Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина дейтерия

    Существование тока обмена можно доказать топных индикаторов. Так, погрузив насыщенную водородом пластину из платинированной платины в раствор, содержащий тяжелую воду, можно через некоторое время в газовой фазе обнаружить дейтерий и пЪ количеству его рассчитать силу тока обмена .  [c.608]

    Фторид дейтерия хранят в сосудах из платины, серебра или меди. [c.165]

    В настоящее время ясно, что при монослойном покрытии хемосорбированным водородом дисперсной платины величина Хт равна двум во всем интервале размеров частиц, для которых могут быть выполнены независимые (например, рентгенографическим и электронно-микроскопическим методами) определения размера, т. е. вплоть до 1,0 нм при электронно-микроскопическом определении [44, 64, 65, 69, 90]. Этому же значению Хт соответствуют и хемосорбционные данные, полученные для массивной платины. Частица платины диаметром 1,0 нм содержит около 100 атомов, и вопрос заключается в том, обоснован ли выбор Хт=2 для более мелких частиц или кластеров атомов. Сравнение данных по хемосорбции водорода при комнатной температуре с результатами изотопного обмена хемосорбированного водорода с дейтерием [66] свидетельствует о том, что Хт 2 и для частиц, содержащих всего около 6 атомов. Однако этот вывод требует дополнительного подтверждения, прежде чем его можно будет считать окончательным имеется достаточное количество данных о том, что для очень небольших частиц Хт<2 (см., в частности, [91, 92]), и это не может не вызывать обоснованных сомнений. Проще всего допустить, что значение Хт<2 обусловлено взаимодействием водорода с каким-либо источником кислорода в системе или вкладом перетекания на носитель и что влияние этих факторов сказывается сильнее при самых низких концентрациях платины и высоких температурах [c.323]


    Плискин и Эйшенс [65] наблюдали полосы хемосорбированного водорода и дейтерия на платиновом катализаторе, нанесенном на окись алюминия и двуокись кремния. Полоса при 2110 сж приписана слабо связанной форме водорода, так как ее интенсивность может легко изменяться под влиянием температуры и давления, а полоса при 2058 слг — сильно адсорбированной форме водорода. Дейтерий давал полосы при 1515 слг и 1479 сл соответственно. Эти отнесения были основаны на спектрах гидридных комплексов платины в растворе и на величине 2083 см для гипотетического димера Р1—Н, предсказанного по графику зависимости корня квадратного силовой постоянной от потенциала ионизации металла для известных гидридов металлов. [c.46]

    Табл. 23 показывает, что иа всех металлах из семи изученных в реакции ацетилена с дейтерием водород, вступающий в реакцию, состоит приблизительно из 80% D и 20% Н. Поэтому, если для водорода устанавливается адсорбционное равновесие и скорость его велика по сравнению со скоростью присоединения атома водорода к адсорбированному углеводороду, то в газовой фазе должен обнаруживаться HD. В табл. 26 приведены значения концентрации HD для реакции, прошедшей на 50%. Как видно из таблицы, наибольшая степень обмена наблюдается на рутении и осмии, на родии и иридии степень обмена меньше, а на никеле, платине и палладии обмен не происходит совсем. В данном случае снова обнаруживается систематическое изменение свойств для металлов VHI группы. На основании этого можно сделать вывод, что уравнение Ленгмюра, вероятно, применимо для адсорбции во-рода лишь на таких металлах, которые промотируют водородный обмен. На никеле, палладии и платине адсорбция водорода при данных условиях реакции должна быть фактически необратимой. Зависимость этих выводов от кинетики реакций обсуждается ниже. [c.418]

    Пленка, прогретая в течение 15 мин при 200°, служила активным катализатором для обмена диена при 90° и полученный продукт содержал один атом дейтерия, однако в реакции присоединения такая пленка неактивна. Пленки палладия и платины показывали различные свойства и при реакции циклогексадиена-1,3 на их поверхности [ПО]. В случае платины дегидрогенизация в бензол была главной реакцией, в то время как на палладиевом катализаторе этого не наблюдалось. [c.456]

