Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Наполнители и прочность полимеров

    Добавки к полимеру могут существенно изменить его первоначальные физико-механические свойства плотность, теплопроводность, прочность, диэлектрические свойства и др. При добавке, например, пенообразователей плотность материала может быть резко снижена за счет образования пор. При добавке токопроводящих наполнителей (порошкообразные металлы, графит, сажа) полимер-изолятор может стать проводником тока. При добавке ориентированных наполнителей (нити из стекла, плавленого базальта и др.) и правильной их укладке прочность полимеров резко возрастает и для некоторых композиций предел прочности при растяжении может превосходить прочность стали (стеклопластики). Если при изготовлении изделий необходимо сохранить неизменными основные свойства полимеров, например диэлектрические, оптические и др., применяют полимеры без каких-либо добавок. В большинстве случаев в полимер целесообразно добавить наполнитель, пластификатор, стабилизатор и краситель. В необходимых случаях полимер получают в виде растворов (лаков), суспензий, латексов, клеев, паст или заливочных масс. [c.54]


    На прочность пластмасс влияет адгезия полимера к материалу наполнителя. Адгезия полимера к материалу поверхностей определяет прочность клеевых соединений. [c.501]

    По влиянию на прочность полимеров наполнители можно разделить на две группы усилители, увеличивающие прочность полимерного материала, и инертные наполнители, не увеличивающие его прочность. Нередко наполнитель вводят не для изменения свойств материала в определенном направлении, а просто для снижения стоимости изделия. Многие наполнители применяют для придания материалу определенного свойства, например негорючести, термостойкости и т. д. [551 ]. Но в ряде случаев наполнители являются обязательными компонентами композиции, без которых невозможно обеспечить необходимую прочность изделия. Это особенно резко проявляется в производстве резиновых изделий из синтетического каучука. Как известно, прочность вулканизатов некристаллизующихся синтетических каучуков очень мала, если в сырую резиновую смесь не вводить активных наполнителей (в больщинстве случаев технического углерода). [c.214]

    Большинство каучуков при вулканизации в отсутствие наполнителей дают резины, имеющие относительно низкие значения прочности, величина которой зависит от энергии когезии полимера и его способности к кристаллизации. После введения активных наполнителей прочность, модуль, износостойкость и другие показатели резин возрастают, но уменьшается их эластичность (табл. 3). [c.84]

    Термопласт вещество от белого до желтоватого цвета не имеет вкуса, запаха и не проявляет какого-либо физиологического действия. Устойчив по отношению к действию воды, оснований, кислот (за исключением азотной кислоты), растворов солей, жиров и жирных масел неустойчив к действию галогенов, органических растворителей и минеральных масел. Обладает низкой электро- и теплопроводностью р = 0,92-0,97 г/см прочность на разрыв 185-290 кгс/см эластичен возгорается температура размягчения 110-135°С. Свойства сильно зависят от способа получения и могут изменяться при введении наполнителей, других полимеров и красителей. [c.216]

    Влияние наполнителей на прочностные свойства пластмасс. Рассмотрим сначала некоторые общие вопросы, касающиеся прочности полимера. [c.225]

    Механическая прочность полимеров может быть также повышена путем добавления наполнителей, например сажи и мела, армированием волокнами, например стекловолокном. [c.361]


    Введение наполнителей существенно влияет на механические и физико-химические свойства полимерных материалов. Наполненные полимерные материалы представляют собой макроскопически неоднородные системы, содержащие диспергированные вещества, распределенные в непрерывной фазе — полимере. Твердые наполнители в зависимости от формы частиц подразделяются на порошкообразные и волокнистые . Порошкообразные твердые наполнители можно условно разделить на две группы усиливающие наполнители, при введении которых прочность полимеров значительно повышается, и инертные наполнители — не влияющие на прочность полимеров. [c.182]

