Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эмульсионная полимеризация механизм

    Эмульсионная полимеризация. Во всех странах для производства хлоропренового каучука применяется эмульсионный способ полимеризации хлоропрена под влиянием инициаторов, реагирующих по свободнорадикальному механизму, с использованием в качестве регуляторов серы или меркаптанов. Одним из основных факторов, определяющих возможность проведения процесса полимеризации в эмульсии является подбор эффективных эмульгаторов, обеспечивающих стабильность эмульсии и латекса в процессе полимеризации. [c.371]


    Из перечисленных каучуков, получаемых методом эмульсионной полимеризации, наиболее распространены бутадиен-стирольные— продукт сополимеризации бутадиена со стиролом (а-метилстиролом). Их синтез осуществляется по свободному радикальному механизму  [c.209]

    Особенностью реального механизма эмульсионной полимеризации является большая роль вторичных реакций, приводящих [c.63]

    В процессе полимеризации в водной среде возможен гидролиз этих мономеров. Указанные особенности акрилатов отражаются на механизме образования и стабилизации полимер-мономерных частиц при эмульсионной полимеризации, на кинетике процесса, на протекании вторичных процессов, на адсорбции взятого для получения эмульсии мономеров эмульгатора и на агрегативной устойчивости получаемых латексных систем [4]. При эмульсионной полимеризации водорастворимых мономеров под [c.388]

    В частности, при исследовании эмульсионной полимеризации делается акцент на один из ключевых вопросов теории - механизм возникновения полимерно-мономерных частиц (ПМЧ). Одновременно с этим большое внимание уделяется изучению кинетики и механизма элементарных реакций, протекающих в ПМЧ, которые определяют молекулярные характеристики, микроструктуру образующихся полимеров и морфологию латексных частиц. [c.114]

    Исследования кинетики эмульсионной полимеризации показывают, что роль эмульгатора не ограничивается только стабилизацией эмульсин. Эмульгатор сильно влияет непосредственно на полимеризацию, в значительной степени определяя механизм этого процесса. С увеличением концентрации эмульгатора скорость полимеризации возрастает (рис. 12, 13). Мономеры, нерастворимые в водном растворе инициатора, без эмульгатора не полимеризуются. При постоянной концентрации эмульгатора скорость полимеризации возрастает с увеличением соотношения водной фазы и углеводородной, что, по-видимому, связано С увеличением числа мицелл эмульгатора в системе. [c.120]

    В 30-е годы была установлена возможность синтеза бутадиенового каучука в процессе эмульсионной полимеризации под влиянием диазоаминобензола ДАВ [1]. Долгоплоск детально изучил кинетику и механизм полимеризации в присутствии ДАБ и его производных и показал, что введение в молекулу ДАБ в орто- и пара-положения алкильных групп, смещающих заряд в сторону азогруппы, облегчает распад триазена на свободные радикалы, а введение в эти положения электроотрицательных групп повышает его устойчивость [2]. [c.134]


    Главным вопросом механизма эмульсионной полимеризации является вопрос о том, в каких местах гетерогенной системы протекают элементарные реакции. [c.147]

    Выводы, сделанные на основе квазистационарного приближения, свидетельствуют о сложном характере эволюции механизма эмульсионной полимеризации в ходе процесса. Для окончательного суждения об этом необходимо численное решение уравнений полной кинетической модели процесса с учетом диффузионных эффектов. [c.153]

    Как уже отмечалось, повышенная растворимость олеофильных веществ в водных растворах ПАВ обусловлена связыванием этих веществ мицеллами. При этом истинная растворимость в водной (межмицеллярной) фазе практически не изменяется по сравнению с таковой в чистой воде. Для понимания механизма процессов, протекающих в системах раствор ПАВ — солюбилизат (эмульсионная полимеризация, мицеллярный катализ и др.), важно знать, где располагаются и как ориентируются солюбилизированные молекулы в мицеллах. Для выяснения этого вопроса привлекались данные рентгенографии, УФ- и ЯМР-спектроскопии, электронного парамагнитного резонанса и других физических методов исследования. [c.70]

    Такой механизм изолирования радикалов, являющийся специфическим для эмульсионной полимеризации, позволяет значительно повысить концентрацию растущих радикалов по сравнению с другими процессами при равных скоростях инициирования вследствие невозможности взаимного обрыва радикалов из разных латексных частиц. Это позволяет получать полимеры с высокими молекулярными массами при скоростях реакции, значительно превышающих скорости полимеризации в блоке и растворе. Достоинством данного способа является также легкость теплоотвода. Недостатки способа в основном связаны с дополнительными затратами на очистку конечного продукта от эмульгатора. [c.29]