    Результаты для никеля, найденные этим методом, оказались в превосходном согласии с найденными ранее автором при помощи компаративного метода. Новым методом были рассчитаны энергии связи водорода, дейтерия, углерода, азота и кислорода с никелем, железом, палладием и платиной. [c.326]


    Реакцию гидрирования (дейтерирования) ацетона в газовой (120 10% Pt/ ) и жидкой фазах (комнатная температура платина, промо-тированная железом, и платина по Адамсу) изучали авторы [203] в обоих случаях имел место механизм прямого присоединения дейтерия к ацетону. [c.330]

    Под влиянием катализаторов или при высокой те.мпературе даже прочно связанный водород органических соединений может сделаться настолько подвижным, что становится возможным замещение его дейтерием. Например, насыщенные жприые кислоты в концентрированной серкой кислоте при высокой температуре обменивают на дейтерий атомы водорода у а-С-атома, а при действии тяжелой воды в присутствии 1 %-ной щелочи и платины при 130 , по-видимому, обменивают на дейтерий даже все атомы Н. [c.1145]

    Перечисленные сопутствующие процессы действительно имеют место в полном соответствии с предложенными схемами. Так, во время восстановления 1,2-диметилциклопентена на оксиде платины из реакционной смеси может быть выделен его 2,3-диметилизомер, а при восстановлении пентена-1 на скелетном никеле - цис- и т/ <з//с-пентены-2. В зависимости от применяемого катализатора, температуры и давления водорода изомеризация алкенов протекает или быстрее, или медленнее, чем гидрирование. На никеле, являющемся активным катализатором изомеризации, при температуре 60-130 °С миграция двойной связи в бутене-1 происходит в 2 раза быстрее гидрирования, а г ис-тр<зА/с-изомеризация бутена-2 - гораздо быстрее миграции двойной связи. Наоборот, на платиновом катализаторе при температуре 20 °С и атмосферном давлении гидрирование гексена происходит в 30 раз быстрее миграции двойной связи. Обмен атома водорода алкена на атом водорода с поверхности катализатора обнаруживается при гидрировании соединений, меченных дейтерием, или при каталитическом восстановлении дейтерием. Наиболее высока скорость такого обмена в аллильных положениях. [c.28]

    В аппаратуре из платины, никеля или монель-металла в отеутетвие влаг-ги к 1000 г фтороеерной кислоты прибавляют по каплям 100 г DjO. Реакционную емееь постоянно перемешивают при помощи магнитной мешалки (с тефлоновой оболочкой). Устанавливают такую скорость добавления D2O, чтобы при наружном охлаждении колбы температура внутри ее была в пределах 50—70 °С. Образующийся фторид дейтерия непрерывно отгоняют и собирают в приемнике из полиэтилена, охлаждаемом смесью сухой лед+ацетон. По окончании реакции через колбу пропускают поток сухого азота, а температуру поднимают до 100 С, что приводит к полному удалению растворенного фторида дейтерия. С целью очистки продукт еще раз перегоняют. Выход составляет 94,5 г (90% от теоретического). [c.165]

