Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Передача цепи при ионной полимеризаци

    Реакции переноса гидрид-иона играют важную роль в катионной полимеризации. Они выступают как процессы передачи цепи при полимеризации, например, пропилена и бутена-1  [c.64]

    Из внешних причин, влияющих на физико-химические взаимодействия между частицами первого уровня, существенный вклад вносят эффекты воздействия окружающей среды, т. е. эффекты вышестоящих ступеней иерархии ФХС. Они проявляются в виде кинетических, диффузионных, термодинамических и топологических эффектов типа воздействия активаторов и ингибиторов образования донорно-акцепторных комплексов при радикальной полимеризации сольватации первичных и вторичных солевых эффектов при реакциях между ионами в растворах вырожденной передачи цепи на компоненты среды клеточных эффектов и эффектов близости кинетических изотопных эффектов индуктивных и мезомерных эффектов воздействия на свободные радикалы изменения физико-химических свойств среды влияния макромоле-кулярных матриц, фазовых переходов и т. д. [3, 4, 7, 10—14]. [c.25]


    В отличие от радикальной полимеризации константы скорости роста, обрыва и передачи цепи при ионной полимеризации характерны не для того или иного мономера, а только для определенной системы мономер - катализатор - сокатализатор -растворитель, ибо противоион расположен достаточно близко, оказывая существенное влияние на реакции ионизированного конца растущей цепи, а степень ионизации зависит от природы растворителя. [c.257]

    Ионный механизм процесса полимеризации и отсутствие передачи цепи через полимер способствует образованию макромолекул более регулярной структуры. Полиэтилен низкого давления имеет ничтожное количество ответвлений в цепях макромолекул и отличается высоким средним молекулярным весом. [c.197]

    Особенностью ионной полимеризации, протекающей при быстром инициировании и без обрыва и передачи цепи, является образование практически монодисперсных полимеров (Х = XJ. [c.103]

    Вычислите степень превращения мономера при ионной полимеризации, протекающей в результате быстрого инициирования и без обрыва цепи, если [1]о = 0,01 моль-л , /ср = 0,15 л - моль - с т = 2 мин. В условиях полимеризации протекает также передача цепи на мономер (См = 0,(8). [c.115]

    Поскольку обрыв при ионной полимеризации, как правило, мономолекулярен, то в отсутствие реакций передачи цепи [c.128]

    При анионной полимеризации реакции ограничения роста цепей возможны как за счет реакций передачи цепи (путем отрыва активным центром протона от растворителя или мономера либо путем переноса гидрид-иона с конца растущей цепи на противоион или мономер), так и за счет спонтанной изомеризации активного центра, сопровождающейся уменьщением его активности. Передача цепи через растворитель протекает, например, при анионной полимеризации стирола, катализируемой раствором калия в жидком аммиаке  [c.22]

    Ионная полимеризация характеризуется также полным отсутствием или очень малыми разветвлениями основной цепи полимера, а также более высоким значением средней молекулярной массы и узким молекулярно массовым распределением полимеров по сравнению с радикальной. Этому способствует невозможность обрыва цепи путем соударения двух растущих частиц, имеющих одинаковый но знаку заряд. Обрыв цепи в ионной полимеризации происходит либо в результате реакции растущей цепи с низкомолекуляр-иыми добавками н примесями, либо путем передачи реакционной цепи на мономер или растворитель. [c.37]


    Ионная полимеризация является также цепной реакцией, но осуществляется с помош.ью катализаторов — веществ, которые активируют мономер, переводя его в ионное состояние. Процесс ионной полимеризации также складывается из нескольких элементарных актов 1) инициирование — образование ионов 2) рост цепи 3) обрыв цепи. В первой стадии образуются ионы, содержащие либо положительно заряженный (катионная полимеризация), либо отрицательно заряженный (анионная полимеризация) атом углерода с последующей передачей по цепи положительного или отрицательного заряда. [c.450]