    Исследования кинетики эмульсионной полимеризации показывают, что роль эмульгаторов не ограничивается только стабилизацией эмульсии. Эмульгатор сильно влияет на сам процесс полимеризации, определяя его механизм. [c.213]

    Оно может служить одним из способов управления химической реакцией. Например, как уже отмечалось, парамагнитные ионы могут влиять на молекулярный вес полимера, полученного эмульсионной полимеризацией. Фотохимическое разложение молекул нередко проходит через стадию образования триплетной РП. Парамагнитная добавка может увеличить вероятность геминальной рекомбинации таких пар и тем самым повысить устойчивость системы к действию света. Спиновый катализатор может увеличить также вероятность рекомбинации диффузионных РП. В цепных реакциях рекомбинация диффузионных РП является одним из механизмов обрыва цепи, и поэтому парамагнитными добавками можно надеяться управлять цепными реакциями. [c.74]

    Полимерные защитные коллоиды (ПЗК) при растворении в воде не образуют мицелл и механизм эмульсионной полимеризации с использованием их в качестве стабилизаторов дисперсий существенно отличается от описанного выше применительно к ионогенным и неионогенным эмульгаторам. [c.29]

    Сходство механизмов эмульсионной полимеризации ВА в присутствии ПЗК и полимеризации в суспензии подтверждается также высокими значениями энергии активации, эмульсионного процесса (100—105 кДж/моль), близкими к соответствующим значениям для полимеризации ВА в массе, и подобием ММР получаемых обоими методами полимеров [35]. Об этом же свидетельствует единая зависимость предельного числа вязкости [т)] (характеристической вязкости) от ММ для ПВА, полученного как полимеризацией при 65—80°С в суспензии, так и эмульсионным методом в присутствии ПВС  [c.30]

    Характерной чертой эмульсионных систем является наличие развитой поверхности раздела между полярной (вода) и неполярной или слабополярной (мономер) фазами. Размеры, число и форма частиц, физико-химические свойства поверхности зависят от строения мономера, природы эмульгатора, его концентрации, соотношения фаз мономер—вода, pH водной фазы и наличия добавок. Поэтому прежде чем перейти к подробному анализу особенностей механизма и кинетики эмульсионной полимеризации, целесообразно рассмотреть различные типы эмульсионных полимери- [c.10]

    Как показали расчеты [39], аналогичный вид имеют зависимости л(т) и при других значениях параметра к, отвечающих тем реальным процессам эмульсионной полимеризации, которые протекают по механизму быстрого обрыва. При этом по прошествии релаксационного периода, не превышающего 3—4 т, наступает стационарный период, в ходе которого можно считать среднее число радикалов на одну латексную частицу постоянным и равным 0,5. Возможная ошибка в этом случае не будет превышать 6%. [c.82]

    Изложенная в гл. 2 количественная теория эмульсионной полимеризации создана при математическом рассмотрении модели процесса, не учитывающей молекулярного взаимодействия на границе раздела фаз. Очевидно, при полимеризации в водной среде этот фактор имеет тем большее значение, чем более полярен мономер. От его зависят такие важные параметры процесса, как взаимо-действ ие между частицами, истинная и коллоидная растворимость мономера, адсорбция эмульгатора, равновесная концентрация мономера в частицах и др. Существенное различие этих параметров, при полимеризации полярных и гидрофобных мономеров должно привести к значительным изменениям в механизме образования частиц, в кинетике процесса и коллоидном поведении образующихся латексных систем. [c.85]


    Топохимии и особенно кинетике эмульсионной полимеризации бутадиена также было посвящено большое число работ в разных странах основные из них отражены в упомянутых выше монографиях. Первые серьезные кинетические исследования этого процесса были проведены Догадкиным с сотр. [5, 6]. Топохимия процесса была подробно изучена Юрженко с сотр. [7], причем в этой работе именно на примере бутадиена был наиболее убедительно доказан мицеллярный механизм эмульсионной полимеризации (с введением мономера из газовой фазы в раствор эмульгатора и инициатора). Проведенные немецкими и затем американскими учеными систематические работы в данной области носили в большей степени прикладной, чем теоретический характер и были посвящены сополимеризации бутадиена со стиролом. Наиболее строгое сравнение топохимии процессов полимеризации бутадиена и стирола (а также их смесей) в одинаковых условиях было осуществлено недавно [8]. Некоторые данные, полученные при использовании мыл жирных кислот в качестве эмульгаторов, приведены на рис. 4.1 и 4.2. [c.162]

