Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина обмен ионов

    Своеобразную группу составляют газовые электроды. В них проводник из инертного материала (платина, графит или др.) непрерывно насыщается газом, который вступает в обмен ионами с раствором. Газовые электроды могут быть электродами, обратимыми относительно катиона (водородный электрод) или обратимыми относительно аниона (кислородный или хлорный электроды). [c.431]


    Теоретическое пояснение. Если в раствор, содержащий окисленную и восстановленную формы одного и того же вещества, например Fe + и Fe +, опустить платиновый электрод, то он приобретает определенный редокс-потенциал. Возникновение редокс-потенциала у индифферентного платинового электрода связано со способностью ионов Ее + и Fe + присоединять или отдавать электроны, находящиеся на платине — передатчике электронов. Происходит обмен электронами между инертным электродом и ионами. Если, например, окисленная форма Ре + получает от платинового электрода электроны, восстанавливаясь до ионов Fe +, то электрод заряжается положительно, а раствор — отрицательно за счет избыточной концентрации анионов, например С1 , если в растворе соль ЕеС1з. Присоединение электрона ионом Fe + становится постепенно более затруднительным и, наконец, устанавливается равновесие между положительно заряженным электродом и слоем анионов, определяющее величину редокс-потенциала. В конечном итоге происходит реакция ЕеЗ++е ч=ьЕе +. Направление данной реакции зависит от [c.104]

    При погружении металла в раствор соли этого же металла возможен переход его в виде ионов с поверхности в раствор или, наоборот, переход ионов металла, находящихся в растворе, на поверхность металла. На границе раздела фаз металл — раствор электролита также протекают электрохимические реакции (обмен ионов), в результате которых поверхность электрода приобретает заряд. Знак заряда зависит от того, какой из указанных процессов происходит преимущественно. Ионы раствора имеют заряд, по знаку противоположный заряду металла. Практически бывает так, что одни металлы, более активные, обычно заряжаются в растворе своих солей отрицательно, другие, менее активные, т. е. обладающие малой способностью посылать свои ионы в раствор (например, платина, серебро, золото и другие)положительно по отношению к раствору. Заряд иона относительно велик и поэтому при переходе даже очень малого числа ионов (порядка Ю —10- ° г) между металлом и раствором при равновесии возникает значительная, поддающаяся измерению, разность потенциалов. [c.14]

    Содержание кремния в геле, приготовленном из щелочного раствора окиси алюминия и силиката алЮминия в присутствии кислоты, меняется в зависимости от количества добавленной кислоты и силиката [196]. Холмс [225] предложил гели, имеющие микроскопические и ультрамикроскопические поры, пропитывать раствором и затем нагревать вначале до температуры, при которой реакция идет медленно, а затем до температуры, при которой происходит быстрое разложение. Таким способом на стенки пор геля осаждаются платина и серебро. Описан [376] способ приготовления катализатора на носителе, при котором один осажденный металл обрабатывают раствором соли другого металла, стоящего ниже в электродвижущем ряду, при этом происходит обмен иона и замещение первого металла вторым. Обезвоженный силикагель освобождают от газов в вакууме, насыщают водородом при 0° и затем обрабатывают раствором нитрата никеля. Соединение никеля восстанавливают и гель после этого обрабатывают раствором нитрата серебра таким образом, между никелем и серебром происходит обмен ионов. Гель затем сушат обычным способом. В литературе указывается [137], что пористые катализаторы готовят пропитыванием в вакууме геля двуокиси кремния, употребляемой в качестве носителя (практически свободного от адсорбированных газов и жидкостей). Гель двуокиси кремния нагревают до 400° в вакууме,, затем охлаждают, пропитывают, например раствором нитрата алюминия, [c.484]


    Помимо электродов, металл которых принимает участие в обмене ионами с раствором (к ним относится и водородный электрод), применяются электроды, где обмен ионами между металлом и раствором отсутствует, В этом случае металл электрода играет роль проводника электронов, переходящих от одних атомов к другим в процессе определенной окислительно-восстановительной реакции. Окислительно-восстановительный электрод получается в том случае, когда какой-либо неактивный металл (обычно платина) находится в растворе двух веществ, между которыми может происходить реакция окисления — восстановления. [c.105]