    Синтез проводят в стеклянной аппаратуре, схематически показанной на рис. 111, все части которой спаяны между собой. Колбу 1 вместимостью 5 л, в которой находится небольшое количество губчатой платины илн платинированного асбеста (о получении последних см. Платиновые металлы , ч. II, гл. 29), предварительно прокаливают в высоком вакууме до 450 С в течение нескольких часов (эвакуирование газов производят через патрубок 4). Затем в колбу впускают сухой воздух, не содержащий водорода (во избежание адсорбции легкого водорода на платине), и вносят в нее через патрубок 4 35 г тщательно очищенного нода (см. разд. Иод ). Затем в приборе снова создают вакуум до тех пор, пока весь воздух не окажется полностью вытесненным из колбы парами иода. После этого при помощи насоса Тёплера в колбу вводят чистый дейтерий (см. разд. Дейтерий ), продолжая эту операцию до тех пор, пока давление не достигнет 120 мм рт. ст. затем патрубок 4 запаивают. После этого колбу нагревают на воздушной бане при 370 °С в течение 6 ч при этом свыше 90% дейтерия вступает в реакцию с образованием DI. Из неочищенного газа удаляют избыток исходных веществ путем фракционной перегонки. Для этой цели правую часть прибора, отделенную от колбы 1 запаянным отростком 2, эвакуируют при открытых кранах 8 к 5. Затем кран 5 закрывают и отросток 2 разбивают бойком 3 с железным сердечником, передвигаемым электромагнитом. После охлаждения приемника 6 жидким воздухом можно, закрыв кран 8. открыть кран 5 и перегнать содержимое колбы в приемник 5. Соединительную трубку между краном 5 и приемником 6 запаивают в точке Ai и, открыв кран 8, в течение ко- [c.169]

    Эту расгворимую в уксусной кислоте соль рекомендуют применять в качестве гомогенного катализатора при замещении водорода в ароматических углеводородах на дейтерий [1]. Субстрат, уксусную кислоту, тяжелую воду и НС1 нагревают в вакуумиро-ванной запаянной ампуле при 25—120°, В этих условиях замещается также водород в алифатических соединениях, но только медленно. Димеризация (напрнмер, типа бензол - -дифенил) не наблюдается. Эта реакция замещения с тяжелой водой наблюдается при использовании платины в качестве гетерогенного катализатора. [c.212]

    Шонхеймер и Риттенберг [1] получали содержащие дейтерий метиловый эфир стеариновой кислоты и стеариновую кислоту встряхиванием метиловых эфиров жирных кислот льняного масла с катализатором из окиси платины и водородом-Нг до полного насыщения. Кристаллический продукт омыляли раствором едкого кали з метиловом спирте и перекристаллизовывали кислоту из разбавленного этилового спирта. [c.60]


    Когда суспензию холестерина в воде-Нз нагревают в присутствии активной платины, то обмен не происходит даже при 200°. Добавление спирта с целью увеличения, растворимости холестерина в реакционной среде не оказывает никакого влия-ния. в катализируемом платиной обмене со смесями воды-Нг количество вводимого в стерин дейтерия при 127° увеличивается с уменьшением концентрации уксусной кислоты от 100 до 70%, но одновременно сопровождается соответствующим увеличением степени расщепления холестерина, В изученном интервале концентраций и температур списаппые экспериментальные условия являются оптимальными. [c.395]

    Фукушима и Галлахер [3] исследовали катализируемый платиной в растворах уксусной кислоты-Н и воды-Н обмен водорода на дейтерий в стеринах. В случае насыщенных стероидов, содержащих кетогруппу, внедрялось значительное количество прочно связанного дейтерия и дейтерированный стероид извлекали с большим выходом. С увеличением числа двойных связей или ири наличии нескольких кетогрупп внедряется значительно большее количество изотопа в некоторых случаях может быть достигнут высокий выход меченого стероида, В случае стероидов, содержащих гидроксильные группы, обменные реакции менее эффективны, поскольку дегидрирование и гидрогенолиз заметно снижают выход. Ацетилирование приводит к уменьшению степени расщепления, существенно не изменяя при этом степень обмена. Исследовали влияние температуры, природы катализатора и концентрации исходного вещества. Из этих переменных наиболее важное значение имеет температура, поскольку ниже 100° обмен протекает очень медленно. [c.395]

