Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры физические методы

    Величина молекулярной массы, определяемая по количеству концевых групп, зависит от числа молекул полимера и является среднечисловой молекулярной массой. Метод применяется для линейных конденсационных полимеров, которые содержат реакционноспособные функциональные концевые группы ОН, СООН, МНг и др. Так как реакционная способность таких функциональных групп не зависит от молекулярной массы полимера, то для их определения применяют обычные методы анализа функциональных групп. Концевые группы определяют химическими или физическими методами (калориметрическими, спектроскопическими, радиометрическими и др.). Этот метод определения молекулярных масс полимеров наиболее эффективен в пределах 10 —10 . [c.163]


    ПММА 120° С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере [65]. Известно, что в том же температурном интервале (рис. 7.14) находятся и максимумы диэлектрических и механических потерь ПММА (а-процессы). Они также связываются с сегментальной подвижностью в полимере, проявляющейся в условиях действия переменных механических и электрических полей. Расхождение в значениях энергий активации для процесса а-релаксации в ПММА, полученных методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже 7 с. Из данных рис. 7.15 видно, что разные физические методы позволяют фиксировать проявление одних и тех же процессов молекулярной подвижности в полимерах в различных температурно-частотных диапазонах, т. е. дают взаимодополняющую информацию. [c.199]

    Для получения соответствующих ПАН-волокон и для исследования процессов структурообразования, происходящих на различных этапах их формования, при выполнении данной работы была сконструирована и изготовлена лабораторная установка, позволяющая в щироких пределах изменять условия реализации этих этапов. С помощью комплекса физических методов для системы ПАН-диметилацетамид различного состава получены следующие результаты установлены временные характеристики процесса гелеобразования исследуемой системе показано влияние условий перехода раствор-гель-ксерогель-ориентированное волокно на структуру и форму получающихся волокон, а также на их механические свойства. Оказалось, что исследованные волокна характеризуются более высокими значениями прочности и модуля упругости, чем волокна, приготовленные из того же полимера по обычной технологии. [c.76]

    Биофизика — старая наука. Уже давно ставились и решались физические проблемы, связанные с жизнедеятельностью организмов, такие, например, как определение скорости распространения нервного возбуждения (Гельмгольц) или нахождение спектральных основ цветного зрения (Максвелл). Физические методы применялись в биологии издавна — достаточно упомянуть о микроскопе. Однако лишь во второй половине XX века физика объединилась с биологией в изучении основных явлений жизни и началось формирование теоретической и экспериментальной биофизики как обширной и разнообразной области физики, а не подсобного раздела физиологии. Развитие биофизики непосредственно связано с решающими достижениями биологии, прежде всего молекулярной, с возникновением кибернетики, с успехами физики конденсированных систем (в частности, физики полимеров). [c.8]


    Физическая химия, физика и механика полимеров физические методы исследования структуры и состояния полимеров. [c.5]

    На основании исследования процессов молекулярной подвижности в полимерах разных классов различными физическими методами релаксационной спектрометрии произвольный полимер мож  [c.142]

    Определение молекулярного веса полимеров физическими методами [c.32]

    Масс-спектрометрия широко применяется при исследовании механизма и кинетики химических превращений в полимерах. Высокая чувствительность метода, быстрота анализа (сотни анализов в секунду), возможность наблюдения за отдельным веществом в смеси обусловили возможность исследования самых начальных стадий разрушения полимеров в процессах термической, фотохимической, механической деструкции. Одновременное изучение состава и кинетики образования летучих продуктов в этом сл) ае позволяет получить данные, характеризующие взаимодействие полимеров с излучениями. Здесь с масс-спектрометрией не может конкурировать ни один другой физический метод. [c.144]

    Примеры анализа тройных смесей органических веществ и определение молекулярных весов полимеров физическими методами титрования [c.410]

    Из наиболее обоснованных физических методов можно назвать методы, связанные с изучением динамооптических свойств и характеристической вязкости растворов фракций полимеров. Измеряемые этими методами параметры - динамооптическая постоянная X, коэффициент вращательного трения Ш и характеристическая вязкость [т]] - непосредственно определяются размерами молекулярных клубков. При этом зависимости X, Уп[т]] от молекулярной массы для разветвленных полимеров должны лежать ниже соответствующих кривых для линейных полимеров. Метод, основанный на сравнении кривых X - / (М), является относительно более чувствительным благодаря дополнительному влиянию фактора уменьшения оптической анизотропии молекул с увеличением степени их разветвленности. [c.340]