    Так как последний находится в ряде напряжений между водородом и благородными металлами, то на активных местах поверхности происходит обмен ионов Н+ ва ионы платины. Величину этой адсорбционно-активной поверхности можно найти путем измерения приобретенной ею радиоактивности. Она оказала,сь равной 4—6% от геометрической, но увеличивается при шлифовании до 2 см и при тщательной полировке даже до 17 см на 1 см геометрической поверхности [90]. [c.278]

    По существу окисление углеводородов на платине резко отличается от окисления на серебре. В продуктах реакцйи на платине при широком варьировании условий процесса (температура, концентрация компонентов, давление) всегда присутствуют только углекислый газ и вода. Подробное исследование Бутягина [271] показало, что пропилен при адсорбции прочно связывается с платиной и удаляется только после окисления поверхности кислородом. После предварительной обработки поверхности платины кислородом количество поглощенного пропилена увеличивается. Изучение адсорбции кислорода на платине показало, что в приповерхностных слоях кислород может растворяться в количестве, равном десяткам монослоев. По данным Нестеровой и Фрумкина [109], на платинированной платине при длительном соприкосновении кислорода с платиной увеличивается прочность связи его с металлом и затрудняется восстановление. Исследование работы выхода при адсорбции кислорода на платине показало, что кислород на поверхности платины заряжен отрицательно. Данные по изотопному кислородному обмену указывают на возможность существования на поверхности платины молекулярного иона кислорода О2Г [c.141]

    Доказательство неоднородности поверхности представляют данные по изотопному обмену адсорбированных атомов водорода скорость обмена на различных адсорбционных центрах существенно различается. В пользу неоднородности поверхности платинового электрода говорит тот факт, что логарифмическая изотерма адсорбции получается не только для атомов водорода, но и при адсорбции других веществ как заряженных ионов, так и нейтральных молекул. Таким образом, при объяснении закономерностей адсорбции на платине необходимо в первую очередь учитывать энергетическую неоднородность ее поверхности, хотя при адсорбции ионов в значительной степени проявляются и силы отталкивания. [c.76]

    Наличие энергетической неоднородности доказывают опыты по термической обработке платинового электрода. Так, если бы поверхность была однородной, то относительное количество мест с разной энергией связи (из-за проявления сил отталкивания) при рекристаллизации поверхности оставалось бы постоянным. В действительности при нагревании происходит преимущественное уменьшение числа мест с высокой энергией связи. Другое доказательство неоднородности поверхности представляют данные по изотопному обмену адсорбированных атомов водорода скорость обмена на различных адсорбционных центрах существенно различается. Наконец, в пользу неоднородности поверхности платинового электрода говорит тот факт, что логарифмическая изотерма адсорбции получается не только для атомов водорода, но и при адсорбции других веществ как заряженных ионов, так и нейтральных молекул. Таким образом, при объяснении закономерностей адсорбции на платине необходимо в первую очередь учитывать энергетическую неоднородность ее поверхности, хотя при адсорбции ионов в значительной степени проявляются и силы отталкивания. [c.83]

    При ионном обмене кристаллиты образуются более мелкими и в большем количестве, чем в случае пропитки. В результате ионного обмена платина равномерно распределяется по поверхности, а в процессе восстановления атомы металла, содержащиеся в определенном объеме, мигрируют друг к другу с образованием кристаллитов. [c.663]

    Молекулы кристаллизационной воды в таких солях во многих случаях можно считать лигандами, что особенно справедливо для переходных и высокозарядных ионов непереходных элементов. Кристаллизационную воду солей щелочных металлов не всегда можно считать координационной водой. Спектры поглощения этих комплексов подобны спектрам водных растворов солей соответствующих металлов, и это показывает, что в водных растворах ионы металлов находятся в виде аква-комплексов. С другой стороны, свойства кристаллов и водных растворов комплексов металлов группы платины, а также Со(П1) и Сг(1П), содержащих неводные лиганды, совпадают, что обусловлено в данном случае медленно идущей реакцией обмена лигандов и сохранением в водном растворе вокруг катиона тех же лигандов, как в кристалле. Быстрый обмен лигандами в водном растворе, характерный для других катионов металлов, объясняет, почему в этом случае эти катионы в водных [c.225]