    В относительно редких случаях композиция клея проста и состоит из двух компонентов полимера и растворителя. Многие полимеры нуждаются в модификации, и поэтому в состав клея вводятся различные добавки. Особенно сложен состав тех клеев, где полимер образуется в процессе склеивания путем полимеризации (поликонденсации). Модификация некоторых свойств конечной полимерной пленки достигается также путем введения наполнителей, повышающих разрывную и сдвиговую прочность полимера и изменяющих иногда в нужном направлении температурные коэффициенты расширения его, что снижает вредные внутренние напряжения в клеевых слоях. Более важным моментом, чем в случае поверхностных покрытий (особенно декоративных, а не защитных), является прочность полимерной пленки. Поэтому при выборе полимера для клеевой основы обращают внимание и на степень полимеризации, от которой в известных пределах зависит прочность на разрыв и хрупкость клеевого слоя. [c.330]

    Прочность полимерных композиций, содержащих наполнитель, обусловлена силами когезии (с. 28), действующими между макромолекулами, и силами адгезии (прилипания), связывающими наполнитель с полимером. [c.470]

    Выше уже говорилось о том, что основная цель введения наполнителя — повышение прочностных характеристик получаемых материалов. Сложность процессов взаимодействия полимеров с наполнителями обусловливает тот факт, что зависимости прочностных свойств наполненных полимеров определяются многими факторами [15, 207]. Можно, однако, сделать некоторые общие выводы относительно влияния наполнителей на прочность полимеров. В частности, в большинстве случаев механическая прочность возрастает пропорционально содержанию и степени дисперсности наполнителя. [c.170]

    Рассмотренные выше основные положения были развиты для саженаполненных вулканизатов, но могут быть перенесены и на процессы упрочнения термо- и реактопластов дисперсными наполнителями с учетом их физического состояния и изменения механизма разрушения при переходе из высокоэластического состояния в стеклообразное. Кроме того, при рассмотрении прочности на полненных полимеров мы основывались главным образом на физико-химическом поведении наполненных полимеров и их вязкоупругих свойствах. Механические же свойства порошкообразных наполнителей, как правило,, не учитывались, за исключением учёта эффекта возникновения пространственной сетки частиц наполнителя, прочность которой не может быть сопоставлена с механической прочностью наполнителя. [c.173]

    В разделе о наполнителях рассматривались причины усиливающего действия некоторых наполнителей, введенных в полимеры. Согласно этому представлению прочность полимеров должна расти с увеличением активной поверхности наполнителя, способствующей переводу полимерного связующего в ориентированное состояние тонких пленок. Усиливающее действие наполнителей наглядно проявляется в слоистых пластиках, пресспорошках, резинах и других материалах. Действие усилителей проявляется в повышении механической прочности полимера предела прочности при растяжении, удельной ударной вязкости, сопротивления истиранию и раздиранию, повышении твердости и других показателей. Например, для повышения механической прочности и износостойкости резин в состав резиновой смеси вводят усиливающий наполнитель. К числу таких усилителей принадлежат-ве-щества с предельно малой величиной частиц и развитой поверхностью сажи, глины, углекислый магний, сульфат бария, алюмосиликат, белая сажа, двуокись титана и др. [c.63]

    Это явление недавно было подробно рассмотрено в работе [17]. В настоящее время едва ли можно отрицать связь между усиливающим действием наполнителей, с одной стороны, и флоку-ляцией частиц наполнителя в полимере, с другой 118 23]. Характерно, что образование геля является в основном результатом химического взаимодействия полимера с частицами наполнителя, обусловливающего максимальную прочность адгезионных связей. [c.339]


    При оценке влияния наполнителей на электрическую прочность помимо образования неоднородного диэлектрика необходимо учитывать возможность изменения надмолекулярной структуры наполненных полимеров по сравнению с ненаполненными и вероятность увеличения макроскопической дефектности образцов. Нередко при введении наполнителей, особенно при высоких степенях наполнения, в материале возникают поры и трещины в таких случаях падение электрической прочности возможно даже при незначительном различии в значениях диэлектрической проницаемости и электрической проводимости-наполнителя и полимера. С другой стороны, некоторые мелкодисперсные добавки могут способствовать образованию однородной мелкосферолитной структуры образцов и тем самым приводить к увеличению ( пр [4, с. 112 129]. [c.146]

