Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность каталитическая сравнительная

    После удаления углистых веществ горячий песок из регенератора подается в вертикальную трубу реактора, где происходит реакция, а затем поступает в зону отделения его от продукта, после чего покрытый углистыми веществами теплоноситель возвращают в зону регенерации и нагрева. Если один из типов теплоносителей лучше другого, то это может быть обусловлено его каталитическим действием. Есть основания считать, что любая поверхность в известной степени каталитически активна при сравнительно высоких температурах проведения этой реакции. [c.147]


    Как и для всех каталитических процессов температура является основным, весьма эффективным параметром. Катализаторы активны в сравнительно узком температурном интервале, который зависит от природы катализатора и состава исходного сырья. С ростом температуры увеличивается глубина распада исходного вещества, [c.244]

    В катализе очень важно знание поверхностного состава катализатора и установление зависимостей его активности от состава, а состава —от температуры и других условий реакции. Эти проблемы успешно решаются рассматриваемыми здесь методами. Обычно поверхностный состав катализаторов существенно отличается от объемного даже до проведения каталитической реакции. Обогащение поверхности какими-то элементами, например переходными металлами, может сильно влиять на каталитическую активность. Так, при исследовании катализатора Ni—Zr—Н, в котором содержание Ni на поверхности зависит от времени термической обработки, найдена прямая зависимость его активности от роста поверхностного содержания Ni. Иногда, правда, максимум каталитической активности соответствует сравнительно узкому интервалу изменения концентрации какого-то компонента. [c.163]

    По второму механизму железо, содержащееся в различных количествах в природных катализаторах, превращается из инертной или безвредной формы в активный каталитический яд. Считают, что железо присутствует в кристаллической решетке монтмориллонита не в виде свободной окиси железа,, а в форме, изоморфной с окисью алюминия. Образование сульфида железа создает движущую силу, необходимую для вытеснения железа из решетки. Этот взгляд подтверждается общеизвестным наблюдением, что природные катализаторы крекинга чернеют под действием сероводорода [50]. Присутствие водяного пара или предварительная гидратация предотвращает подобное образование сульфида железа правда, механизм этого защитного действия полностью не выяснен. Следует отметить, что в противоположность сравнительно серостойким свежим синтетическим катализаторам работавшие синтетические алюмосиликатные катализаторы, содержащие железо, подвержены отравлению серой. [c.174]

    Следующим среди каталитически активных препаратов является высоко дисперсная окись хрома, получающаяся при разложении хромовокислой соли закиси ртути при 600°. Наименьшей активностью обладает сравнительно грубодисперсная зеленая окись хрома. [c.288]


    Зависимость каталитической активности от состава катализатора оказалась качественно одинаковой для низкотемпературной (—196° С) и высокотемпературной (20° С) реакций введение нескольких процентов меди в никель резко снижало, а введение нескольких процентов никеля в медь — повышало активность. В остальном интервале концентраций каталитическая активность изменялась сравнительно мало. [c.49]

    Можно ожидать, что в растворимых каталитических системах каждая ионная связь может реагировать с мономером и начинать рост полимерной цени. В силу этого расход растворимого катализатора значительно ниже, чем гетерогенного, у которого на поверхности активна лишь сравнительно небольшая его часть. С технологической точки зрения гомогенные катализаторы удобнее, так как существенно облегчается удаление остатков катализатора из полимера. Впервые на образование высокомолекулярного полимера при полимеризации [c.163]

    Можно назвать следующие свойства ферментов, которые стремятся воспроизвести химики а) высокую активность б) наличие активных центров, простетических групп, часто включающих металл в) наличие высокомолекулярного носителя (белка), повышающего интенсивность действия и в значительной мере определяющего специфичность фермента или его модели. Вначале моделировали только активность и при этом появились новые катализаторы — металлы в коллоидном состоянии. Затем воспроизводили активные группы ферментов при этом были найдены модели различных каталитически активных комплексов, сравнительно простых, включающих различные металлы или органические соединения. В некоторых случаях эти комплексы удавалось фиксировать на различных (в том числе белковых или углеводных) носителях и тогда возникали системы, еще более приближающиеся к истинным ферментам. [c.330]