    Процесс растворения должен происходить так, чтобы газ из гомогенной газовой. фазы над мениском перешел в двухразмерную хемосорбированную фазу, содержащую газ в электрохимически активной форме. Йз этой фазы газ при обмене электронами с электродом может перейти в электролит в виде ионов. Конечно, предположение о двухразмерной хемо-сорбированной с-фазе для такнх металлов, которые, подобно платине и палладию, содержат водород в растворенном состоянии [1, 2], приближенно оправдывается лишь в том случае, когда в процессе токообразования участвуют немногие поверхностные слои атомов. [c.110]

    В работах [69, 70] описан другой метод получения металлцеолитных катализаторов, обладающих молекулярно-ситовыми свойствами. В > а-форму морденита катионы растворимых в воДе солей платины, например [Р1(КНз)4] , не проникают, и поэтому обмен ионов На в каналах цеолита не происходит. Диаметр же окон, ведущих в полости Н-формы морденита (до 7 А), больше размеров аминокомплексных катионов платины. Это используется для приготовления катализаторов Р1-Ка-морденит. Сначала цеолит переводят в Н-форму (обработкой растворами кислот или через КН -морденит), затем ионным обменом вводят [Р1(ННз)4] и далее замещают Н на Ка" , применяя щелочные растворы солей натрия. В результате размеры окон, ведущих в хюлосги кристаллов, уменьшаются. Отметим, что катионы платины прочно удерживаются цеолитами и не вытесняются ионами натрия (речь идет о небольших количествах платины, когда цеолиты проявляют большое сродство к катионам тяжелых металлов). Продукт, содержащий меньше процента Р1 (0,2% [69]), обрабатывают в токе сухого воздуха, чтобы разложить комплексный катион, и восстанавливают водородом. Поскольку часть платины при восстановлении мигрирует на внешнюю поверх- ность кристаллов цеолита, для сохранения молекулярно-ситовой селективности требуется дополнительная обработка контактов. Для селективного отравления платиновых центров на внешней поверхности кристаллов катализатор обрабатывали при 260° С в токе водорода парами трифенилфосфина [69], молекулы которого не могут проникать в поры Ма-морденита. Полученный в результате катализатор селективно гидрировал этилен в присутствии пропилена. [c.160]

    Процессы дегидратации, прокаливания и восстановления [Р1(ЫНз)4Р+, введенного ионным обменом в цеолит Са +, Ыа+--13У (80% Са +), изучены методом ИК-спектроскопии [6]. Первоначально ион платины содержит две относительно слабо связанные с металлом молекулы воды и поэтому имеет форму тетрагональной бипирамиды. Введенный в цеолит ион сохраняет эту форму в водной среде, однако при дегидратации цеолита молекулы воды удаляются. Если после предварительной сушки образец восстанавливают водородом при 4-10 Па (300 мм рт. ст.) с последовательным повышением температуры в интервале 320—420 К, оказывается, что водород поглощается одновременно с разложением тетрааммиакат-иона (как следует из ИК-спектров). Восстановление обычно заканчивается при температуре выше 570 К, однако дисперсность платины при этом относительно мала (по данным адсорбции водорода, >Р1 0,08). В то же время, если образец [Р1 (ЫНз)4Р-формы цеолита нагревать на воздухе, тетрааммиакат-иои не разлагается вплоть до 520 К по-видимому, ионы Р1 + удерживаются главным образом на катионных местах цеолита ср. уравнение (И) . Поэтому прокаливание на воздухе при 620 К с последующим восстановлением водородом при 670 К приводит к очень высокой дисперсности платины (Dpt l). Независимо от того, что изолированные атомы платины в нулевой степени окисления термодинамически неустойчивы и при температурах восстановления агрегируют путем поверхностной диффузии, эти [c.187]

    Влияние вида обработки металлцеолитных систем на их активность зависит от характера реакции и условий использования катализаторов. Активность содержащих платину цеолитов типа X в дегидрировании циклогексана при всех температурах восстановления в интервале 300 50° С одинакова (табл. 10-5) [194]. Замещение Na " в цеолите на Са не влияет на активность катализаторов. Изменение условий обработки образцов до восстановления (образцы 3—5) также не сказывается на их активности. Существенное значение имеет природа соединения платины, использованного при ионном обмене, и содержание металла. Катализаторы, полученные из цеолитов, содержащих [Р1(КНз)4] " , оказались менее активными. По-видимому, для разных реакций оптимальные размеры частиц металла различны. [c.179]

    Соединение платины, использованное при ионном обмене [c.180]