    Ионная полимеризация протекает в присутствии катализаторов, которые в противоположность инициаторам не расходуются в процессе полимеризации и не входят в состав полимера. В отличие от радикальной полимеризации, протекающей путем передачи по цепи неспаренного электрона, ионная полимеризация протекает с образованием либо иона карбония, либо карбаниона с последующей передачей по цепи положительного или отрицательного заряда. В зависимости от характера катализатора и заряда образующегося иона различают катионную и анионную полимеризацию. [c.80]

    Скорость полимеризации пропорциональна квадрату концентрации мономера и корню квадратному из концентрации катализатора. Обрыв цепи при анионной полимеризации происходит путем передачи цепи на растворитель и присоединения протона или другой положительно заряженной частицы. В данном случае обрыв происходит при взаимодействии карбаниона с аммиаком в результате присоединения протона аммиака с регенерацией иона амида МНг. Таким образом, амид калия не расходуется в процессе реакций. [c.85]

    Опубликованы [132] аналогичные исследования кинетики полимеризации бутадиена. Весьма вероятно, что полимеризация изопрена в присутствии катализаторов типа циглеровского протекает по анионному механизму [109, 126]. Рост цепи полимера можно представить себе как результат включения поляризованных ориентированных молекул мономера между растущей цепью и поверхностью катализатора. Сильно ненасыщенные мономеры в большей степени ориентированы и сильнее адсорбируются на поверхности катализатора, чем молекулы полимера. Обрыв цепи происходит в результате передачи гидридного иона катализатору или передачи цепи молекуле мономера. [c.199]

    Достаточно распространены случаи передачи цепи при взаимодействии АЦ с мономером, растворителем или полимером - отрыв гидридного (Н ) или ме-тидного ( СНз) ионов. В этих случаях образуются характерные для катионной полимеризации разветвленные полимерные продукты. [c.97]

    Радикальная поликонденсация инициируется поверхностными свободными радикалами. Аналогично ионной полимеризации, ио этому механизму полимеризуются валентнонасыщенные молекулы с передачей реакционного центра по цепи полимера  [c.166]

    Ионная полимеризация, как любая цепная реакция, протекает в три стадии инициирование - образование ионов или ионных пар рост макроионов прекращение роста макроионов. Активные центры при ионной полимеризации состоят из растущего иона (К или К ) и противоиона (А или А ). Ионная полимеризация приводит к получению полимеров, не имеющих или имеющих очень мало боковых ответвлений, с высокой средней молекулярной массой и узким молекулярно-массовым распределением полимера. Это объясняется невозможностью обрыва цепи соударением двух растущих частиц, имеющих одинаковый по знаку заряд. Обрыв цепи в ионных процессах происходит обычно за счет передачи реакционной цепи на мономер или растворитель, или какие-то добавки и примеси. [c.31]

    Полученный полимер не содержит двойных связей, и амид не расходуется во время полимеризации,-следовательно, обрыв обусловлен не переходом гидридного иона Н к мономеру или соединением растущей частицы с ионом Ме+, а передачей цепи на растворитель (аммиак)  [c.165]

    Второй вариант дает более высокомолекулярные продукты в частности, при проведении реакции в смеси метанола и воды (1 1) молекулярная масса полиметилметакрилата составляет 166 000. По этой причине и благодаря легкости отделения полимера от растворителя такой метод полимеризации нашел значительное применение, особенно для ионной полимеризации, когда передача цепи на растворитель относительно слабо выражена. [c.248]

    Стадия обрыва может включать передачу гидрид-иона или атома водорода катализатору, который таким образом подготавливается к последующей активации мономером. Как уже было упомянуто, Натта предположил, что каталитический комплекс может передавать этильную группу полимерному радикалу, и в своей таблице И1 (см. Натта [97]) приводит возможные процессы инициирования, роста и обрыва цепи при полимеризации пропилена. Аналогичный переход к агенту передачи или от него предполагался в случае реакций, используемых для регулирования молекулярного веса полимеров. Гордон и Ро [100] рассмотрели общее влияние на моле-кулярно-весовое распределение, считая, что стадия обрыва является десорбцией конца растущего полимера с поверхности катализатора. [c.439]


