углеродной связи или к ароматическому кольцу в целом, а также по С=0 связи в альдегидах, кетонах, сложных эфирах и кислотах, по С=К и С=Ы связям в азотистых соединениях и другим кратным связям  [c.9]


    При оценке содержания гетероатомных соединений надо учитывать, что в сернистых, кислородных и азотистых соединениях сера, кислород и азот связаны с различными углеводородными радикалами и на 1 ч. (масс.) этих элементов приходится 10—20 ч. (масс.) углерода и водорода. Например, если средняя молекулярная масса фракции 160, содержание серы равно 1%, а в молекуле сернистого соединения только один атом серы, то в такой фракции содержание сернистых соединений равно 5%. [c.21]

    Способность к образованию цепочек из однородных атомов присуща не только углероду, но и его ближайшим соседям по периодической системе, в частности азоту. Однако для всех других элементов, кроме углерода, цепочечные соединения мало характерны и относительно непрочны. В силу этого и гидразин, и особенно азотисто-водородная кислота — соединения весьма неустойчивые и очень реакционноспособные. При этом гидразину присуща восстановительная, а азотистоводородной кислоте — довольно сильная окислительная способность. [c.82]

    Огромное значение белки имеют и для жизнедеятельности растительных организмов, хотя содержание их в растениях значительно меньше. В то же время только в растениях, наряду с синтезом углеводов, осуществляется синтез белков из простых неорганических веществ. Необходимую для этого двуокись углерода (СОа) растения поглощают из воздуха, а минеральные азотистые соединения и воду — из почвы. В животные же организмы белки поступают в готовом виде — с растительной или животной пищей в процессе пищеварения белки под влиянием ферментов расщепляются до а-аминокислот, которые усваиваются, и в тканях также под действием ферментов вновь образуют белки. [c.289]

    Для непосредственного определения азота в нефтяных углеродах может быть применен метод Кьельдаля после его усовершенствования [28]. Предлагается разрушать азотистые соединения смесью серной кислоты и марганцевокислого калия, что позволяет повысить не только точностью метода Кьельдаля, но и в 2—3 раза сократить длительность сжигания проб нефтяных углеродов. [c.116]

    Азотное питание. Дрожжи способны синтезировать все аминокислоты, входящие в состав нх белка, непосредственно нз неорганических азотистых соединений при использовании в качестве источника углерода органических соединений — промежуточных продуктов распада углеводов, которые образуются при дыхании и брожении. [c.201]

    Относительные скорости реакций гидрирования различных компонентов, содержащихся в нефтях, изучены недостаточно. Однако из имеющихся термодинамических данных, результатов исследований на индивидуальных компонентах и на нефтяных фракциях можно вывести некоторые общие закономерности. При комнатной и более высокой температуре термодинамические факторы благоприятствуют гидрированию всех кислородных, сернистых и азотистых соединений в насыщенные углеводороды с образованием соответственно воды, сероводорода и аммиака. Почти во всех случаях в присутствии стехиометрических количеств водорода реакция протекает практически до завершения. При достаточно высоком парциальном давлении водорода устраняется лимитирующее влияние равновесия и в реакциях насыщения алкенов или ароматических углеводородов и гидрокрекинга и гидроизомеризации связей углерод — углерод. [c.145]

    Приведенные выше данные позволяют выявить общие проблемы, возникающие при разработке катализаторов крекинга. При любом варианте процесса катализатор подвергается попеременно стадиям крекинга и регенерации. Во время крекинга, осуществляемого при высоких температурах, катализатор должен обеспечивать протекание сложной совокупности последовательных изотермических реакций углеводородов. Воздействие водяного пара, сернистых и азотистых соединений, а также металлов не должно снижать активности катализатора. Во время регенерации производится экзотермический выжиг углеродистых отложений для их удаления на этой стадии катализатор подвергается воздействию окислительной атмосферы, -содержащей кислород, водяной пар, двуокись и окись углерода, сернистый ангидрид, азот и окись азота. В зависимости от способа циркуляции катали--затора он подвергается действию механических нагрузок — в стационарном слое и абразивного износа и истирания — при процессах с движущимся или псевдоожиженным катализатором кроме того, при любых вариантах процесса он подвергается действию высоких температур и изменениям температуры. [c.173]