    Такие процессы получили название реакций рекомбинационного присоединения. По своим физико-химическим особенностям они представляют собой вариант гетерогенных процессов. Генерация свободнорадикальных центров на полимере и присоединяемом низкомолекулярном веществе может быть осуществлена методами физического и химического инициирования. Физические методы включают р- или у-радиационную обработку набухших полимерных материалов, в которые одновременно введено методом сорбции низкомолекулярное соединение. [c.373]

    Анизотропные полимеры линейной структуры, включая и полипропилен, по своим физико-механическим свойствам отличаются от изотропных. Это различие фиксируется при помощи физических методов исследования, таких, как рентгенография, инфракрасная [c.81]

    Успехи, достигнутые за последние 15—20 лет в области физических методов исследования полимеров, позволили использовать многие из них для изучения совместимости пластификаторов с полимерами. [c.142]

    В табл. 8.18 дан обзор некоторых химических, физико-химических и физических методов анализа полимеров с указанием возможностей их использования. [c.415]

    После того как было изучено регулярное строение натурального каучука, исследователи неоднократно предпринимали попытки синтезировать полимеры, которые бы обладали сходными с ним структурой и свойствами. Многочисленные опыты полимеризации диенов дали интересные результаты, позволившие сделать теоретические выводы о влиянии температуры, инициаторов и роли поли-меризационной среды на способ соединения молекул мономера в цепи. Так, например, была высказана мысль о том, что более высокая температура способствует присоединению мономера по принципу А-Цис, а более низкая — по принципу , А-гранс это объяснялось различием в свободных энергиях активации этих типов реакций. И хотя долгое время не удавалось доказать справедливость этой гипотезы для полимеризации диенов, именно благодаря ее использованию был достигнут дальнейший прогресс в области получения полимеров с регулярной молекулярной структурой. Только недавно, с применением высокочувствительных физических методов, в особенности ядерного магнитного резонанса, было установлено, что при полимеризации виниловых мономеров с заместителями, имеющими большой объем, в условиях низких температур образуются соединения с повышенным содержанием фракций син-диотактической структуры. [c.8]

    Освещено влияние на проницаемость ориентации, кристаллического и физического состояния полимеров. Описаны методы определения проницаемости полимерных материалов. [c.2]

    Для определения непредельности полимеров могут быть использованы различные физические и химические методы. ИК и ЯМР-спектроскопия не получили широкого распространения из-за недостаточной чувствительности и необходимости применения модельных соединений, синтез которых не всегда возможен. Другие физические методы радиометрический (с использованием С)и ГЖХ продуктов пиролиза малоизбирательны и требуют дополнительной проверки достоверности результатов [1]. [c.67]


    Как правило, ферменты прикрепляют к гидрофильным носителям одним из трех методов. Первый метод — это присоединение с помощью ковалентной связи [см. разд. 27.4.1(4)]. Второй метод основан на принципе ловушки в присутствии фермента проводят синтез сшитого полимера, например полиакриламида или поли(2-гидроксиэтилметакрилата). При достижении определенной степени сшивки значительная часть молекул фермента оказывается буквально пойманной в сеть полимера. Третий метод состоит в физической адсорбции фермента на инертном носителе или на ионообменной смоле. [c.336]

    Большая длина макромолекул приводит к проявлению ими гибкости. Однако природа гибкости макромолекул иного рода, чем та, которую можно наблюдать для стальной струны, имеющей такое же соотношение длина поперечное сечение, что и макромолекула. Различными физическими методами исследования было установлено, что макромолекулы полимеров никогда не представляют собой растянутых цепей. Самая вероятная форма макромолекул — это статистический клубок с непрерывно изменяющимися размерами или несколько вытянутый эллипсоид, т. е, макромолекула способна сворачиваться или складываться. Это происходит в результате обычного теплового движения в поли- [c.19]