    В заключение следует отметить, что в настоящее время стереохимический подход к некоторым каталитическим реакциям, в частности к гидрогенизации и гидрогенолизу, применяется сравнительно широко. Весьма перспективными представляются исследования гидрогенолиза оптически активных соединений [73—77]. Строение исходного соединения, природа металла, его концентрация в катализаторе, а иногда и носитель, влияют на механизм гидрогенолиза, который в зависимости от указанных факторов может проходить по 5 1-, или (-механизмам (см. обзор [78]). [c.82]

    В сравнительно узкой области концентраций серной кислоты наблюдается огромное изменение ее каталитической активности. Резкие пики активности [671 были получены для нескольких углеводородов при концентрации 99,8%. Этот эффект -показан на рис. 3, где на кри-вой отложены значения кон- стант скорости реакции к для 3-метилпентана в зависимости от начальной концентрации серной кислоты [67]. Порази-тельный параллелизм наблю-  [c.33]

    При разработке катализаторов приходится решать задачи двух типов. Задачи первого типа состоят в подборе нового (для данной реакции) активного компонента катализатора. Задачи второго типа заключаются, в совершенствовании катализатора с известным активным компонентом. Они на практике встречаются несравненно чаще, чем первого. Действительно, выбор активного компонента катализатора того или иного химического процесса, как правило, предопределен результатами выполненных ранее сравнительных исследований практически всех перспективных в этом отношении веществ. Неожиданное обнаружение неизвестного ранее вещества, обладающего большей каталитической активностью, чем известные активные компоненты катализаторов данного типа, является теперь относительно маловероятным событием. [c.4]

    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]

    ММР сополимеров зависит от природы каталитической системы, растворителя, температуры полимеризации, концентрации катализатора, регулятора молекулярной массы и др. Сополимеры со сравнительно узким ММР можно получить на гомогенных катализаторах. На катализаторах, содержащих два или несколько активных центров с разной продолжительностью жизни или разной активностью, образуются сополимеры с более широким или [c.304]


    Принцип действия термохимических газоанализаторов основан на определении теплового эффекта реакции сгорания анализируемого вещества на каталитически активной платиновой нити. Основу прибора составляет мост Уитстона, одно плечо которого — платиновая спираль, помещенная в сравнительную камеру, а второе — платиновая спираль, помещенная в рабочую камеру. Два других плеча — постоянные сопротивления. [c.68]

    Промышленные катализаторы большей частью представляют собой многокомпонентные и многофазные системы. К такого рода составам пришли эмпирически, часто в результате длительного поиска и последующего усовершенствования катализаторов. Одним из оснований для создания сложных катализаторов были наблюдения, что каталитическая активность двух пли нескольких соединений часто не аддитивна, а принимает экстремальные значения. Теоретические основы механизма действия и подбора сложных катализаторов серьезно стали разрабатываться сравнительно недавно и иока еще полностью не ясны. Здесь будут рассмотрены некоторые вопросы теории сложных катализаторов, непосредственно связанные с общей теорией катализа. [c.44]

    До сравнительно недавнего времени носитель рассматривали как инертную составляющую катализатора. Обычно как доказательство инертности носителей приводится отсутствие у них каталитической активности. Однако, как указывалось несколько выше, и у других типов сложных катализаторов один из компонентов может не обладать каталитической активностью. Шваб [87] показал, что при варьировании носителей для одного и того же активного компонента изменяется не только удельная каталитическая активность последнего, но и электрические свойства получаемого катализатора (электропроводность). Следовательно, влияние носителя может иметь электронную природу, что должно также вытекать из теории явлений в пограничных слоях металлов и полупроводников. [c.46]

    При проведении реакций (1) и (2) в промышленных масштабах одной из наиболее актуальных задач становится подбор сравнительно дешевых ЧАС, обладающих достаточно высокой каталитической активностью. В связи с этим была изучена активность ЧАС различного строения (табл.4.20, 4.21). [c.155]