    Опыт эксплуатации ряда заводов показал, что большая часть окиси азота, образующейся при конверсии метана, гидрируется в процессе конверсии окиси углерода на железохромовом катализаторе. Основная причина попадания N0 в газ, поступающий в блоки промывки жидким азотом, заключается в прямом контакте конвертированного газа с оборотной или речной водой [18—21], содержащей азотистые соединения и нитробактерии, в конденсационных башнях и водяных скрубберах (при очистке от СО водой). Загрязнение газа окисью азота происходит особенно интенсивно весной (при паводках) и летом. [c.433]


    Помимо реакций, представленных уравнениями (13.1) —(13.6), в зависимости от состава очищаемого га.за и условий процесса могут протекать также многочисленные побочные реакции с участием кислорода, водорода, сероводорода, углеводородов, азотистых соединений и окиси углерода. [c.320]

    По внешнему виду нефть — маслянистая жидкость от светло-зеленого до темно-коричневого или почти черного цвета, обладающая характерным запахом и заметной флуоресценцией. По химическому составу нефть представляет собой сложную смесь углеводородов, включающую значительные количества кислородных, сернистых и азотистых соединений. Несмотря на то что нефти различных месторождений резко отличаются по своему составу и свойствам, содержание некоторых элементов в них колеблется незначительно. В большинстве нефтей содержание углерода составляет 84—85%, водорода 12—14%, кислорода, серы и азота 1—2%. Плотность большинства нефтей 0,8—0,95. [c.147]

    Гетероцепные соединения образуются обычно таким образом, что между отдельными атомами того или иного элемента включаются атомы другого элемента. Чаще всего включаются в эти гетероцепные соединения бор, углерод, кремний, азот, фосфор, кислород, сера, селен и мышьяк. Наиболее многочисленной группой среди них являются кислородные соединения — полимерные окислы, азотистые соединения — полимерные нитриды, углеродистые соединения — полимерные карбиды и борные соединения — полимерные бориды. [c.334]

    Анализ состава нейтральных азотистых соединений двух концентратов, выделенных из нефти в виде нерастворимых (К-4) и растворимых (К-5) комплексов, показывает близость идентифицированных типов, представленных практически одинаковым набором гомологических рядов. Для выявления особенностей строения исследуемых соединений, распределяющихся по различным концентратам, получены ПМР-спектры хроматографических фракций, на основе которых, а также данных элементного анализа и молекулярных масс рассчитаны средние структурные параметры их молекул. Результаты расчетов показали, что азотистые соединения фракции Сх концентрата К-5 имели более насыщенный характер по сравнению с продуктами фракционирования К-4. Характерной особенностью спиртобензольной фракции является присутствие в ней компонентов, в средней молекуле которых преобладает алкильное замещение (содержание атомов углерода в боковых алифатических цепях достигает 75% от общего количества их в средней молекуле) при слабо развитой цикличности последней. В соответствии с распределением а-, Р- и у-атомов углерода в средней молекуле компонентов этой фракции с кольцевой системой связано не менее 2—3 алкильных цепей малоразветвленного строения. [c.166]

    Оксиды азота. Токсичность диоксида азота N02 в 10 раз выше токсичности оксида углерода. Образование оксидов азота непосредственно с реакциями горения топлива не связано. Оно идет в основном за счет цепных реакций атомов и радикалов, выделяющихся при диссоциации молекул О2 и N2 в условиях высоких температур, достигаемых в пламени. Оксиды азота могут также образовываться при сгорании азотистых соединений, содержащихся в топливах и маслах. Эти вещества могут попадать в топлива и масла из нефти, при ее переработке, а могут и вводиться в виде присадок для улучшения тех или иных эксплуатационных свойств. [c.83]