    Таким образом, свободнорадикальная полимеризация — один нз видов цепных процессов сиЕП еза полимеров. Как сравнительно И )остой способ получения полиме[)ов, она широко применяется в промышленности. Поляризация исходных молекул мономера облегчает их реакции с радикалами инициатора при химическом инициировании или при физических методах генерации радикалов, причем электроноакцепторные заместители способствуют большей стабильности радикалов мономера и растущих цепей. Этот процесс можно регулировать различными приемами как по скорости конверсии мономера, так и по величине молекулярной массы полимера, Для этого используют добавки ннзкомолекулярных веществ, выполняющих функции ингибиторов или замедлителей реакции, а также осуществляющих передачу реакционной цепи или снижающих энергию активации распада инициаторов на радикалы, Зна- [c.34]

    Следует отметить, что нодшмо рассмотренных механических релаксационных явлений в полимерах могут протекать электрические и магнитные релаксационные процессы, которые следует учитывать при переработке полимеров или эксплуатации изделий. На них основано также исследование свойств полимеров "физическими методами. [c.61]

    При изучении физической структуры полимеров (формы макромолекул и конформационных превращений, водородных связей, надмолекулярной структуры), а также и химического строения применяются разнообразные физические методы исследования микроскопия (световая, ультрафиолетовая, электронная) рентгеносчруктурный анализ электронография спектроскопия (ультрафиолетовая, инфракрасная, ядерного магнитного резонанса и др.) оптические методы (метод двойного лучепреломления) и др. [c.143]

    Для разрушения клеток используют разнообразные химические, биологические и физические методы. Все процедуры должны быть достаточно жесткими, чтобы разрушить клеточную стенку, и в тоже время достаточно мягкими, чтобы исключить денатурацию белка. А поскольку клеточные стенки у разных микроорганизмов состоят из разных полимеров, никакого универсального метода их разрушения не существует. [c.365]

    Передача цепи на молекулу полимера приводит к увеличению молекулярного веса и к так называемому разветвлению. Это означает, что вновь активированная цепь полимера уже не линейна, а имеет ответвление в виде новой цепи растущего полимера. Физические свойства разветвленных полимеров могут совершенно отличаться от физических свойств линейных полимеров существует целый ряд методов для определения количества разветвле- [c.522]

    Описаны методики анализа широко применяемых полимеров. Приведены химические, физико-химические и физические методы количественного определения функциональных групп, примесей остаточных мономеров и сопутствующих веществ, методы идентификации полимеров и определен и л их физических свойств. [c.2]

    Определение молекулярного веса полимеров физическими методами по концевььм группам пока развито очень мало и поэтому имеет смысл остановиться лишь на некоторых принципах развития этих методов. [c.320]

    В основе физических методов определения среднечисловой молекулярной массы полимера лежит пропорциональность количественных свойств растворов (повышение температуры кипения, понижение температуры замерзания, оомотичеокое давление и др.) числу молекул растворенного вещества. По мере того как концентрация растворенного вещества в разбавленных растворах приближается к нулю, активность растворенного вещества становится пропорциональной его мольной доле. Поэтому в очень разбавленных растворах понижение активности растворителя равно мольной доле растворенного вещества. Измерив понижение активности растворителя при известной массовой концентрации растворенного вещёства, вычисляют его молекулярную массу. Принципиально можно измерить активность растворителя по отношению pIpo, где р — равновесное давление паров растворителя над раствором полимера, а ро — равновесное давление паров над чистым растворителем при той же температуре. Экспериментальное определение р/ро затруднено, поэтому используют кос- [c.164]

    Б некоторых случаях удаление примесей достигается обработкой полимера физическими методами. Часто применяется метод переосаждения полимера. Так, поливинилхлорид может быть очищен от следов солей металлов каталитического характера осаждением из подкисленной водной эмульсии другими солями, например А12(804)3 [154]. Примеси эмульгатора и катализаторов полимеризации удаляют следующим способом полимер растворяют при нагревании и повышенном давлении в подходящем растворителе (например, циклогексаноне), отделяют от нерастворимых примесей, высаж-дают алифатическим спиртом и, наконец, промывают и высушивают [1025, 2664]. [c.353]

    О молекулярной структуре различных типов полиэтилена опубликовано много данных, полученных главным образом физическими методами. Механизму образования высокомолекулярных этиленовых полимеров посвящено большое число публикаций, но даже лучшие теории подтверждены лишь немногими твердо установленнымп фактами. Приборы для изучения процессов, происходящих на катализаторе, дают лишь косвенные данные, с учетом которых создаются теоретические представления. Теории катализа и механизм реакции полимеризации должны по меньшей мере согласовываться с данными о структуре полимера, которая хорошо изучена. В этом разделе мы прежде всего рассмотрим сведения о структуре полимера, а затем уже предлагаемые механизмы полимеризации, которые окажутся совместимыми с известной структурой полимера п структурой катализатора. [c.176]