    При анализе действия давления на процесс прлимериза-ции в жидкой фазе можно выделить реакции, кинетика которых при высоких давлениях имеет свои особенности. Сюда можно отнести радикальную полимеризацию с деградацион-ной передачей цепи, ионную полимеризацию и полимеризацию с выделением полимера из раствора по ходу реакции (гетерофазная полимеризация). [c.330]

    При полимеризации кислородсодержащих гетероциклов возникает необходимость выбора между карбониевыми и оксониевы-ми ионами как активными центрами реакции роста. Еще в одной из лервых работ Медведева и сотр. было высказана соображение об оксониевой природе растущих цепей, основанное на отсутствии заметных признаков реакций обрыва и передачи цепи при полимеризации некоторых циклических окисей и ацеталей . Хорошо-известно, что часто наблюдающееся сохранение активности реакционных смесей после завершения катионной полимеризации ви-нильных мономеров обычно обусловлено регенерацией инициатора. Тем не менее несомненное наличие оксониевых ионов в катионных системах, содержащих циклические окиси и ацетали,. не снимает вопроса о природе активных центров реакции роста, так как яри раскрытии цикла не исключен переход оксониевых центров в карбониевые. Попытки обнаружения и выяснения относительной роли тех и других в процессе катионной полимеризации кислородсодержащих соединений отодвинули на второй план [c.23]

    Следующее важное обстоятельство, существенное для любых элементарных актов ионной полимеризации, состоит в особой природе активных центров (инициирующих агентов и растущих цепей) в том смысле, что они, как правило, являются связанными , т. е. представляют собо11 гстерополярные соединения, а не свободные ионы. В реакциях с участием таких центров определенную функцию выполняют оба компонента, образующие активную связь. Это проявляется в зависимости скорости актов роста, обрыва и передачи при ионной полимеризации от таких параметров, к которым соответствующие реакции процесса радикальной полимеризации, за исключением некоторых специальных случаев, нечувствительны, а именно от природы инициатора и реакционной среды. Для связанных активных центров типично образование различных комплексных форм с участием мономера и растворителя (см. гл. 1). Следствие этого — протекание реакций активных центров с мономером через стадию комплексообразования и возможность сосуществования активных центров, различающихся по своей структуре и реакционноспособности. [c.50]

    Большинство реакций передачи цепи представляет собой перенос водорода (при радикальной полимеризации), протона или гид-ридного иона (лри ионной полимернаации от передатчика к активному центру лолимеризацин или от активного центра к передатчику).  [c.12]

    Итак, ионная полимеризация также является видом цепных процессов синтеза полимеров. Она может быть катионной и анионной, причем последняя более распространена. Стабильность карбаниона нозрасгает с увеличением электроотрицательиости заместителя при двойной связи мономера. Для ионной полимеризации характерно наличие ионных пар каталитического комплекса, стабильность которых определяет ход реакции полимеризации. Существенно влияет на эти реакции среда, в которой они проводятся. Структура получаемого полимера, как правило, более регулярная, чем при свобод-норадикальпой полимеризации, причем в ряде случаев со строго упорядоченным расположением заместителей в пространстве. В связи с наличием одинаковых по знаку зарядов на концах растущих цепей часто происходит не обрыв реакционной цепи, а либо передача цепи на мономер, либо образование макроионов ( живые полимеры). Эти виды полимеризации открывают большие возможности для регулирования структуры, а следовательно, и свойств полимеров. [c.47]

    Анионная полимеризация также может сопровождаться реакгшей передачи цепи, например, путем переноса гидрид-иона от полимерной цепи на мономер  [c.417]

    Таким образом, как для ионной, так и для свободнорадикальной полимеризации характерно наличие стадии инициирования и реакции передачи цепи, оказывающей существенное влияние на длину образующейся полимерной цепи и одновременно являющейся методом регулирования размеров молекул полимера. В то же время для ионной полимеризации не характерны реакции обрыва цепи, что существенно сказываегся на кинетических закономерностях процесса. [c.417]