    Бензины прямой перегонки содержат прямолинейные и разветвленные парафины (парафины с четвертичным атомом углерода появляются очень редко и в малых количествах), пяти- и шестичленные нафтены (до сих пор в бензинах не были найдены нафтены с 3, 4, 7 и более углеродными атомами), моноциклические и иногда бициклические ароматические углеводороды, сернистые, кислородные и азотистые соединения (количество их не превышает 1%). [c.98]

    Углерода в нефти содержится 84—87%, водорода 12—14%. В нефти содержатся сернистые, кислородные и азотистые соединения. Нефть ряда месторождений (в основном в районах Каспийского и Черного морей) бедна серой содержание ее редко превышает 0,3%. Нефть многих месторождений, расположенных на востоке страны, содержит 2—3,5% серы, а некоторых месторождений даже до 5%. [c.6]

    К счастью, углекислотная коррозия не сопровождается водородным охрупчиванием (двуокись углерода в отличие от сероводорода не замедляет процесс молизации водорода), поэтому приходится думать лишь об уменьшении общей или локальной коррозии. Анализ показывает, что основным коррозионно-активным агентом является двуокись углерода. Карбоновые кислоты, хотя и усиливают коррозию, однако не так сильно, как можно было ожидать, исходя из чисто лабораторных экспериментов. В реальных газоконденсатах, по-видимому, содержатся азотистые соединения, которые обладают, как было выше показано, ингибирующими свойствами. [c.292]

    Можно привести много примеров, иллюстрирующих такой прием. Очевидно, если примесь представляет собой реагент, можно применять рециркуляцию. Например, если после гидрогенизации присутствует значительное количество олефиновых примесей или после реакции дегидратации остается примесь спирта, то повторная обработка смеси может превратить всю массу примесей в желаемый продукт. Углеводородный продукт реакции, восстановленный по Вольфу-Кижнеру, может быть освобожден от загрязнений азотистыми соединениями при обработке кислотой. Любой непрореагировавший кетон реакции восстановления по Вольфу-Кижнеру, трудно отделимый от соответствующего углеводорода при помощи перегонки, может быть превращен в третичный спирт, содержащий шесть дополнительных атомов углерода, обработкой фенилмагнийброми-дом. Такое высокомолекулярное вещество перегонкой легко можно отделить от желаемого углеводорода. При получении нормальных алкилбро-мидов оставшийся спирт можно удалить экстракцией концентрироваиной серной кислотой на холоду. [c.501]

    По групповому химическому составу для сырья каталитического крекинга наиболее благоприятны нафтеновые углеводороды и изопарафины, так как их крекинг идет с высокими скоростями и сопровождается большим выходом бензина. Это объясняется наличием третичного атома углерода, требующего более низкие затраты энергии на отрыв третичного гидрйдного иона. Наиболее нежелательными являются голоядерные полициклические ароматические соединения, блокирую1дие активные центры катализатора и вызывающаие усиленное коксообразование. Кроме того, в сырье присутствуют компоненты, вызывающие необратимое дезактивирование катализатора. К таким компонентам относятся азотистые соединения и металлы (N1, V, Ре, Ма) [4.9]. Влияние содержания металлов в сырье крекинга на скорость догрузки свежего катализатора в систему для поддержания заданной степени конверсии сырья показано в табл. 4.1 (данные различных зарубежных фирм [4.10-4.14]). [c.103]

    Схема реакций гидрирования азотсодержащих соединений показывает, что оно идет с разложением молекулы гетеросоединения в результате разрыва связей углерод — азот и сопровождается образованием молекулы аммиака и соответствующего углеводорода. В этом смысле реакции азотсодержащих соединений сходны с реакциями гидрирования соединений серы. Существенное различие заключается в том, что соединения азота заметно более устойчивы в условиях гидрирования, разложение их наступает при более высоких температурах и давлениях. Так, многие серосодержащие соединения довольно легко разлагаются уже при температуре 280 °С и давлениях до 5 МПа разложение пиридина и хинолина наблюдается при температурах выше 350°С и давлениях 10—20 МПа. Нейтральные азотистые соединения более устойчивы, чем основные. Пиррол и его производные гидрируются при высоком давлении и температуре 400 °С, еще более устойчивы производные карбазола. С увеличением молекулярной массы устойчивость соединений азота надает, так что разложение высокомолекулярных соединений азота наблюдается уже при простом нагревании. Тем не менее для осуществления деазотирования в целом требуются более жесткие условия гидрогенизациоиного процесса. При проведении процесса в конкретных условиях глубина очистки от азотсодержащих соединений, как правило, меньше глубины обессеривания. [c.295]