    Однако температурная зависимость прочности полимеров в некоторых случаях имеет экстремальный характер [63, с. 199], особенно для систем с явно выраженной неоднородностью напряжений. Например, аномалии наблюдаются при растяжении кристаллических полимеров [231], полимеров, способных кристаллизоваться при растяжении, полимеров с наполнителями [221, 232, 233]. Экстремальная зависимость прочности от температуры характерна и для резин с надрезом в области температур выше температуры хрупкого разрушения [234]. При изучении температурной зависимости сопротивления резин раздиру максимум сопротивления наблюдается в области перехода из стеклообразного в высокоэластическое состояние [235]. Экстремальная температурная зависимость прочности обусловлена релаксационными характеристиками материалов. В результате релаксационных процессов, развивающихся в напряженном теле, может произойти рассасывание опасных напряжений, что остановит рост трещины, и в некотором температурном интервале может наступить упрочнение материала. Однако затем при температуре выше температуры стеклования вновь наблюдается снижение прочности с повышением температуры. [c.190]

    Следует иметь в виду, что в большинстве случаев с увеличением количества наполнителя прочность связи возрастает немонотонно [55, 71, 93, 99, 100, 138—148, 200]. После достижения определенного значения она снижается (рис. VHI.16). Немонотонная зависимость адгезионной прочности от содержания наполнителя может быть обусловлена одновременным проявлением различных факторов. Например, при введении наполнителя изменяются напряжения в слое адгезива, уменьшается площадь непосредственного контакта полимера с металлом, снижается способность адгезива растекаться по поверхности субстрата. Однако в последнем случае создаются благоприятные условия для термического окисления адгезива кислородом воздуха, находящимся в кратерах поверхности субстрата, не заполненных адгезивом [53]. Термоокисление полимеров, приводящее к появлению полярных групп, в определенной степени способствует повышению адгезионной прочности. Поэтому введение оптимального количества наполнителя в ряде случаев приводит к повышению адгезионной прочности [53], особенно в тех случаях, когда поверхность наполнителя активирует термоокислительный процесс. [c.311]

    Свойства наполнителей оказывают существенное влияние на усиление смеси [1)106]. Особенно большое значение имеет удельная поверхность наполнителя (большая поверхность обусловливает большее усиление смеси), размер частиц (с уменьшением размера частиц повышается предел прочности на растяжение и удлинение), конечно, при предположении, что полимер смачивает всю поверхность наполнителя. Вредное влияние может оказывать склонность частиц наполнителя к агломерации, при агломерации частиц понижается удельная поверхность наполнителя и ухудшаются механические свойства. Для предотвращения агломерации частиц и для достижения как можно лучшей гомогенизации смеси наполнителя с полимером рекомендуется гидрофобизировать наполнитель алкил- или арилхлорсиланами [1759]. Гидрофобизация делает возможным лучшее смачивание поверхности наполнителя полимером тем самым устраняется опасность того, что смесь полностью разрушится адсорбированной на наполнителе пленкой влаги. [c.366]

    Влияние дискретного наполнителя на прочность жесткоцепных полимеров м. б. объяснено с точки зрения статистич. теории распределения внутренних дефектов в твердом теле. Упрочняющее действие наполнителя связано с изменением условий перенапряжения на краях трещин, с релаксацией напряжений и перераспределением их на большее число центров прорастания микротрещин. Это должно увеличивать среднее напряжение, ведущее к разрушению тела. Микротрещина, развиваясь в наполненном полимере, может упереться в наполнитель и, следовательно, ее дальнейшее развитие будет требовать повышения напряжения. Чем больше концентрация наполнителя в полимере, тем больше создается препятствий для развития трещин благодаря этому тормозится процесс разрушения. Кроме того, в тонких слоях полимера, согласно статистич. теории прочности, число дефектов, приводящих к разрушению, должно быть меньше в определенных пределах увеличение прочности пропорционально уменьшению толщины слоя полимера. [c.164]