    Возникает вопрос, является ли платина в высокодисперсном катализаторе Рабо и др. [5], как утверждали авторы, моноатом-ной в нулевой степени окисления, Р1(0). Ранее уже говорилось, (ср. стр. 179), что вряд ли на поверхности носителя при обычных условиях могут образоваться и существовать атомы Р1(0) энергетическая сторона вопроса обсуждается далее в гл. 5. Тем не менее платина в таком катализаторе определенно образует очень небольшие агрегаты, средний размер которых не превышает нескольких атомов. Качественно этот вывод согласуется с заключением Далла Бетта и Будара [6], изучавших стехиометрию ОНк/Р методом изотопного обмена дейтерия с группами ОН., ца поверхности высокодисперсной платины в цеолит-ном катализаторе, аналогичном образцу Рабо и др. [5] верхний предел размера платиновых кристаллитов соответствовал шести атомам платины. [c.203]

    Хотя перетекание водорода может быть существенным, если применяются углеродные носители, для окисных носителей — двуокиси кремния, окиси алюминия и цеолитов — влияние этого явления обычно мало. Например, Холл и Лютинскн [56] для раздельного определения водорода на поверхности металла и носителя в катализаторах Р1/А120з использовали температурную зависимость обмена поверхностного водорода с газообразным дейтерием. Носитель представлял собой смесь т)- и -окиси алюминия с удельной поверхностью 140 м /г. Этот метод дал почти такое же количество хемосорбированного на платине водорода (после адсорбции до равновесного состояния и откачивания при 77 К или при комнатной температуре), какое получается при измерении поглощения при 520 К и 32 кПа ( 240 мм рт. ст.) по крайней мере последние измерения приводят к несколько меньшим значениям поглощения. [c.310]

    Дифференциальный анализ водорода. Данный метод, описанный Холлом и Лютинским [149], основан на зависимости реакционной способности водорода при его обмене с дейтерием от природы поверхности, на которой он находится. Пока этот способ использовался только для выявления форм водорода, связанного на металле и на окисле применительно к нанесенной платине, однако метод может оказаться полезным и для выявления различий в реакционной способности поверхности разных металлов при достаточно низкой температуре реакции. Этот метод использовался также для идентификации данных по программированной термодесорбции форм водорода, адсорбированного на дисперсной платине (платиновой черни) [150]. Программированная термодесорбция. Температура, необходимая для десорбции газа с металлической поверхности, зависит от энергии связи газа с поверхностью. Для чистых металлических образцов отдельные пики спектра термодесорбции часто прини-сывают разным типам поверхностных адсорбционных центров. Сводка таких данных приведена Хейуордом [151]. Авторы работы [152] изучали программированную термодесорбцию водорода с дисперсного платинового катализатора (платиновой черни) [152], а в обзоре [153] описана методика исследования таких образцов, предусматривающая десорбцию в поток газа-носителя. По-видимому, возможные изменения десорбционного спектра, полученного для разных газов, например окиси углерода, водорода или азота, могут дать сведения о поверхностном составе катализаторов на основе сплавов. Хотя чаще исследуют металлические образцы без носителя, в благоприятных условиях можно изучать и нанесенные металлы [33] при этом весьма полезно сочетать этот метод и ИК-спектроскопию. Изменения работы выхода. Изменение работы выхода как следствие адсорбции газа может дать сведения о составе поверхности, если известно, что эти изменения для двух чистых компонентов биметаллического катализатора значительно отличаются. Надежнее всего использовать метод для выяснения распределения компонентов сложной системы. Захтлер и сотр. [132, 135] применили фотоэлектрический метод для изучения адсорбции окиси углерода на различных металлических пленках, а Уоллей и др. [154] использовали диодный метод, исследуя адсорбцию окиси углерода на пленках Рс1—Ag. [c.444]

    Отличие реакций на родии, состоящее в том, что относительные скорости обмена и изомеризации быстро возрастают с повышением температуры, обусловлено увеличением вероятности десорбции олефина. При температурах около 80° родий ведет себя, скорее, как никель, а при низких температурах подобно платине. Так как молекулярный дейтерий, по-видимому, важен в стадии гидрогенизации этилена, то благодаря этому родий сходен с иридие.м. [c.403]