    При двухступенчатом гидрокрекинге вредное влияние остаточных азотистых соединений после первой ступени (при их содержании 0,0003—0,002 вес. %) можно компенсировать добавками галогенсодержащих соединений типа дихлорэтана, четыреххлористого углерода, mpem-бутилхлорида и других в количестве 10 — 300 атомов галогена на 1 атом азота. Отравление катализатора уменьшилось в 2,5 раза [c.78]

    Реакции первой группы противоположны только что рассмот- )енному дегидрированию с сохранением первоначального расположения атомов в цепи. Они могут происходить с присоединеиием юдорода по двойной, тройной и ароматической углерод-углеродной связям, по С—0-связи альдегидов и кетонов, по С=(Ы- и С = Ы-связям азотистых соединений и т. д.  [c.458]

    Для более детального исследования состава азотистых оснований дистиллята 180—200"С был использован метод хромато-масс-спектрометрии. Хроматограмма азотистых оснований, полученная на карбоваксе 20 М, состоит из двух групп пиков. Хроматомасс-спектрометрический анализ каждого пика показал, что вторая, более четкая группа пиков, состоит из алкиланилинов с заместителями у атома углерода. Эти соединения составляют 90% выделенных азотистых оснований. Остальные 10% поданным масс-спектрометрии представлены алкиланилинами с заместителями у атома азота и алкилпиридинами с молекулярными весами 121, 135, 149, 163. [c.78]

    Природа азотистых соединений основного характера была выяснена уже давно. Это, в основном, гомологи пиридина, хипо-лина, гидрониридина и гидрохинолина. Азотистые основания нефти способны образовывать хлороплатинаты, анализ которых на платину, углерод, водород и хлор позволяет определенно говорить о природе азотистых оснований. [c.163]

    По теории космического происхождения нефти углеводороды, составляющие нефть, образовались непосредственно из углерода и водорода в начальной стадии существования земного шара. Эта теория объясняет наличие значительных количеств метана в атмосферах больших планет. По мнению Д. И. Менделеева, нефть образовалась в результате действия воды на карбиды металлов (в частности, на углеродистое железо), из которых состоит ядро земного и ара. Действительно, карбиды металлов, реагируя с водой или разбавленными кислотами, образуют углеводороды, главным образом метан и ацетилен. Карбид железа и марганцовистый чугун при взаимодействии с водой дают нефтеподобную смесь жидких углеводородов. Несмотря на то, что эти факты как будто подтверждают теорию Менделеева, она в настоящее время 1ЮЧТИ совершенно оставлена. Против нее говорит содержание в нефти азотистых соединений и ее оптическая активность (стр. 154), что определенным образом указывает на органическое происхождение нефти. [c.66]

    Трехстадийная обработка требует наибольщих капитальных вложений, однако имеет неоспоримые преимущества в смысле надежности, стабильности и простоты действия. Кроме того, эта схема обеспечивает последовательность реакций превращения азотистых соединений в газообразный азот, лучшее удаление углерода, высокую степень нитрифи- [c.223]

    В природе встречаются указанные металлы и алюмосиликаты, в природных газах присутствуют водород и окислы углерода, источником водорода может быть и вода, т.е. теоретически синтез УВ в природных условиях по реакции Фишера-Тропша возможен. Правда, природные газовые смеси далеки от необходимых для образования УВ стехиометрических соотношений, кроме того, смеси могут содержать примеси, например сернистых и азотистых соединений, являюшихся ядами для металлических катализаторов синтеза УВ. Таким образом, образование УВ путем синтеза СО и Н2 протекает на чистых катализаторах (кобальт, никель, палладий и другие металлы У1П группы) в восстановленном виде при повышенных температурах и давлениях, а главное, что для нее необходимо строго нормированное соотношение компонентов системы, что в природных условиях вряд ли имеет место. [c.192]