    Поскольку модули упругости наполнителя и матрицы сильно различаются, для обеспечения монолнтности пластика необходимы полимерные матрицы, значения предельных удлинений которых значительно превышают среднее удлинение композиционного материала при сохранении достаточных значений прочности. Особое значение имеет прочность при сдвиге, так как именно малая прочность при сдвиге между слоями является одним из основных недостатков армированных пластиков. При этом предполагается, что адгезионная прочность превосходит прочность полимера, т. е. разрущения по границе раздела ие происходит. Напряжения и деформации для квадратичной и гексагональной укладки волокон [1, 6, 22—26] являются функцией отнощения модулей наполнителя и матрицы и плотности упаковки волокон. Если считать, что полимерная матрица и наполнитель подчиняются закону Гука, то при объемной доле волокна от 0,6 до 0,75 отнощение предельных удлинений изменяется от 5 до 15 [26]. Если же учитывать нелинейное вязко-упругое поведение полимерной матрицы, то это отнощение еше больше возрастает. Увеличение предельной деформации связующего за счет снижения его модуля упругости и прочности, как это происходит при пластификации, не приводит к повышению прочности пластика, так как прн уменьшении модуля упругости матрицы ее предельное удлинение, необходимое для сохранения монолитности, возрастает. Таким образом идеальное связующее должно обладать большим удлинением при высоких значениях модуля упругости и прочности, особенно при сдвиге. В работе [22] приведен расчет показателей такого идеального связующего, наполненного ( 1 = 0,7) бесщелочным стеклом и высокомодульным стеклом ВМ-1 (табл. 8.1). Ни одно из известных эпоксидных связующих не отвечает полностьк> приведенным в таблице требованиям [22], однако они могут служить отправной точкой для сравнения различных эпоксидных композиций. [c.212]

    В большинстве случаев механическая прочность возрастает пропорционально содержанию и степени дисперсности наполнителя. Упрочнение полимеров при введении дисперсного наполнителя происходит благодаря образованию некоторого структурного каркаса из частиц наполнителя, взаимодействующих друг с другом через адсорбированные на их поверхности макромолекулы. Однако известно, что существует некоторый концентрационный оптимум, после чего происходит агрегация частиц наполнителя, нарушается непрерывность сетчатой структуры и упрочнения не происходит. Обычно предельная концентрация наполнителя в композиции составляет 20—30 % (масс.). Можно полагать, что если создать такие условия формирования наполненной системы, когда происходит индивидуальное покрытие каждой дисперсной частицы слоем полимерной матрицы, то концентрационный предел усиливающего действия наполнителей можно значительно увеличить. [c.254]

    В клеевые композиции могут быть введены и различные наполнители, пластификаторы — дибутилфталат, трифенилфосфат, а также полимеры цианакрилатов и метакрилатов. Введение наполнителей и полимеров положительно сказывается на прочност- [c.168]

    Изменение электрической прочности полимеров нри введении наполнителей и добавок отмечалось в ряде работ. Так, электрическая прочность полиэтилена [178, 179] существенно уменьшается при добавлении двуокиси титана (е = 100) (рис. 80). Снижается также электрическая прочность поливинилхлорида при увеличении концентрации в нем пигмента [180]. Значительное уменьшение электрической прочности наблюдается нри введении в полимеры сажи или графита, которые обладают высокой электропроводностью. [c.112]

    При оценке влияния наполнителей на электрическую прочность помимо образования неоднородного диэлектрика необходимо также. учитывать возможность изменения структуры наполненных полимеров по сравнению с ненаполненными. Зачастую при введении наполнителей, особенно при высоких степенях наполнения, в материале возникают поры и трещины в таких случаях падение электрической прочности наблюдается даже при незначительном различии в значениях диэлектрической проницаемости и электропроводности наполнителя и полимера. Так, Колесов установил, что пленки полиэтилена и полистирола, содержащие 5—10% (масс.) мелкодисперсного кварцевого порошка, имеют электрическую прочность на 20—30% ниже, чем исходные полимеры без добавок, хотя значения диэлектрической проницаемости кварца, полиэтилена и полистирола близки [166]. Если введение добавок в полимер способствует созданию мелкосферолитной однородной структуры, возможно повышение электрической прочности [166, 180]. [c.112]