    Чтобы платина равномерно распространялась по всему зерну носителя, когда происходит адсорбция или обмен ионов металла, можно увеличить время контакта носителя и раствора. Реальная продолжительность пропитки зависит от экспериментальных условий, в том числе от размера зерен и пористой структуры носителя, однако чаще всего она длится от 18 до 72 ч [36—38]. По данным [22], для Н2Р1С1б, адсорбированной на внешней поверхности зерен а-АЬОз, после 23-часовой выдержки в исходном растворе при комнатной температуре перераспределение платины еще не заканчивается. Однако на х-Л Оз перераспределение завершается в основном за 3 ч. До некоторой степени равномерность пропитки можно регулировать при помощи упомянутых ранее факторов, но на практике возможную продолжительность установления равновесного состояния ограничивают экономические требования. [c.192]

    Ранее нами был обнаружен легко идущий обмен ионов брома, координированных около ионов двух- и четырехвалептной платины [37, 38]. При этом нам удалось доказать, что в ионе [PtBr ] " обмениваются все 4 брома, а в ионе [PtBrg] " — все 6 бромов. [c.170]

    Своеобразную группу составляют газовые электроды. В них проводник из инертного материала (платина, графит или др.) непрерывно насыщается газом, который вступает в обмен ионами с раствором. Газовые электроды могут быть электродам , обра- [c.417]

    Бывает, что обе формы находятся в растворе — тогда происходит обмен электронами между инертныл электродом и ионами. Так, катион Ре + может отнять от платины один электрон и восстановиться до Ре2+. Платина при этом зарядится положительно, а в растворе появится отрицательный заряд за счет избыточного аниона (например, С1 —от РеС1з). Отнятие последующих электронов становится нее более и более затруднительным и устанавливается, наконец, равновесие между положительно заряженным электродом и слоем анионов. В конечном счете происходит химическая реакция Ре + + е —> Fe +. Равно возможна и противоположная реакция  [c.130]

    Мы рассмотрели частный случай возникновения разности потенциалов за счет окислительно-восстановительного процесса вытеснения одного металла другим, но вообще любая реакция, идущая с изменением степеней окисления, может служить источником электрической энергии. Чтобы получить электрический ток, т. е. заставить электроны двигаться по проводнику, нужно упорядочить хаотический обмен связями и электронами. Обычно для этой цели используют инертные электроды, не посылающие свои электроны в раствор, а именно Р1, Сграф т. Так это и было сделано в нормальном водородном электроде (см. рис. 122) поверхность губчатой платины насыщали водородом, который, частично диссоциируясь на атомы, давал скачок потенциала с раствором ионов Н+(Н.зО" ). [c.236]

    В цеолите Са +, Ыа+-13 (80% Са ) около 40% ионов кальция расположено в местах и около 60% —в местах [5] (ср. гл. 2). Поскольку минимальный вандерваальсов размер иона [Р1(ЫНз)4 + в поперечном сечепии равен примерно 0,8 им, то вполне понятно, что места 1 недоступны и обмен должен протекать на местах 5ц, так что ион [Р1(ЫНз)4Р+ располагается на поверхности основной полости. После катионного обмена с [Р1(ЫНз)4Р+, соответствующего содержанию платины приблизительно 0,5%, обменивается только около 1% ионов кальция и катионы [Р1(ЫНз)4Р в среднем удалены друг от друга на 4 нм. Хотя наблюдается спектр расстояний платина—платина, сильное сближение атомов невозможно. [c.187]

    Платину в цеолит aY вводят ионным обменом из водного раствора Pt(NH3)4 l2 до получения эквивалентной степени обмена, равной 0,12, что соответствует по спектрофотометрическим данным 4,97% Pt. [c.460]

    Форести [17] пробовал согласовать структуру электрического двойного слоя платинированной платИны со скоростью гидрогенизации бензола в жидкой среде, например в 1,0 iV растворе НС1, 2h3N растворах КС1 с добавкой НС1. Исследована также зависимость скорости гидрсгенизации бензола от pH. Резко выраженный максимум скорости гидрогенизации при рН= 1,0— 2,0 наблюдался при переходе от щелочной к кислой среде. При обратном процессе скорость гидрогенизации значительно понижается в сильно кислой среде от добавления небольших количеств щелочи. Из того, что с увеличением pH не только увеличилось количество ионов, адсорбированных электростатически на электрическом двойном слое, но однс временно стимулировался обмен водородных ионов на катионы металла, можно сделать предположение о характере постепенного обратимого отравления. Предполагалось также, что двойной слой обладает в различных местах не одинаковыми диэлектрическими свойствами и что зоны больших диэлектрических величин соответствуют наиболее активным частям катализатора — водородного электрода из платинированной пла-, тины. Максимальная скорость реакции была найдена при нулевом заряде электрода, который совпадает с потенциалом, определенным Фрумкиным [20, 21]. [c.605]