    С этих позиций уместно вернуться к формуле полифосфонитрил-хлорида (стр. 19). Ни одним физическим методом обнаружить изображенных в этой формуле двойных связей не удается. Более того, согласно всем критериям полимер с сопряженными двойными связями не мог бы обладать скелетной гибкостью, характерной для каучукоподобного состояния. Но здесь в образование главной цепи включаются -орбитали, благодаря чему возникают размазанные по всей цепи связи повышенной кратности, хотя и не двойные. Это видно из схемы, где изображены донорно-акцепторные вклады -орбиталей в Р— -связи  [c.20]

    Во второй главе обсуждается подход к компьютерному материаловедению полимеров на атомно-молеку лярном уровне, основанный на методе инкрементов. Рассчитань инкременты различных атомов и их основных групп. Приведены основные физические представления о структуре макромолекул полимеров и определяющих ее параметрах. Дана методика расчета такой важной характеристики структуры полимера, как коэффициент молекулярной упаковки. Установлена связь между свободным объедгом полимера, коэффициентом молекулярной упаковки и параметрами его пористой структуры. Для экспериментального определения характеристик дгикропорисгой структуры полимеров использован метод аннигиляции позитронов, с использованием которого выявлены структурные изменения в полимерах при их релаксации. [c.15]

    Большое значение как для качественной, так и для количественной характеристики релаксационных процессов в полимерах имеют построение по данным разных физических методов и анализ двойных корреляционных диаграмм вида 1ёУм, gXa, Т. Например, из корреляционной диаграммы полиметилметакрилата следует, что имеет место проявление одного сегментального и двух локальных релаксационных процессов (рис. 5.11) (один из них связан с движением метилэфирных боковых групп, а другой — с вращением метильных групп, находящихся в а-положении). [c.138]

    Следует отметить, что не обязательно все указанные подсистемы будут существовать у всех полимеров (например, подсистема квазичастиц может быть лишь у высококристаллических полимеров). Наиболее распространенными и важными (так как могут фиксироваться самыми разными физическими методами) являются подсистемы сегментов и атомных групп. Для последних величины Тн и [/ всегда меньше, чем для первых. Для всех подсистем expi/( ). В частных случаях для подсистемы атомных групп U = = onst9 /(7), а для подсистемы сегментов U=f T, а). Это опре- [c.143]

    Для количественного определения содержания элементов, мономеров и функциональных групп широко применяют физико-химические и физические методы анализа. Однако и химические методы еще не утратили своего значения. В табл. 10.4 перечислены некоторые химические методы, используемые в производстве полимеров. Влажность может быть определена гравиметрическим методом — высушиванием образца полимера до постояной массы в сушильном шкафу или с помощью ИК-нагревателя. В третьей части книги приведены примеры химических методов аналитического контроля в производстве пластмасс (см. гл. 18). [c.225]

    Чему равна длина амилозной цепи Молекулярная масса амилозы, определенная физическими методами, равна приблизительно 40 ООО. Следовательно, в состав этого полимера входит свыше 200 мопосахаридных субъединиц. Результаты химического анализа, которые мы сейчас изложим, подтверждают эти данные. [c.459]

    Изучение структуры полимеров может осуществляться различными физическими методами, в том числе методом электронной микроскопии, который позволяет оценивать некоторые особенности надмолекулярного строения полимеров в диапазоне размеров от нескольких десятков ангстрем до сотен микрон. Электронная микроскопия обычно применяется в совокупности с другими методами исследований, такими, как оптическая микроскопия, дифракция рентгеновых лучей и электронография. [c.109]