    В работах А, И. Юрженко, С. С. Медведева, П. М. Хомиков-ского выдвинуты основные представления о механизме и топографии эмульсионной полимеризации, механизмах ингибирования термической и инициированной полимеризации. [c.12]

    Реакция эмульсионной полимеризации диолефинов протекает по радикальному механизму. Длительность реакции определяется характером инициатора, его концентрацией и температурой среды. Обычно полимеризацию проводят при 50—70. Нагревание системы необходимо для того, чтобы вызвать термический распад перекисного инициатора. С понижением температуры улучшается качество полимера, уменьшается содержание в нем 1—2-звеньев и возрастает средний молекулярный вес. Для снижения температуры полимеризации применяют окислительновосстановительные инициаторы, распадающиеся при более низкой температуре, чем перекисные инициаторы. В качестве окислителей применяют перекпгм, восстановителями служат амины, би-с -. 1Ь(11ит натрия и др. [c.235]

    Латексная (или эмульсионная) полимеризация применяется для осуществления процессов, протекающих чаще всего по свободнорадикальному механизму. Наиболее строгая теория латексной полимеризации (теория Смита - Юэрта) развита для полимеризации практически нерастворимых в воде мономеров под действием водорастворимых инициаторов в присутствии ионогенных эмульгаторов с концентрациями, значительно превышающими их критическую концентрацию мицеллообразования, Теория применима лишь в тех случаях, когда образующийся полимер растворим в собственном мономере. [c.94]

    Существует несколько объяснений механизма эмульсионной полимеризации. Принято считать, что в случае, когда мономеры в воде нерастворимы, процесс полимеризации протекает в мицеллах поверхностно-активных веществ, куда проднффундировал из капель эмульсии мономер. Туда продолжают поступать новые порции мономера по мере его полимеризации и образуются полимерномономерные частицы [3,13]. Обычно их размеры колеблются в пределах от 10 до 100 нм. Концентрация полимера в мономере в этих частицах доходит до 60%. По мере исчерпания капеяь эмульсии концентрация полимера в полимерно-мономерных частицах возрастает. За счет этого увеличивается плотность частиц, теряется устойчивость дисперсии (при отсутствии сильного перемешивания) и частицы полимера оседают на дно. [c.83]

    С помощью радиосеры был, изучен ряд вопросов механизма эмульсионной полимеризации неопрена. Было установлено, что один атом серы в образующемся полимере приходится на цепочку, содержащую 80—100 молекул исходного неопрена. Влияние тетраэтилтиурамдисульфида на некоторые механические свойства полимера объясняется тем, что этот препарат извлекает часть атомов серы из голисульфидной цепи. [c.219]

    Адсорбционная насыщенность ПВАД, стабилизированных эмульгатором С40, приближается к 100% и не зависит от концентрации С-10 в пределах содержания его 4—10% от массы мономера. Диаметр частиц дисперсии уменьшается с увеличением отношения эмульгатор мономер (рис. 1.8) и не изменяется с начала полимеризации и до глубокой конверсии. Последнее обстоятельство, а также независимость скорости полимеризации ВА от концентрации мономера позволяет предполагать возможность протекания процесса от начала до конца в микроблоках, образующихся из микроэмульсии. ВА в растворе эмульгатора. Зарождение частиц в мономерной фазе при диаметре капель мономера менее 0,7—1,1 мкм отмечалось и при амульсионной полимеризации других мономеров в случае использования смеси ионогенных и неионогенных эмульгаторов [33, с. 72] Наличие гель-эффекта при эмульсионной полимеризации ВА в присутствии неионогенных ПАВ, определяемого по появлению разветвленности ПВА в области конверсии мономера 50—70%, не характерного для эмульсионной полимеризации ВА в присутствии волгоната, также подтверждает особенность механизма полимеризации ВА в растворах неионогенных эмульгаторов [34]. [c.28]