    Реакция обмена (39) была описана Крамером и ЛиндсееМ. В совокупности со стадией обратимого образования алкильных соединений платины она объясняет включение дейтерия в олефин [256]. В случае систем, содержащих платину, реакция (39) может протекать через промежуточное производное Р1(1У). На это указывают результаты кинетического исследования реакции (41) [74]. Другой возможный механизм включает восстановление до Pt(0)-комплекса с последующим обратным окислением до Р1(П) [75]. [c.30]

    В самое последнее время получены данные, позволяющие объяснить образование неогексана из метилпентанов, не прибегая к предположению о замыкании и гид-рогенолизе трехчленного цикла в ходе реакции. Было показано [461, что полицикли-ческий углеводород протоадамантан, который по стерическим условиям не может хемосорбироваться по типу (А), изомеризуется в адамантан на платине при 160— 300° С с энергией активации 10,1 ккал моль и селективностью 100%. С такой же высокой селективностью идет реакция на палладии при 200—300° С [47, 48]. Неопентан претерпевает 1—2-смещение связи С—С с такой же легкостью, как на кислотных катализаторах. Изомеризация сопровождается обменом с газообразным дейтерием, скорости обоих процессов одного порядка. Состав дейтероизомеров в продуктах изомеризации углеводородов, например неопентана, не отвечает ни множественному обмену, ни обмену через промежуточное замыкание трехчленного цикла и приводит к выводу о том, что для реализации перегруппировки достаточно потери одного атома водорода. Следовательно, образование диадсорбированных частиц, таких, как (А) в схеме (12), представляет не единственную, а лишь одну из возможных форм активации субстрата на поверхности платины. [c.16]

    Если рассматривать обратимое образование ионов карбония как окислительновосстановительный процесс, то каталитическая активность окислов элементов группы хрома и металлов VIII группы представляется более естественной, чем активность кислотных реагентов. Известно, например, что окислы хрома способны выступать в роли не только гомолитических, но и гетеролитических окислителей, т. е. акцепторов гидридных ионов [79]. Кроме того, как отмечалось выше, отрыв гидридных ионов не является единственным способом превращения алканов в карбокатионы к тому же результату может привести отрыв атома водорода группы С—И и потеря одного электрона в следующей стадии. Подобные процессы легко реализуются на переходных металлах, тогда как отрыв гидридного иона требует высокой кислотной силы ионных катализаторов. Действительно, данные об изотопном обмене водорода насыщенных углеводородов с газообразным дейтерием на поверхности металлов (например, на платине или никеле [13]) свидетельствуют о легкости диссоциативной адсорбции алканов с образованием на поверхности катализатора адсорбированных атомов водорода и алкильных радикалов. [c.22]

    Часто каталитическая активность металлов сопоставляется с наличием вакансий в -зоне металла. Так, для реакций с участием молекулярного водорода (гидрирование, дейтеро-водородный обмен, о-п-превращение) Боресковым 114] было установлено, что удельная каталитическая активность растет с заполнением -зоны металла, т. е. с уменьшением числа неспаренных электронов в -зоне, и достигает максимума у последних металлов VHI группы периодической системы элементов. Завершение заполнения -зоны при переходе от никеля к меди или от платины к золоту приводит к резкому снижению каталитической активности. При полном заполнении -уровней металлы совсем теряют каталитическую активность. Используя в качестве характеристики электронного строения переходных металлов критерий недостроенности их -электронного подуровня , Самсонов [115] получил удовлетворительную корреляцию между этой величиной и скоростью гидрирования этилена на пленках различных металлов. [c.64]