    С другой стороны, длительная адгезионная прочность подчас меньше длительной когезионной прочности клея. При одинаковой природе адгезионных и когезионных связей причиной этого могут являться концентрирующиеся на границе раздела напряжения, возникающие из-за усадки клея при отверждении, разности модулей упругости и коэффициентов линейного расширения клея и склеиваемых материалов, действия внешней нагрузки и т. д. Коэффициент длительной прочности адгезионных связей между стекловолокном и связующим сильно колеблется [14] и составляет 0,2—0,65. В то же время коэффициент длительной когезионной прочности связующих равен 0,8. Меньшая долговечность адгезионных связей обусловлена тем, что даже в отсутствие внешней нагрузки в стеклопластиках, так же как и в клеевых соединениях, под влиянием усадки связующего, технологических и эксплуатационных факторов остаточные напряжения на границе смола.— стекловолокно могут достигать 35% прочности связующего в зависимости от природы полимера [39, 40]. Разница в деформациях наполнителя и полимера не дает им работать согласованно. [c.233]

    Важно помнить, что не всегда наполнитель вводится для увеличения прочности полимеров. Прочность просто легко определяется и поэтому ею чаще всего пользуются для характеристики эффекта наполнения, хотя это не всегда правильно. Часто более важными показателями являются модуль упругости, предел текучести, деформация при разрушении и другие. При выборе наполнителя для композиционных материалов, используемых в строительстве, необходимо учитывать его стойкость к длительному воздействию света, химических реагентов, тепла, а также его воздействие на человека. [c.369]

    Высокополимерные соединения, пригодные для изготовления эластичных и термостабильных резин, получают преимущественно поликонденсацней диметилсиландиола, тщательно очищенного от различных примесей (чтобы предотвратить образование циклических соединений). Полученный полимер смешивают с наполнителем (окись титана или кремния), повышающим механическую прочность полимера, и вводятвсмесь перекись (например перекись бензоила), при помощи которой производится последующая вулканизация полисилоксана, т. е. образование полимера сетчатой структуры. Вулканизация начинается в процессе формования изделия и заканчивается прогреванием изделий в термошкафах при 160—200°. [c.484]

    Кроме того, согласно статистической теории распределения микротрещин прочность полимера должна возрастать с уменьшением его толд цины независимо от полярности и величины сил адгезии. Это особенно заметно у слоистых пластиков, у которых наполнитель, обладая большой поверхностью, диспергирует полимер в весьма упорядоченную систему тонких параллельно ориентированных пленок, прочность которых приближается к теоретической. А. А. Трапезников показал, что прочность тонких пленок каучука может превышать прочность более толстых даже в 10 раз. [c.472]

    Существует экстремальная зависимость максимальной степени дополнительной ориентации в месте разрыва от концентрации сажи в вулканизате [314] (рис. IV. 17). Величина напряжения, при котором начинается заметное образование микронадрывов, определяется прочностью связи между частицами наполнителя и полимером. При этом надо также учитывать, что вследствие образования граничного слоя снижается деформируемость связанных молекул. Максимум на кривой (рис. IV. 17) свидетельствует о наличии двух противоположных процессов с одной стороны, с увеличением количества сажи увеличивается внутреннее трение, затрудняющее процесс ориентации, с другой стороны, число связей между частицами наполнителя и полимером увеличивается, вследствие чего развиваются более высокие напряжения, вызывающие значительную дополнительную ориентацию. При использовании активного наполнителя разрастание области разрыва происходит в ориентированном материале, и скорость этого разрастания заметно уменьшается, что сопровождается увеличением прочности. С другой стороны, увеличение содержания наполнителя приводит к завершению [c.172]

    Большое количество изделий из пластмасс находит широкое применение лишь потому, что их стоимость удалось снизить до уровня стоимости аналогичных изделий, изготовленных из обычных материалов. Это достигается за счет добавления в полимер различных наполнителей, таких, например, как глина,, древесная мука и кремнезем. Эти дешевые и инертные вещества вводятся в полимеры для снижения их стоимости. Однако, помимо этого, наполнители придают материалу ряд ценных, свойств . Коэффициенты расширения пластмасс выше, чем у большинства неорганических материалов, с которыми их сравнивают. Поэтому добавление неорганических наполнителей снижает усадку и коэффициент объемного расширения, но повышает жесткость, теплопроводность и электрическую прочность полимеров . При полимеризации некоторых полимеров выде- [c.180]