    Среди азотистых соединений особняком стоит синильная кислота и ее группа. Сама синильная кислота является смесью двух таутомер-ных форм Н-С = Ы и Н-Ы = С, из которых вторая, более ненасыщенная, содержащая двухвалентный углерод, и проявляет себя в действии на организм. Действие синильной кислоты сходно поэтому с действием других соединений, содержащих двухвалентный углерод, и заключается в специфическом влиянии на дыхательный центр (аналогично галоидным ацетиленам) и в образовании циан-гемоглобина (аналогия с окисью углерода). Эти специфические свойства двухатомного углерода резко выражены и в изонитрилах, Н-Ы С, и в галоидных цианах СКС1, СЫВг и СШ. Последние, вследствие присутствия галоида, одновременно являются лакриматорами. Наоборот, нитрилы, формулы К-СГ , менее токсичны и действуют на организм по иному, вызывая кому (сноподобное состояние). К соединениям этого типа неприменимо правило Ричардсона, но увеличение ненасыщенности и здесь увеличивает токсичность. [c.26]

    Было проведено тщательное изучение влияния примесей на качество получаемых масед. Примесь азота, метана и этана к этилену допускается не более 5% объемн. Исключительно вредными считаются даже незначительные примеси окислов углерода, молекулярного кислорода, кислородсодержащих соединений и сероводорода. Несколько менее вредными считаются примеси моноолефинов, диолефинов, ацетиленов, азотистых соединений и воды. [c.376]

    Нейтральные азотистые соединения, выделенные из деасфальтенизатов нефтей, подвергали последовательной хроматографической очистке и разделению на силикагеле и оксиде алюминия. Марки сорбентов, условия активации и соотношение образца к адсорбенту аналогичны таковым, использованным для разделения азотистых оснований. Фракционирование концентратов К-4 и К-5 проводили па активированном силикагеле с отбором фракций, исчерпывающе десорбируемых элюотропным рядом растворителей. В случае К-4 применяли смесь пентап — бензол (10 1 по объему), бензол и спиртобензол (1 1) с получением фракций Сц, Сх и Сд соответственно для разделения К-5 использовали смеси пентан — бензол (4 1) и спирт — бензол (1 1) с отбором фракций Со и С соответственно. Нри изучении химического состава нейтральных азотистых соединений вакуумного газойля товарной западно-сибирской нефти хроматографическому разделению на силикагеле подвергали только концентрат, выделенный в виде нерастворимого комплекса с тетрахлорид-тптаном, используя в качестве элюентов смесь пентана с бензолом (10 1) (фракция Сц), спирт — бензол (1 1) (фракция Сх). Бензольные элюаты далее фракционировали на оксиде алюминия, деактивированном 3 мас.% воды, спирто-бен-зольные — на оксиде алюминия, содержащем 4 мае. % воды. В обоих случаях использовали бинарные смеси растворителей с постепенно возрастающей силой элюепта едв с Аедв на 0,1. Обозначение продуктов разделения нейтральных азотистых соединений аналогично таковому, принятому для азотистых оснований (см. 5.2.1). В качестве растворителей для получения бинарных смесей при хроматографии на оксиде алюминия использовали пентап, четыреххлористый углерод, бензол, хлороформ, диоксан. Объемную долю сильного растворителя в бинарной смеси с заданной силой элюепта рассчитывали по [38]. [c.131]