    Если рассматривать обратимое образование ионов карбония как окислительновосстановительный процесс, то каталитическая активность окислов элементов группы хрома и металлов VIII группы представляется более естественной, чем активность кислотных реагентов. Известно, например, что окислы хрома способны выступать в роли не только гомолитических, но и гетеролитических окислителей, т. е. акцепторов гидридных ионов [79]. Кроме того, как отмечалось выше, отрыв гидридных ионов не является единственным способом превращения алканов в карбокатионы к тому же результату может привести отрыв атома водорода группы С—И и потеря одного электрона в следующей стадии. Подобные процессы легко реализуются на переходных металлах, тогда как отрыв гидридного иона требует высокой кислотной силы ионных катализаторов. Действительно, данные об изотопном обмене водорода насыщенных углеводородов с газообразным дейтерием на поверхности металлов (например, на платине или никеле [13]) свидетельствуют о легкости диссоциативной адсорбции алканов с образованием на поверхности катализатора адсорбированных атомов водорода и алкильных радикалов. [c.22]

    Особенно трудно получить количественные данные для полуреакций металл — ион металла в связи с трудоемкостью приготовления чистых и воспроизводимых поверхностей. Для металлов, легко дающих обратимый потенциал в присутствии одноименных ионов (Си, Ag, 2п, Сс1, Hg), плотность обменного тока сравнительно высока следовательно, ири плотностях тока,, обычно используемых в электроанализе, активационный сверхпотенциал невелик. Переходные металлы (например, Ре, Сг, N1, Со и др.), наоборот, имеют чрезвычайно низкие обменные токи 22. Эти металлы в растворах своих ионов ведут себя не в соответствии с формулой Нериста, так как при этом оказывают влияние другие потенциалопределяющие системы, что приводит к появлению смешанного потенциала вследствие существова-иия двух или более окислительно-восстановительных пар. Трудно также произвести количественные исследования (особенно на твердых электродах) кинетики полуреакций, проходящих с обменом электронами между окислителями и восстановителями, находящимися в растворе. Так, убедительно доказано 24 в присутствии сильных окислителей или при высоких положительных значениях потенциала поверхность платины покрывается окисной пленкой. Эту пленку можно удалить путем электрохимического или химического восстановления. Такие окисные пленки, так же как адсорбированные слои следов органических примесей обычно понижают обменный ток и, следовательно, увеличивают поляризацию при данной плотности тока. [c.343]

    Кольтгоф и Найтингейл установили, что пара Ре —Ре в сернокислом растворе имеет более обратимый характер (более высокая плотность обменного тока) в том случае, когда поверхность платины находится в окисленном состоянии. Такое, казалось бы странное явление авторы объяснили действием поверхностного окисла, выполняющего функцию мостика между электродом и гидратированным ионом железа (111) или железа (И). С другой стороны, в солянокислой среде окисный слой не образуется, и тем не менее система Ре —Ре ведет себя так, как при высокой плотности обменного тока. В этом случае функцию мостика , по-видимому, выполняет хлорид-ион, образующий слабые комплексы с Ре 1 и сильные комплексы с ионами платины. [c.369]

    Электрод для генерирования обычно изготавливают из платины его площадь составляет от 2 до 5 см . Исходная концентрация реагентов обычно равна 0,05—1 М, а сила генерирующего тока — до 50 мА. Многие реагенты генерируются при помощи реакции ионного обмен , для этого в ячейку помещают ионообменную мембрану в соответствующей ионной форме. В ходе процесса такие частицы, как С1 , Вг , 1 , Нг, ЭДТД2- и Са2+, замещаются конкурирующими ионами, выделяющимися при электролизе, например Н+ и 0Н . Эти ионы образуются при электролизе растворов сульфата натрия или других солей. Галогены — С1г, Вга и Ь — получаются при электролизе солей соответствующих галогенидов. Ионы металлов, например железа (И), олова(II) и ванадия (IV), получаются при восстановлении соединений этих металлов с большей валентностью. Ионы серебра (I), ртути (I) и ртути(II) генерируются при использовании в качестве компонентов анода соответствующих металлов. [c.432]