    Способы полимеризационного наполнения [400, 424 обеспечивают покрытие твердых частиц сплошным слоем привитого полимера, толщину которого можно варьировать в пределах 2—10 нм. Частицы наполнителя, покрытые такой полимерной шубой , хорошо совмещаются с непривитой полимерной матрицей, в то время как в случае немодифицированного наполнителя такое совмещение не достигается даже при смешении наполнителя и полимера в среде растворителя. Следствием улучшенной совместимости наполнителя и полимера явилось более чем двукратное увеличение прочности образцов при разрыве. Поскольку происходит индивидуальное покрытие каждой частицы наполнителя полимерным слоем, достигается равномерное распределение дисперсной твердой фазы в полимерной матрице и появляется возможность достижения высоких степеней наполнения при сохранении высоких прочностных показателей композиций. Более того, такие композиции можно рассматривать как новые органонеорганоблоксополи-меры, т. е. как новые материалы, обнаруживающие порой удивительные свойства. [c.256]

    Кроме специфических свойств — эластичности, водостойкости гигиенических качеств — покрытия должны обладать высокой адгезией к коже. Поэтому основой для различных композиций — аппретур, лаков и наполнителей — служат полимеры, имеющие достаточную адгезию к субстрату. Например, в качестве пленко-обра зователей широко применяют полиметилметакрилат, хлоро-преновые, бутадиен-нитрильные, карбоксилатные латексы, полиуретаны, а также казеин, модифицированный акрилатами и другими мономерами с активными функциональными группами. Увеличение содержания функциональных групп способствует повышению адгезионной прочности (рис. VI.6). [c.263]

    Влияние размера частиц стеклообразного или кристаллического полимера на свойства каучуков не выяснено. Здесь, видимо, должна быть та же закономерность, как и во влиянии размера частиц неполи-мерпых наполнителей на механические свойства. Олтером, например, было установлено, что при уменьшении размера частиц минеральных наполнителей в полимерах до 0,2 мкм прочность растет и относительное удлинение нри разрыве падает линейно с ростом обратной величины диаметра частиц наполнителя [188]. [c.27]

    Введение в дисперсию малых количеств полимера действует так же, как введение поверхностно-активных веществ, т. е. снижает прочность системы. При увеличении концентрации полимера прочность возрастает, что связано с взаимоусиливающим влиянием двух развивающихся структурных сеток — наполнителя и полимера, причем результирующая прочность значительно выше суммы прочности обеих сеток. Однако из исследованных полимеров активно стабилизируют суспензии и способны усиливаться сажей только полимеры, адсорбирующиеся на саже, — натуральный каучук, синтетические каучуки с полярными группами и двойными связями в макромолекулах. Полимеры слабо адсорбирующиеся или совсем не адсорбирующиеся, например, поли-изо-бутилен, не являются активными по отношению к саже, не препятствуют развитию жесткой структуры ее частиц и, по-видимому, не способны усиливаться сажей [107]. [c.405]

    Реакции концевых меркаптогрупп могут быть использованы для увеличения длины цепей. Эти реакции можно разделить на четыре группы 1) соединение цепей путем образования меркаптпдов 2) окисление концевых меркаптогрупп до дисульфидных 3) реакции присоединения 4) реакции конденсации. При разработке рационального метода отверждения и получения конечного продукта должен быть выполнен ряд требований. Высокомолекулярные полимеры могут быть получены только путем глубоко проходящего наращивания полимерной цепи в результате взаимодействия концевых групп, и лишь при этом условии образующиеся продукты обладают наилучшими физическими свойствами. Было установлено, что наличие разветвлений и свободных концевых групп в полимере приводит к уменьшению износостойкости и снижению разрывной прочности полимера. Процесс отверждения не должен сопровождаться побочными реакциями, приводящими к разрыву цепи или сшиванию как при обработке, так и при старении. Необходимо, чтобы готовые к применению компаунды имели достаточно длительный срок хранения переработанных смесей, и в то же время желательно достаточно быстрое и контролируемое превращение их при практическом использовании большое значение имеет совместимость таких продуктов со стандартными наполнителями, добавками, повышающими адгезию, и другими ингредиентами. Отверждающий агент должен быть легко совместим с жидким полимером при использовании стандартных методов смешения. Последнее, очень существенное требование — экономичность процессов отверждения. [c.321]