    В соответствии с представлениями о механизме эмульсионной полимеризации Харкинса [221] и Юрженко [151] начальная систе содержит в водной фазе капли мономера, полученные при перемет, вании в присутствии эмульгатора основная часть эмульгатора нах дится в мицеллярном состоянии, инициатор растворен в воде. Полим ризация протекает в полимер-мономерных частицах, образующихся мицелл после попадания в них радикалов из водной фазы. Полимер, зацию условно разделяют на три стадии образование полимер-мономерных частиц, которое заканчивается в момент исчерпания эмульгатора, находящегося в мицеллярном состоянии и расходующегося на покрытие растущей поверхности частиц полимеризация при постоянном числе полимер-мономерных частиц в присутствии капель мономера, обеспечивающих подпитку частиц мономером через водную фазу завершающая стадия, которая начинается после исчерпания капель мономера. На основании этих представлений Смитом и Эвартом проведено количественное описание эмульсионной полимеризации [253, 254]. При выводе исходных уравнений делаются дополнительные упрощающие предположения на первой стадии остается постоянной суммарная площадь поверхности полимер-мономерных частиц и мицелл диффузия мономера через воду является быстрой и не лимитирует скорость полимеризации кон центрация мономера в полимер-мономерных частицах остается постоянной, пока в системе имеются капли мономера. [c.66]

    Несколько иные представления о механизме эмульсионной полимеризации были сформулированы Медведевым и сотр. [14, 86]. В соответствии с этими представлениями, хотя полимер-мономерные частицы и образуются из мицелл эмульгатора, суммарная поверхность частиц в процессе полимеризации остается постоянной, а все элементарные реакции (инициирование, рост и обрыв цепи) протв1 ают в адсорбированном слое эмульгатора. При этом для скорости полимеризации получено выражение, отличающееся от (1.94) , где [c.67]

    Бовей и Кольтгоф [291] при изучении механизма эмульсионной полимеризации стирола установили с помощью полярографических исследований активную роль кислорода в этом процессе. Одним из продуктов, образующихся в течение индукционного периода, является сополимер стирола с кислородом состава 1 1, имеющий пероксидный характер  [c.196]

    В послевоенные годы в нашей стране получили быстрое развитие исследования по синтезу высокополимерных соединений и изучению механизма полимеризации. Одним из видных ученых в этой области был Сергей Сергеевич Медведев (1891—1970). Его научная деятельность протекала в Физико-химическом институте им. Л. Я. Карпова. Он выдвинул теорию полимеризации на основе кинетики цепных процессов с участием свободных радикалов. С. С.Медведев изучал также механизм эмульсионной полимеризации и влияния радиации на ход полимеризации. Валентин Алексеевич Каргин (1907— 1969) также работал в Физикохимическом институте им. Л. Я- Карпова, а в послевоенные годы возглавил кафедру высокополимерных соединений Московского университета. Первые его работы посвящены коллоидной химии, но в послевоенные годы он целиком перешел к исследованиям по химии высокополимерных материалов. Большое значение для развития этой области получили работы В. А. Каргина по изучению структурно-механических свойств высокополимеров. Его труды привели к решению ряда технологических проблем производства пластических масс, каучуков и искусственных волокон. Он основал советскую школу физикохимиков-полимерщиков. [c.302]

    Первые представления по механизму и топохимии эмульсионной полимеризации сводились к допущению, что процесс протекает в каплях эмульсии мономера [57, 58]. Назначение эмульгатора сводилось к стабилизации эмульсии и образующегося латекса. Однако были получены многие эксттериментальные результаты, противоречащие таком у упрощенному взгляду. Если бы полимеризация протекала в каплях мономера, средний диаметр частиц латекса должен был бы соответствовать среднему диаметру капель. На практике средний диаметр частиц латекса в десятки и сотни раз меньше диаметра капель заэмульгированного мономера. Та-ое значительное диспергирование органической фазы нельзя бъяснить влиянием перемешивания, так как латекс может образовываться и без перемешивания, и даже в отсутствие капель мо-нОхмера При насыщении системы мономером, находящимся в газовой фазе [59—62]. [c.15]

    Представления о топохимии и механизме протекания эмульсионной полимеризации были одновременно и независимо высказаны и экспериментально доказаны в работах Юрженко [59, 62] и Харкинса [60, 61]. В дальнейшем они были развиты и уточнены в работах Медведева и его школы [3, 9—16]. Показаны решающее значение э.мульгатора в возникновении и стабилизации микро-гетерогенной полимеризационной системы, а также возможность управлять не только кинетическими характеристиками полимеризационного процесса, но и свойствами синтетических латексов, изменяя природу и концентрацию эмульгатора. [c.15]