    Г. Скейт [147] показал, что из данных [85] вытекает пропорциональность величин логарифма удельной константы скорости реакции и произведения валентности металла на долю -характера металлической связи. Для реакции изотопного обмена углеводородов с дейтерием на гметаллических пленках также наблюдается симбатность скорости реакции и веса -состояний, а также скорости гидрирования этилена [616]. А. Каупер и Д. Эли [323], изучая кинетику реакции пара-ортоконверсии водорода на сплавах палладия с золотом при постепенном возрастании концентрации золота в сплавах, наблюдали приблизительное постоянство значений энергии активации (около 3—4 ккал/моль) до содержания золота 60% и резкое возрастание ее до 8—9 ккал/моль при переходе к сплавам с большей концентрацией золота (для реакции в присутствии чистого золота энергия активации составляла 17,5 ккал/моль). Состав сплава 40% и 60% Аи как раз соответствует полному заполнению -зоны палладия. Это показывает влияние -вакансий на скорость реакции. Авторы приписывают той же причине снижение скорости реакции на палладии и платине при растворении в них водорода, также заполняющего -зону. [c.266]

    Изотопным обменом с дейтерием можно определить долю ОН-групп, находящихся в непосредственной близости к платине, и рассчитать размер кластеров платины [48]. Основываясь на этих данных, нельзя, однако сделать определенные выводы о влиянии металла на кислотность гидроксильных групп. Пенчев и др. [131] определяли протонную кислотность цеолитных катализаторов потенциометрическим титрованием метилатом калия в безводном диметилформамиде [131] и установили, что при введении в aY 0,4% платины кислотные свойства цеолита не меняются. Здесь требуются дополнительные исследования. [c.177]

Рис. 3. Гомомолекулярный изотопный обмен между протием и дейтерием на платине при 78° К. Рис. 3. Гомомолекулярный <a href="/info/373173">изотопный обмен между</a> протием и дейтерием на платине при 78° К.
    На платиновой пленке, полученной конденсацией в вакууме, измерялась как скорость изотопного обмена между Нг и Ог, так и скорость обмена между адсорбированным и газообразным водородом. В последнем случае для увеличения точности измерений обмен осуществлялся между тритием, адсорбированным на поверхности платины, и газообразным протием, и скорость обмена определялась по увеличению активности газа. Измерения проводились при давлении 0,01 мм ртути и температуре 78 и 90° К (рис. 3 и 4). Оказалось, что гомомолекулярный обмен между протием и дейтерием при 78° К протекает в 4000 раз быстрее, чем обмен между адсорбированным тритием и газообразным протием. Энергия активации гомомолекулярного обмена в интервале температур 78—90° К составляет 500 кал/ моль, а обмена между сорбированным и газообразным водородом более 2000 кал/моль. При повышении температуры скорости этих процессов сближаются. [c.132]

    Исследована статическим методом в циркуляционной установке каталитическая активность железа, кобальта, никеля, меди, платины, серебра, золота и платиново-золотых сплавов в отношении реакции обмена между молекулами протия и дейтерия. [c.74]

    Высказывалось предположение [29], что высокая активность никеля Ренея обусловлена адсорбированным илп абсорбированным водородом и что катализатор действует как обратимый электрод но отношению к водороду, аналогично тому, как ведет себя платинированная платина. В интервале значений pH = 5 -14 нпкель Ренея обнаруживает такие же изменения потенциала, которые наблюдаются у обратимого водородного электрода [395. Было установлено также, что большую часть (95%) первоначального содержапия водорода в никеле Реиея удается заменить дейтерием путем насыщения газообразным дейтерием взвеси катализатора в смешаппом растворителе диоксаи — окись дейтерия [174]. [c.186]


Смотреть страницы где упоминается термин Платина дейтерия: [c.204]    [c.203]    [c.204]    [c.81]    [c.317]    [c.74]    [c.479]    [c.479]    [c.226]    [c.47]    [c.382]    [c.398]    [c.415]    [c.420]    [c.607]    [c.30]    [c.176]    [c.203]   
Современные аспекты электрохимии (1967) -- [ c.475 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерий



© 2025 chem21.info Реклама на сайте