    Каталитическое восстановление углеводов впервые было осуществлено в 1912 г. В. Н. Ипатьевым. Вначале для этой цели применялись металлы платиновой группы, но их высокая стоимость заставила исследователей начать поиски новых, более дешевых катализаторов. В этой связи учеными разных стран были изучены никелевые и медные катализаторы, полученные восстановлением их солей и нанесенные на различные носители (кизельгур, окись хрома, окись алюминия и др.). В связи с тем, что указанные катализаторы имели сравнительно невысокую активность, предпринимались попытки улучшить их качество за-счет введения различных промоторов, а также испытывались новые формы катализаторов, в частности сплавные катализаторы. Последние отличаются простотой приготовления и повышенной стабильностью. Разви- [c.22]

    Для проведения реакций первого вида, сравнительно медленных, требуются, высокие слои катализатора, порядка нескольких метров. Для реакций второго вида достаточны невысокие слои катализатора, порядка нескольких сантиметров, а в ряде случаев — просто сетки из каталитически активного металла (например, при окислительном аммонолизе метана в производстве синильной кислоты). [c.125]

    Таким образом, разрыв ковалентной связи для получения двух нейтральных соединений всегда должен дать два радикала, каждый со свободной валентностью и обладающий активностью свободного радикала. Разрыв ионной связи может дать либо два иона с заполненными оболочками, имеющими только электростатический поляризующий момент (MgO = Mg + + О ), либо два иона, один из которых (обычно катион) также имеет электрон с непарным спином и поэтому имеет дополнительные свойства, присущие радикалу (например, NiO = NiO +0 -). Молекулы веществ, образующих твердые поверхности, дегазированные в вакууме, обладают множеством свободных связей, по которым могут идти реакции с молекулами газовой фазы (хемосорбция) с образованием различных поверхностных комплексов- Очевидно, что каталитическое действие твердого вещества зависит от составляющих его лептонов. Раньше исследователи связывали высокую каталитическую активность с переменной валентностью, цветом, магнитными свойствами и т. д. Сравнительно недавно метод электронной проводимости стал доминирующим в определении их свойств. Он лучше отражает электронную структуру оболочек на основе периодической системы, хотя дает лишь общую характеристику, которая не может заменить результатов, получаемых при детальном изучении химии и физики исследуемых твердых тел. [c.20]

    Влияние pH на активность ферментов связано с изменением состояния ионизации фермента, субстрата или кохмплекса фермента и субстрата. Так как ферменты представляют собой белки, в их молекулах содержится очень большое число различных ионизирующих групп. Но вследствие того, что ферменты наиболее активны в сравнительно узком интервале pH, то, очевидно, каталитически активна только одна из ионных форм фермента. Особенно сильное действие на каталитическую активность фермента оказывает состояние ионизации отдельных групп или" атомов в активном центре молекулы фермента. При изменении состояния ионизации меняется и каталитическая активность фермента. [c.47]

    Изучение поверхности аммиачных катализаторов. В литературе последних лет много места уделяется вопросу о природе твердых каталитических поверхностей. В ранний период каталитических исследований считалось, что вся поверхность катализатора обладает одинаковой способностью ускорять соответствующую химическую реакцию. Ряд фактов, найденных за последние несколько лет, привел к необходимости видоизмененить эту точку зрения, по крайней мере по отношению к некоторым каталитическим реакциям, В конце концов поверхность катализатора стала рассматриваться как неоднородная, а именно состоящая из активных и сравнительно неактивных элементов. [c.141]

    Катализаторами Р. обычно являются металлы платиновой группы, гл. обр. сама платина, и окислы металлов V—VI групп периодич. системы на носителях носителями в основном служат окись алюминия, а также алюмосиликаты, обладающие самостоятельной расщепляющей и изомеризующей каталитич. активностью. Катализаторы последнего типа называют бифункциональными они обладают высокой активностью и избирательностью при гидроизомеризации алканов и цикланов. Катализаторы Р. можно классифицировать по типу основного компонента (металл, окисел) и по типу носителя (неактивный, каталитически активный). В Р. могут использоваться катализаторы, сохраняющие свою активность длительное время иа должном уровне (применяемые обычно в неподвижном слое — стационарные катализаторы), а также катализаторы, теряющие активность в сравнительно короткий срок и требующие более или менее частой регенерации, а поэтому обычно применяемые в подвижном или в исевдо-ожиженно.м слое. [c.341]