    Определение химического состава полимера является первостепенной задачей, поскольку наличие тех или иных функциональньк групп в полимере даже в количестве около 1% мае может оказывать решающее воздействие на все его показатели. Количество непредельных связей в каучуке определяет его стабильность при окислительном старении, способность к вулканизации и т.д. Еще большее значение имеет анализ химического состава полимеров в тех случаях, когда они являются продуктами сополимеризации. Как известно, состав сополимера отличается от состава исходной смеси вследствие различной реакционной способности мономеров и, если неизвестны константы сополимеризации мономеров, его можно найти только аналитическим путем. Очевидно, что в случае двойных сополимеров (а таких большинство) достаточно определить содержание звеньев лишь одного из сомономеров. Если второй сомономер резко отличается от первого по составу (наличием азота, хлора, серы и др.) или по степени непре-дельности (например, в случае сополимеров олефинов и диенов), то анализ может быть выполнен химическим путем и без больших затруднений. Однако анализ таких сополимеров, как бутадиен-стирольные, затруднителен, и предпочтительнее пользоваться физическими методами. [c.32]

    В предтагаемом учебном пособии изложены современные представления о структуре полимеров, особенностях их свойств, способах регулирования структуры. В отличие от других пособий по химии и физике полимеров описаны методы исследования структуры полимеров, большое внимание уделено их теплофизическим и электрическим свойствам Рассмотрены способы получения полимеров, а также направленной физической и химической модификации их с целью создания материалов с требуемыми свойствами. В конце каждой главы даны контрольные вопросы, которые помогут студентам в усвоении пройденного материала. [c.5]

    Одним из таких физических методов является спектрофотометрия в ультрафиолетовой части спектра. Область применения ультрафиолетовой спектроскопии ограничена в основном ароматическими углеводородами и системами с двойными связями, сопряженными между собой или с какими-нибудь функциональными группами. В промышленности синтетического каучука метод ультрафиолетовой спектроскопии находит применение для анализа самых различных продуктов производства определение примесей в мономерах и различных полупродуктах, изучение состава ряда полимеров, определение содержания различных ингредиентов в каучуках, контроль некоторых процессов сополимеризации и многое другое. В ряде случаев метод может быть применен для идентификации некоторых соединений и расшифровки состава образцов синтетических каучуков. Недостатками метода, ограничиваюш.ими в некоторых случаях [c.3]

    Проблема деструкции полимеров начала интересовать человечество еще в ту пору, когда только зарождались процессы переработки материалов. В настоящее время для изучения этих процессов ис-гюльзуют практически все современные физические методы анализа, наиболее важными из которых являются определение молекулярной массы, термический анализ, спектроскопия и хроматография [2]. [c.389]

    В основе физического способа лежит свойство некоторых газов (и жидкостей) при соответствующем давлении и температуре повышать растворимость в полимерах, образуя пересыщенные растворы. В последних после снятия давления или при повышении температуры происходит интенсивное расширение растворенных газов или обра-зование паров, которые вспенивают полимер. К физическому методу [c.6]

    Развитие науки о высокомолекулярных соединениях и технологии полимеров теснейшим образом связано с развитием современных аналитических методов. Для анализа полимеров находят применение кроме химических методов физико-химические и физические методы электрометрические, спектрофотометриче-ские, ИК-спектроскопия, ЯМР, хроматография и др. [c.10]


Смотреть страницы где упоминается термин Полимеры физические методы: [c.285]    [c.299]    [c.385]    [c.297]    [c.165]    [c.55]    [c.352]    [c.40]   
Химия и технология полимерных плёнок 1965 (1965) -- [ c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Изучение некоторых физических свойств полимеров полярографическим методом

Изучение структуры полимеров ф Исследование физических свойств полимеюв методом ЯМР Использование электронного парамагнитного и ядерного квадрупольного резонансов для изучения физических свойств полимеров

Исследование структуры и некоторых физических свойств полимеров методом ядерного магнитного резонанса

Методы изучения явления ЯМР ф Способы обработки экспериментальных данных Экспериментальное исследование структуры и физических свойств полимеров методом ядерного магнитного резонанса

Методы определения физических свойств полимеров

Методы физические

Полимеры методом ГПХ

Полимеры физические

Применение физических методов для исследования свойств полимеров в растворах

Результаты исследования структуры некристаллических полимеров с помощью механических и других физических методов

ФИЗИЧЕСКИЕ ОСНОВЫ ТРАНСПОРТНЫХ МЕТОДОВ Аналитическое ультрацентрифугирование растворов полимеров

ФИЗИЧЕСКИЕ СОСТОЯНИЯ ПОЛИМЕРОВ Термомеханический метод исследования деформации и три физических состояния полимеров

Физические и физико-химические методы исследования полимеров

Физические методы изучения полимеров

Физические методы исследования полимеров



© 2025 chem21.info Реклама на сайте