    В работе [200] рассматривается восстановление платины, введенной в цеолит У Ионным обменом. Платину в количестве 5% вводили в Ка-, Мн-, Са- и РЗЭ-формы цеолита У, обрабатывая цеолит раствором Р1(1ЧНз)4С12. Восстановление проводили шестью различными методами. ИК-спектроскопические измерения были выполнены на образцах цеолита Р1-СаУ, которые предварительно либо непосредственно восстанавливали водородом, либо вначале обрабатывали кислородом, а затем водородом. В образцах цеолитов, не прошедших термической обработки, платина присутствует в виде ионов Р1(ННз) с бипирами-дальной конфигурацией, и в спектрах наблюдаются полосы поглощения при 1350, 3200, 3270 и 3350 см".  [c.319]

    Нанесенные металлические катализаторы широко прш 1еняются в химической, нефтеперерабатывающей и нефтехимической промышленности [1]. Достаточно перечислить важнейшие процессы, в которых они используются, и их огромное практическое значение станет очевидным синтез аммиака конверсия углеводородов с водяным паром в синтез-газ риформинг гидрокрекинг гидроочистка гидро-деалкилирование дегидроциклизация изомеризация парафинов и цикланов гидроизомеризация олефинов, диенов и ароматических углеводородов изомеризация этилбензола в ксилолы восстановление разнообразных органических соединений окисление синтез Фишера—Тропша и др. Исследование металлсодержащих контактов представляет большой интерес для теории катализа, создания новых полифункциональных каталитических систем и разработки новых каталитических процессов. Свойства таких катализаторов, как известно, существенно зависят от состояния и дисперсности металлического компонента [2—6]. И не случайно, когда были синтезированы и стали доступны кристаллические алюмосиликаты (цеолиты), их способность к ионному обмену и иысикая обменная емкость, наличие кристаллической структуры с однородными порами молекулярных размеров были использованы для получения катализаторов-, содержащих высокодиспергированные металлы, обладающие молекулярно-ситовой селективностью и полифункциональным действием. Уже первые исследования, выполненные Рабо и др. [7, 8], Вейсцем и др. [9, 10], показали большую перспективность металлцеолитных систем для катализа, нефтепереработки, нефтехимии. Интерес к этим системам особенно возрос после опубликования результатов изучения внедрения атомов платины в цеолитную структуру, ее дисперсности и установления высокой стойкости к отравлению серой ионообменного катализатора 0,5% Р1-СаУ [И]. [c.154]

    Известно, что некоторые металлы влияют на легкость и глубину. восстановления ионов или соединений других металлов. Например, платина и палладий, введенные в цеолиты, значительно снижают температуру образования Ni°, Со° и других металлов [47, 118]. Так, катионы o в цеолитах типа Y восстанавливаются Hj с трудом и при температурах выше 350—380° С, в то время как при аналогичной обработке образцов СоУ, содержащих небольшие количества платины или палладия, ферромагнитный Со° образуется уже при 250—350° С [47, 118]. Аналогичные результаты получены при исследовании активации процесса восстановления окислов металлов различными добавками [119—122]. В частности, Новак и Корос [119] показали, что небольшие (0,01%) количества платины значительно снижают температуру восстановления NiO такое же влияние оказывают добавки Си, Pd, Rh, Os, Ir [122]. Объясняется это диссоциативной адсорбцией водорода на платине или палладии и последующим восстановлением катионов или окислов металлов атомарным.,во до-род ом. Таким образом, металлцеолитные катализаторы, полуденные как ионным обменом, так и пропиткой, можно модифицировать и при мягком восстановлении получать металлы в высокодисперсном состоянии. [c.172]


Смотреть страницы где упоминается термин Платина обмен ионов: [c.131]    [c.114]    [c.171]    [c.62]    [c.321]    [c.32]    [c.276]    [c.63]    [c.126]    [c.662]    [c.54]    [c.197]    [c.176]    [c.43]    [c.165]   
Структура металических катализов (1978) -- [ c.186 , c.187 , c.190 , c.193 , c.195 , c.197 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов



© 2024 chem21.info Реклама на сайте