    Хромосорб W наиболее универсальный носитель, он имеет однородную пористую структуру с небольшой удельной поверхностью (около 1 м /г), обладает сравнительно низкой специфической адсорбционной активностью, каталитически инертен. Поверхность необрабо- [c.13]

    Пропуская изододецен, изопентадецен или диизобутен нри температуре около 100° и давлении 70 ат с избытком сероводорода над катализатором, состоящим из кизельгура и 1—5% окиси алюминия, получают соответствующий меркаптан с почти количественным выходом 147]. Такие меркаптаны могут затем каталитическим путем окисляться в дисульфиды [48], являющиеся присадками к маслам для работы в условиях высоких давлений, к маслам для холодной обработки металлов, флотационными реагентами и т. д. Меркаптаны в присутствии окислов азота как катализатора могут также сравнительно легко окисляться через дисульфиды в алкилсульфоновые кислоты. При оксиэтилировании меркаптаны дают полигликолевые эфиры, которые могут применяться как неионогенные капиллярно-активные вещества. [c.219]

    Сульфидные катализаторы характеризуются рядом особенностей, определяющих возможность их использования для переработки нефтяного сырья 1) активное их состояние проявляется в среде сероводород-водород, которая образуется при гидрообессеривании серусодержащего углеводородного сырья 2) наибольшую активность они проявляют при относительно жестких условиях (повышение температуры), предпочтительных для гидрогенизационной переработки тяжелого дистиллятного и остаточного сырья 3) в результате малой теплоты адсорбции водорода его концентрация на поверхности сульфидных катализаторов сравнительно мало меняется с повьипением температуры и активность их за счет этого фактора практически не снижается 4) сульфидные катализаторы характеризует высокая стойкость к действию большинства каталитических ядов, способствующих отравлению других катализаторов. [c.96]

    Положение о том, что лишь один атом металла принимает участие в образовании я-частицы, не означает отсутствия влияния остальных атомов поверхности. Специфичность металла проявляется в сравнительной легкости образования с- и я-частиц, а его кристаллическая упаковка влияет на природу орбиталей, предоставляемых металлом для образования я-связей. По легкости формирования я-комплексов металлы УП1 группы располагаются в ряд Р(1 Р1 > N1 > КЬ [15]. По мнению Го, Руни и Кемболла [15], образованием и разложением промежуточных я-связанных металлорганических комплексов объясняется каталитическая активность переходных металлов во многих реакциях углеводородов гидрирования, дегидрирования, дейтерообмена, изомеризации, конфигурационной изомеризации и крекинга. Приведенные ниже примеры иллюстрируют распространившуюся тенденцию объяснять механизмы самых разнообразных реакций углеводородов с помощью я-комплексов. Учитывая сказанное выше, можно думать, что в случае бензола более энергетически выгодной, а следовательно, и более вероятной является модель XX. Руни [21] изображает гидрирование бензола как процесс [c.53]

    Изучение катализаторов крекинга показало, что чистые пористые силикаты не обладают каталитической активностью и кислотностью. Как известно, сравнительно чистые известняки и доломиты не обладают каталитической активностью и от них нельзя ожидать такой активности, как от кислых катализаторов. Выше было отмечено, что природные сланцы и песчаники по своему каталитическому воздействию на полимеризацию -значительно отличаются друг от друга, как и следовало оншдать на осно-иании больших различии irx состава. Ввиду того, что имеется большое [c.91]