    По данным ИК-спектроскопии, для фракций Сх всех нефтей наблюдали полосы поглощения, характерные для группы —NH пиррольного кольца (3460 см ). В спектрах спиртобензольных фракций азотистых концентратов (СаиС ) проявились полосы поглощения амидов (3400—3100, 3490 и 1550 см"1) наряду с поглощением в области 1040 см" , соответствующим валентному колебанию 8=0 группы сульфоксидов [43]. Эти последние данные нодтвернодают результаты потенциометрического анализа, согласно которым слабоосновный азот во фракциях и Сх несколько превалирует над общим вследствие присутствия сульфоксидов. Во всех спектрометрированных фракциях в области 3600 и 3580 —3540 см наблюдались полосы поглощения, характерные для ОН-групп свободных и ассоциированных фенолов [40]. Наиболее ярко эти полосы поглощения проявлялись в ИК-спектрах бензольных и спиртобензольных элюатов К-4, что находится в соответствии с результатами потенциометрического титрования кислотных групп. Приведенные данные, характеризующие исходные концентраты азотистых соединений и продукты хроматографического разделения на силикагеле, свидетельствуют о многокомпонентном составе и необхсдимости их дальнейшего дифференцирования. На данном этапе мы ограничились радиоспектроскопическими исследованиями продуктов разделения, которые в совокупности с данными элементного и функционального анализов и средних молекулярных масс позволяют судить о структуре средних молекул. В табл. 5.7 даны вычисленные значения структурных параметров средних молекул (в числителе) и их структурных единиц (блоков) (в знаменателе). Средние молекулы продуктов разделения концентратов всех нефтяных пластов состоят из 1,0—2,4 структурных единиц и имеют невысокую степень ароматичности (4 = GJQ, == == 0,22- 0,38). Наиболее полициклические молекулы характерны для соединений пласта АВ +у, наименее — для БВ . Доля алифатических атомов углерода в этих молекулах наивысшая для нефтяного пласта БВд (Сц = 50—63%) и [c.154]

    В соответствии с данными функционального анализа и результатами спектроскопического исследования молекулы азотистых соединений продуктов разделения К-4 всех нефтяных пластов представлены главным образом индоль-ными производными (фракции С1) и циклическими амидами — производными пиридона (фракции Сз). Возможность такого порядка выхода азотсодержащих соединений на силикагеле согласуется с кислотно-основным механизмом адсорбции, в соответствии с которым слабоосновные соединения сильнее удерживаются на кислотных центрах указанного адсорбента, чем соединения азота нейтрального характера (карбазолы) [85]. Молекулы азотистых соединений К-5, десорбированные спиртобепзольпой смесью (С ), аналогичны по относительному удерживанию компонентам фракций С. . Вследствие этого, а также на основании данных функционального и спектрального анализов структуры средних молекул этих элюатов можно отнести к пиридоновым производным. Извлечение их в концентраты К-5 объясняется более насыщенным характером люлекул такого типа и в связи с этим. лучшей растворимостью комплексных соединений в углеводородной среде [86]. Основные различия средних структурных единиц молекул бензольных фракций исследуемых нефтей заключаются а) в нанвысшей степени цикличности для пласта ЛВв+7(Яо = 7,3) и наинизшей — для БВд(71Гд = 5,2) б) в числе ароматических колец, равном трем для пластов АВе+, и БВд и двум для Ю1, одно из которых в случае азотсодержащих соединений является пиррольным в) в большем числе атомов углерода в алифатическом замещении для БВд и меньшем — для других двух нефтей. [c.155]

    А и содержит в адсорбированном состоянии способный к обменному вытеснению агент с органическими азотистыми основаниями (например, первичный алкиламин с 1—3 атомами углерода). В результате контактирования получают адсорбент с адсорбированными на нем органическими азотистыми соединениями и рафинат, содержащий неадсорби-ровавшиеся углеводородные компоненты и десорбированный при обменном вытеснении агент. Рафинат отделяется от ад-, сорбента. Насыщенный адсорбент реактивируется указанным выше агентом и возвращается на контактирование с неочищенным сырьем. Получившийся при обработке насыщенного адсорбента экстракт содержит десорбированные органические азотистые соединения. [c.61]


Смотреть страницы где упоминается термин Углерода азотистые соединения: [c.12]    [c.8]    [c.218]    [c.301]    [c.137]    [c.134]    [c.135]    [c.137]    [c.9]   
Строение неорганических веществ (1948) -- [ c.506 ]




ПОИСК







© 2025 chem21.info Реклама на сайте