    Поверхность гетерогенных катализаторов, по-видимому, содержит во время полимеризации активные центры и, кроме того, способствует протеканию реакций закономерного роста полимера. Полимеры регулярного строения образуются вследствие подавления до минимума (благодаря присутствию поверхности) реакций, ведущих к передаче цепей растущего полимера от одной молекулы другой, т. е. процессов, вызывающих разветвление и структурную нерегулярность полимера. Полимеризация инициируется в определенных специфических точках поверхности, так что растущие молекулы полимера изолированы одна от другой [57]. Чтобы предотвратить реакции передачи цепи между растущими молекулами полимера, инициирующие вещества — независимо от того, будут ли это ионы, свободные радикалы или ионные радикалы — должны оставаться связанными с изолировавными центрами поверхности. [c.297]

    Образование П. протекает по координационно-ионному механизму (см. Координационно-ионная полимеризация). Скорость р-цни обычно пропорциональна концентрации мономера и Ti lj. Осн. акт ограничения роста цепи-передача цепи на мономер. Поэтому степень полимеризации практически не зависит от концентрации мономера. Для регулирования мол. массы П. используют агенты передачи цепи-водород или металлоорг. соединения. Энергия активации роста цепи 50-60 кДж/моль. [c.20]

    Ряду систем, гюлимеризующихся по ионному типу, свойсТ венпо отсутствие реакций обрыва и передачи цепи. Образуются так называемые живущие полимеры, макромолекулы которых после завершения полимеризации (полного исчерпаиия мономера) сохраняют активные цснтр л в течение длительного времени и в связи с этим способны к дальнейшему присоединению новых порций мономеров, т. е. к продолжению роста цепи. [c.123]

    Крафтса характерны процессы передачи цепи через мономер с сохранением противоиона для, К А1С1з п доминирующую роль играет ограничение цепи при взаимодействии с фрагментом противоиона. Наблюдаемое уменьшение значений Е при изменении механизма обрыва полимерной цепи подтверждается расчетом 267]. Близость наклона прямых и расхождение в абсолютных значениях отсекаемых ими на оси ординат отрезков означает, что энергетические члены примерно равны (противоион влияет на Е и на Ер в равной степени), а стерические факторы различны (различающиеся значения A /Ap [68]). Предполагается, что различия в наклонах аррениусовых прямых обусловлены разницей в ионнос-ти растущих ионных пар. Инициаторы, обеспечивающие большой наклон прямых (большие Е формируют противоионы с низкой нуклеофильностью, что определяет вероятность полимеризации изобутилена на относительно свободных ионах. Инициаторы, для которых получается меньший наклон прямых, образуют противоионы с несколько большей нуклеофильностью. Как следствие, рост цепи может протекать на достаточно сближенных ионных парах. [c.117]

    Подбором подходящих условий полимеризации можно изменять среднюю молекулярную массу и связанные с ней свойства полимеров. Так, при радикальной полимеризации повышение температуры реакции или содержания инициатора увеличивает число растущих радикалов. Так как скорость реакции цепи имеет первый порядок по концентрации растущих радикалов, а скорость реакции обрыва — второй порядок, то средняя молекулярная масса понижается при повышении скорости полимеризации. Снижение концентрации мономера также приводит к получению полимеров с небольшой молекулярной массой при этом скорость полимеризации тоже снижается. Вследствие возможности протекания побочных реакций при высоких температурах и высоких концентрациях инициаторов молекулярную массу во многих случаях изменяют путем добавления регуляторов — веществ с высокими константами передачи цепи (см. раздел 3.1 и опыт 3-14). Уже при малых концентрациях эти вещества сильно снижают среднюю молекулярную массу. Скорость полимеризации при этом остается практически неизменной. Осколки регуляторов входят в состав молекул полимеров как концевые группы. Такими регуляторами являются прежде всего меркаптаны (я-бутилмеркаптан, до-децилмеркаптан) и другие серосодержащие органические соединения (например, диизопропилксантогенидсульфид), а также галогенсодержащие соединения, альдегиды и ацетали. В технике регуляторы играют важную роль при эмульсионной полимеризации прежде всего при получении полимеров на основе бутадиена. Регулировать молекулярную массу можно и при ионной полимеризации [28]. [c.58]