    Алюмомагнийсиликатные катализаторы, синтезированные из менее концентрированных золей, обладают более высокой каталитической активностью, чем соответствуюп ие алюмосиликатные. Они способствуют образованию бензинов, содержащих сравнительно мало непредельных углеводородов и имеющих низкую температуру начала кипения. По мере повышения концентрации гелеобразующих растворов первоначальные активность и стабильность катализатора увеличиваются, но но достижении определенного значения начинают падать. Чем концентрированнее гелеобразующие растворы жидкого стекла и подкисленного сернокислого магния, тем тонкопористее катализаторы. Катализаторы, обладающие весьма развитой тонкопористой структурой, почти лишены переходных и крупных пор, они имеют достаточную первоначальную активность и паротермостабильность. Но после обработки паром у таких катализаторов наблюдается большое падение активности, что объясняется более тонкими и менее прочными стенками нор, которые под влиянием высокотемпературного водяного пара сжимаются и разрушаются. [c.93]

    Синтетические цеолиты как катализаторы начали изучать сравнительно недавно, и пока неясна природа их каталитической активности. Известно, что каталитически малоактивными или неактивными являются цеолиты, содержащие одновалентные ионы металлов. При замене же их на двухвалентные каталитическая активность возрастает, меняются некоторые структурные характеристики.цеолита. Каталитическая активность цеолитов типа резко возрастает с увеличением соотношения 3102 А12О3 — изменение соотношения атомов кремния и алюминия в решетке цеолита влияет на свойства каталитически активных центров. [c.99]

    Цеолитсодержащий катализатор крекинга, впервые примененный в промышленном масштабе в США в 1962 г. на установках с движущимся и псевдоожиженным слоем, содержал сравнительно небольшое количество цеолитов (от 3 до 25%), рассеянных на каталитическом основании типа алюмосиликата, приготовленного путем совместного отвердевания и осаждения. Назначение и действие основания-носителя двойное поддерживать достаточное распространение (рассеянность) частиц цеолитов и, разжижаясь, постепенно усиливать активность этих частиц. Разжижение необходимо потому, что в случае применения цеолитов на нерастворимом основании-носителе высокая активность цеолитов приведет к быстрому сверхкрекингу, т. е, чрезмерной газификации крекируемого сырья и немедленной дезактивации катализатора. [c.105]

    Одним из наиболее исследованных семейств ферментов являются сери-нопротеазы. Все они предназначены для расщепления полипептидньгх цепей белков по механизму, в котором участвует боковая цепь аминокислоты серина (— Hj—ОН), находящейся в активном центре фермента. Три такие протеазы (трипсин, эластаза и химотрипсин) синтезируются в поджелудочной железе и вьщеляются ею в кишечник, где они превращают содержащиеся в пище белки в аминокислоты, способные всасываться через стенки кишечника. Благодаря возможности легко изолировать эти ферменты и их сравнительно высокой устойчивости их удалось интенсивно исследовать химическими способами еще до того, как стало возможным проведение рентгеноструктурного анализа белков. В настоящее время биохимический и рентгеноструктурный анализы позволили установить достаточно ясную картину функции этих ферментов, иллюстрирующую два аспекта действия любых ферментов каталитический механизм и специфичность к субстрату. [c.318]

    Наконец, важнейшую роль играет и сам катализатор, способ его приготовления и т, д. Добавление различных модификаторов нли применение смесей оксидов и солей способно сильно изменять активность и селективность контакта. Так, некоторые каталитические яды (галогены, селен), дезактивируя серебряный катализатор окисления этилена, существенно повышают его селективность. Оксиды молибдена и висмута, в индивидуальном виде вызывающие полное сгорание олефинов, в форме молибдата висмута (В120з МоОз = 1 2) являются селективными катализаторами гетерогенного окисления пропилена. Большое влияние оказывают носитель, размер зерен катализатора, его пористость и т. д. Ввиду возможности последовательного окисления целевого вещества и высокой скорости самой химической реакции на поверхности катализатора переход процесса во внутридиффузиоиную область весьма нежелателен, поэтому используют катализаторы с небольши.ми зернами и сравнительно крупными порами. [c.416]