    Формирование соединений в случае полимеров, не образующих пленки, при температуре выше температуры стеклования приводит к некоторому повышению адгезионной прочности. Так, для латекса ВХВД-30 без наполнителя прочность при сдвиге повышается до 0,6, а с цементом и песком— до 1,1 МПа. Очевидно, наличие непрерывной полимерной фазы необходимо не только для соединения на дисперсиях без наполнителя, но и для систем, содержащих активные наполнители. Подтверждением является значительное снижение адгезионных и когезионных характеристик полимерцементных составов после обработки растворителями полимера. Так, при обработке соединений на полимерцементном составе с ВХВД-65ПЦ циклогексаноном прочность падает до нуля. [c.74]

    Особое внимание привлекает изучение комплексообразования глинистых и слоистых минералов с органическими веш ествами [1 ]. Так, например, был разработан способ изготовления вспученных материалов из бентонитовых глин путем замены природных обменных катионов органическими четвертичными аммониевыми солями, в результате чего во время обжига при достижении пиронластич-ного состояния от окисления углерода образуется газовая фаза, приводяш ая к образованию пористой структуры. Одним из перспективных направлений является эффективная сшивка минерального наполнителя с полимерами для придания им таких свойств, как например повышенная термостойкость, прочность, долговечность и т. д. Кроме того, вводя в межслоевую область глинистых минералов различные органические катионы, можно регулировать ее размеры, при этом она становится доступной для сорбции таких веш,еств, молекулы которых не могут проникать в межпакетное пространство природных минералов и их неорганозамещенных катионных форм [2]. [c.141]

    Наполнители обычно вводят для улучшения внешнего вида полимерного изделия, повышения необходимых физикомеханических и химических свойств, а также для снижения себестоимости изделий. Они могут быть твердыми, жидкими и газообразными. Наибольшее распространение получили твердые наполнители. По происхождению они могут быть минеральными 2пО, Т1О2, каолин, слюда, тальк, известь, кварц, графит и т. д.) и органическими (древесная мука, шпон, целлюлоза, бумага, картон, химические волокна и др.). По характеру распределения в полимере наполнители могут быть слоистыми (ориентированными) и неслоистыми (порошкообразными). Различают инертные и усиливающие наполнители. Инертные наполнители почти не оказывают влияния на физические свойства полимерных материалов. Их добавляют в композицию по экономическим соображениям, а в некоторых случаях для облегчения переработки полимерных материалов в изделия. Усиливающее действие наполнителей особенно проявляется в слоистых пластиках, резинах и др. Введение наполнителя, особенно ориентированного, повышает механическую прочность полимера твердость, сопротивление истиранию, предел прочности при растяжении и т. д. [c.64]

    Поскольку теоретически возможно образование адгезионной связи между полимерной матрицей и наполнителем за счет физической адсорбции, более прочной, чем когезионная прочность полимера, большое внимание уделялось анализу процессов смачивания поверхности наполнителей жидкими связующими. К сожалению, в реальных условиях поверхность стекла и других наполнителей обычно покрыта по крайней мере монослоем адсорбированной воды или загрязнений, что затрудняет достижение полного смачивания. Некоторые исследователи уверены, что если связующее совмещать с волокнами в момент их формирования, необходи- [c.45]


Смотреть страницы где упоминается термин Наполнители и прочность полимеров: [c.381]    [c.426]    [c.348]    [c.158]    [c.38]    [c.62]   
Разрушение эластомеров в условиях, характерных для эксплуатации (1980) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Наполнители

Прочность наполнителей



© 2025 chem21.info Реклама на сайте