    Большое значение уделяется адсорбционным слоям эмульгатора при определении кинетики и механизма протекания эмульсионной полимеризации в работах Мелконяна и сотр. [106—109]. Ими выдвинута гипотеза об образовании молекулами ПАВ в мицеллах и слоях эмульгатора шестигранной структуры в виде системы микрокапилляров, где расположены солюбилизированные молекулы мономера. Эти капилляры, строение которых определяется природой эмульгатора и условиями полимеризации, являются самостоятельными элементарными ячейками, где осуществляется процесс полимеризации с учетом совместного взаимодействия молекул [c.28]

    Второй и третий предельные случаи, рассмотренные Смитом и Юэртом, соответствуют малой вероятности выхода радикалов в водную фазу, причем частицы служат как бы ловушками, не позволяющими попавшим в них радикалам выходить обратно. При таком механизме изолирования радикалов, являющемся специфическим для эмульсионной полимеризации, можно значительно повышать их концентрацию по сравнению с гомогенными процессами при равной скорости инициирования вследствие невозможности взаимной рекомбинации радикалов из разных латексных частиц. Последнее обстоятельство открывает возможность получить при полимеризации полимеры с большой молекулярной массой со скоростью, значительно превышающей скорость гомогенных процессов. [c.57]

    Из изложенного в этом разделе можно сделать заключение о многосторонней роли эмульгатора при эмульсионной полимеризации. Однако в случае полярных монод ероз и водорастьоркмого инициатора его важнейшим назначением является стабилизация первичных частиц или нх агрегатов. От эффективности эмульгатора в данной полимеризационной системе зависит число частиц и механизм их формирования. Через коллоидную устойчивость системы эмульгатор может влиять на кинетику процесса, так как определяет, с одной стороны, число мест полимеризации, а с другой — число радикалов в частицах, зависящее от их объема и вязкости, а также от процесса и кинетики их флокуляции. [c.121]

    Роу подходит к выбору эмульгатора с других позиций [147, 148]. Число частиц, образующихся при эмульсионной полимеризации (например, стирола), зависит от типа и концентрации использованного эмульгатора. Если вводят большое количество эмульгатора, то число их так велико, что это вызывает высокую скорость полимеризации, сопровождающуюся образованием огромной поверхности раздела. Поэтому оставшегося эмульгатора недостаточно для стабилизации системы при дальнейшей конверсии. Последующее добавление эмульгатора связано с технологическими затруднениями, так как приводит к вспениванию латекса. Исхаая из этого, Роу отдает предпочтение новому типу олигомерных эмульгаторов, представляющих собой набор продуктов с различной степенью поверхностной активности [148]. Механизм действия таких эмульгаторов он описывает следующим образом. Зародыши частиц, образующиеся на ранних стадиях полимеризации, селективно адсорбируют молекулы олигомерного эмульгатора наименьшего размера, т. е. наибольшей поверхностной активности. Генерация новых частиц продолжается до тех пор, пока они сразу после образования не будут флокулировать с уже существующими, так как ак- [c.129]

    Третья возможная реакция — это перенос реакционной цепи ка полимер, приводящий к разветвлению макромолекул. Она редко встречается при гомонолимеризации виниловых мономеров и всегда протекает в большей или меньшей степени при эмульсионной полимеризации бутадиена и других диеновых углеводородов параллельно с обычной реакцией роста цепи. Этот перенос возможен по двум механизмам  [c.161]

    Диаметры частиц синтетических латексов обычно лежат в пределах 10 —10" см. Форма и размеры частиц синтетических латексовтесно связаны с механизмом и физико-химическими особенностями процесса эмульсионной полимеризации. Не останавливаясь специально на характеристике эмульсионной полимеризации, обстоятельно рассматри ваемой е соответствующих руководствах, отметим лишь следующее. [c.7]


Смотреть страницы где упоминается термин Эмульсионная полимеризация механизм: [c.282]    [c.83]    [c.290]    [c.60]    [c.93]    [c.7]    [c.54]    [c.78]   
Общая технология синтетических каучуков Издание 4 (1969) -- [ c.335 ]

Поверхностноактивные вещества и моющие средства (1960) -- [ c.474 , c.475 ]

Синтетические каучуки (1949) -- [ c.307 ]




ПОИСК





Смотрите так же термины и статьи:

Эмульсионная полимеризация



© 2025 chem21.info Реклама на сайте