    В качестве природных катализаторов для ряда процессов (кре кинг, этерификация, полимеризация, производство серы из серии стых газов и другие) могут быть использованы боксит, кизельгур железная руда, различные глины [200—206]. Природные катализа торы дешевы, технология их производства сравнительно проста Она включает операции размола, формовки гранул, их активацию Применяют различные способы формовки (экструзию, таблетиро ввние, грануляцию на тарельчатом грануляторе), пригодные для получения гранул из порошкообразных материалов, увлажненных связующими. Активация исходного сырья заключается в удалении из него кислых или щелочных включений длительной обработкой растворо м"щелочи йли кислоты при повышенных Температурах. При активации, как правило, увеличивается поверхность контактной массы. Наибольшее применение в промышленном катализе нашли природные глины монтмориллонит, каолинит, бейделлит, бентониты и др. Они представляют собой смеси различных алюмосиликатов и продуктов их изоморфных замещений, а также содержат песок, известняк, окислы железа, слюду, полевые шпаты и другие примеси. Некоторые природные алюмосиликаты, например, каолин, обладают сравнительно высокой каталитической активностью в реакциях кислотно-основного катализа уже в естественном виде, после сушки и прокаливания. Большинство других требует более глубокой предварительной обработки кислотой при соответствующих оптимальных условиях (температура, концентрация кислоты, продолжительность обработки). В активированных глинах возрастает содержание SiOa, а количество КагО, СаО, MgO, AI2O3 уменьшается. Часто для уменьшения потерь алюминия в глинах к активирующему раствору добавляют сол , алю.мниия [46]. [c.168]

    На фиг. 43 представлены результаты проверки стабильности цетанового числа, полученного при добавлении к топливу различных присадок. Наблюдениям было подвергнуто дизельное топливо каталитического крекинга с начальным цетановым числом 39, содержавшее по 0,5% указанных выше присадок. В течение первых шести недель все присадми, кроме нитратов, оказались сравнительно стабильными. После этого срока устойчивыми остались только нитрокарбамиты и пероксиды. Нитроалканы и нитраты продолжали терять свою активность, и за 43. Снижение цетанового числа ди- [c.97]

    Такие реакторы относительно просты в работе и поэтому хорошо подходят и для обычных испытаний катализаторов, и для сравнительного определения удельной активности катализаторов. На рис. 42 показаны типичные результаты, полученные на изотермиче-ском интегральном реакторе для ряда катализаторов. Объемные скорости, при которых достигается заданная концентрация-аммиака, являются критериями оценки каталитических активностей. Из сравнения этих кривых, полученных в стандартных условиях, видно, что катализатор 35-4 имеет хорошую удельную активность. Для абсолютных активностей, рассчитанных по этим кривым, не может быть получена очень большая точность по причинам, упомянутым ране% но они служат хорошим критерием для качественной оценки. [c.171]

    Наиболее простым и надежным методом обессеривания средних-и тяжелых дистиллятных нефтепродуктов является каталитическое гидрирование при сравнительно мягких условиях [105 . Процессы эти получили название гидроочнстки или гидрообессеривания. В качестве катализаторов используются сульфиды вольфрама или молибдена, отложенные на активной окиси алюминия, а также катализатор риформинга (окись молибдена и окись кобальта, отложенные на активной окиси алюминия). Из экспериментальных данных, посвященных изучению термических и термокаталитических превращений индивидуальных сераорганических соединений [9, И, 02, 87 1, видно, что прочность связен в сильной иепени зависит от химического строения сераорганических соединении. Зависимость ирочностн связей от строения сераорганических соединений наиболее систематически изучена в работах Тиц-Скворцовой с сотрудниками [88—90. 109, 112]. [c.372]


Смотреть страницы где упоминается термин Активность каталитическая сравнительная: [c.85]    [c.195]    [c.27]    [c.384]    [c.47]    [c.135]    [c.68]    [c.228]    [c.306]    [c.341]    [c.213]    [c.142]    [c.315]    [c.459]   
Справочник сернокислотчика 1952 (1952) -- [ c.460 ]




ПОИСК





Смотрите так же термины и статьи:

Активность каталитическая

сравнительная



© 2025 chem21.info Реклама на сайте