    При ионной полимеризации можно выделить те же элементарные стадии, что и при радикальной инициирование, рост, обрыв и передачу цепи. Полимеризация под влиянием ионных катализаторов обычно происходит с большими, чем при радикальной, скоростями и приводит к получению полимера большей молекулярной м ссы. Реакционная система в случае ионной полимеризации часто является гетерогенной (неорганический или металлоргани-ческий твердый катализатор и жидкий органический мономер). [c.49]

    Реакции прививки можно осуществлять методами радикальной и ионной полимеризации, а также с помощью реакций конденсации или присоединения. Чаще всего применяют радикальную полимеризацию, инициируемую химическим, радиационным или механическим способами [125, 226]. Обычно используют реакцию передачи свободнорадикальной цепи. Инициирование осуществляют соединениями, легко распадающимися на свободные радикалы, например пероксидами. [c.399]

    Полимеризация в растворе (лаковый способ) проводится в жидкой фазе (раствор в органическом растворителе) по радикальному, ионному и ионно-координационному механизмам При радикальной полимеризации природа растворителя оказывает влияние на скорость реакции передачи цепи на молекулу растворителя, а следовательно, влияет и на молекулярную массу полимера Степень полимеризации также зависит от концентрации мономера в слабоконцеитрированных растворах она снижается [c.39]

    Во многих случаях существует противоречие между наиболее благоприятными условиями для получения того или иного из трех переменных параметров стереоспецифичности, молекулярного веса и скорости реакции. К числу важнейших факторов для регулирования специфичности полимеризации, которые можно использовать, правда только совершенно эмпирически, относятся а) состояние агрегации и степень дисиерсиости катализатора, б) валентность металла в катализаторе и в) природа заместителя у тяжелого металла и в сокатализаторе. Молекулярный вес чувствителен к полному количеству катализатора, к молярному отношению катализатора и сокатализатора и к наличию агентов передачи цепи, к которым принадлежат водород, некоторые частично ионные металлалкилы, металлы, адсорбирующие водород, и некоторые алкилгалогениды. Скорость реакции возрастает при увеличении веса катализатора, давления олефина, а также при повышении температуры. [c.437]

    В случае меркаптанов (табл. 31) по-видимому, не зависит от их молекулярного веса, но третичные меркаптаны менее реакционноспособны, чем первичные. Отличительной особенностью соединений этого класса является то, что энергия активации реакций передачи цепи может быть меньше энергии активации реакций роста (Грегг и др. [97]), Уоллинг [91] рассчитал константы передачи цепи через я-бутил-меркаптан с полимерными радикалами, образующимися из стирола, метилметакрилата и винилацетата. Сравнение полученных результатов с относительными реакционными способностями полимерных радикалов, полученными из данных о совместной полимеризации, позволило Уоллингу сделать предположение, что на реакционную способность в реакции передачи цепи может влиять образование ионных структур в переходном состоянии. Например, большую роль могут играть следующие структуры  [c.273]


Смотреть страницы где упоминается термин Передача цепи при ионной полимеризаци: [c.48]    [c.249]    [c.462]    [c.638]    [c.376]    [c.108]    [c.53]    [c.222]    [c.33]    [c.145]    [c.529]    [c.48]    [c.249]    [c.462]   
Привитые и блок-сополимеры (1963) -- [ c.42 ]




ПОИСК





Смотрите так же термины и статьи:

Ионная полимеризация

Ионная полимеризация Полимеризация

Передача цепи



© 2025 chem21.info Реклама на сайте