Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этерификация особенности процессов

    Особенно целесообразно применять этот процесс для этерификации низкомолекулярных спиртов, бутанолов, амиловых спиртов и т. д. [122]. Для получения хлористых алкилов из высокомолекулярных втор-спиртов хлористый тионил непригоден. Эта особенность процесса объяснена в литературе [123]. [c.195]

    За исключением указанной особенности, присущей нитрофево-лам, этерификация фенолов при действии сульфохлоридов не осложняется побочными процессами при самых разнообразных условиях реакции. -Нафтол реагирует с п-толуолсульфохлоридом [158] при нагревании до 140°, причем этерификация облегчается присутствием конденсирующих агентов. Согласно одному сообщению [159], бензолсульфохлорид реагирует с фенолом при 60° в присутствии цинка, однако целесообразность применения этого катализатора вызывает сомнение. Большое значение имеет метод, заключающийся в обработке фенола в растворе щелочи [160] или углекислого натрия [161] сульфохлоридом. Если сульфохлорид представляет собой твердое вещество, его можно предварительно растворить в бензоле или эфире. Применение в качестве реакционной среды спирта [162] имеет то преимущество, что получается гомогенная реакционная смесь, и это особенно важно в случае высокомолекулярных фенолов, например 2,5-дифенилфенола [163]. Фенолят натрия [164а] легко реагирует с сульфохлоридами в бензольном растворе. Серебряная соль 2-нитро-4-метилфенола [1646] реагирует с п-толуолсульфохлоридом аномально из реакционной смеси выделено соединение, которое не содержит серы (G14H23O5N). [c.337]


    Особенности процессов этерификации целлюлозы 335 [c.335]

    ОСОБЕННОСТИ ПРОЦЕССОВ ЭТЕРИФИКАЦИИ ЦЕЛЛЮЛОЗЫ [c.335]

    Специфические особенности процессов этерификации целлюлозы, определяющие как кинетику реакции, так и свойства получаемых эфиров целлюлозы, заключаются в следующем  [c.335]

    Указанные особенности процесса этерификации целлюлозы, обусловленные структурой и свойствами целлюлозного волокна, определяют сложность этих процессов и многообразие факторов, влияющих на кинетику процесса и свойства получаемых эфиров целлюлозы. [c.335]

    При периодическом процессе продукты реакции в течение длительного времени не выводят из зоны реакции, что приводит к различным побочным реакциям — этерификации, конденсации, декарбоксилирования и последующего окисления. Образование продуктов конденсации особенно интенсивно идет при наличии в составе окисляемого парафина примеси циклопарафинов, многокольчатых нафтеновых и ароматических углеводородов и сернистых соединений. В зависимости от температуры и времени реакции образуются жирные кислоты, длина углеродной цепочки которых отличается от длины углеродных цепочек исходных парафинов. [c.90]

    Важнейшей химической особенностью сложных эфиров является их способность распадаться при действии воды на исходные вещества — кислоту и спирт. Это превращение, обратное процессу этерификации, называется гидролизом или омылением сложных эфиров. Как и этерификация, гидролиз катализируется протонами, а кроме того (отличие от этерификации ), гидролиз ускоряется и под действием оснований, катализаторами в этом случае служат гидроксильные ионы. Схема щелочного гидролиза  [c.195]

    В действительности же процесс образования алкидных смол является значительно более сложным. Протекают побочные реакции, например 1) образование простых эфиров путем отщепления воды из двух гидроксильных групп и 2) внутримолекулярная этерификация, особенно при иовыщенных температурах. Глицерин, например, образует ди- и триглицерииы. Поэтому всегда необходимо применять избыточное по отношению к теории количество иолиалкоголя. Для алкидной смолы, модифицированной жирной кислотой, содержащей 30% фталевой кислоты, этот избыток практически 10% полиалкоголя. [c.107]

    Мы не будем рассматривать здесь различные типы измери тельных ячеек и приборов, выпускаемых промышленностью, и технику работы на них — для этого существуют специальные руководства. Типы кривых осциллометрического титрования в основном сходны с кондуктометрическими. Но в осциллометрии ветви кривых линейны только в том случае, если измерения проводят в области перегиба характеристических кривых и не происходит слишком сильных изменений электропроводности. В противном случае на кривых в большей или меньшей степени возникают плавные изгибы. При проведении измерений в выбранной оптимальной рабочей области получают такую же, а иногда даже большую точность измерений, чем в кондуктометрии. Поэтому области применения осциллометрии и кондуктометрии совпадают, иногда осциллометрия даже более предпочтительна. Это происходит в тех случаях, когда важны такие преимущества осциллометрии, как возможность безэлектродных измерений и увеличение чувствительности с уменьшением диэлектрической проницаемости. Осциллометрик используют для индикации кислотно-основного, осадительного и комплексометрического титрования различных типов, а также при титровании агрессивных растворов и в неводных средах. Она пригодна и для решения различных кинетических проблем при исследовании процессов кристаллизации, растворения (на- пример, гидраргиллита в алюминатном щелоке), омыления, этерификации, полимеризации, самоокисления и т. д. Метод ос-Циллометрии находит применение в фазовом анализе, например при изучении процесса плавления, затвердевания, фазового обмена, расслоения, для построения диаграмм состояния и т.д. Особенно важным является использование осциллометрии для Контроля и регулирования процессов производства. Этот метод пригоден для неразрушающего анализа ряда продуктов или содержимого ампул. [c.336]


    Таким образом, оценивая влияние различных катализаторов на процесс этерификации карбоновых кислот оксисоединениями, следует отметить, что наибольший интерес для промышленного производства сложноэфирных пластификаторов ио техническим, экономическим и социологическим соображениям представляют катализаторы, включающие титанорганические соединения. Особенно необходимо подчеркнуть очень малые количества применяемых катализаторов [18], высокую степень превращения карбоновой кислоты в сложный эфир, простоту удаления из реакционной массы путем высаждения на сорбенте. [c.10]

    Гомогенно-каталитические реакции особенно распространены при проведении процессов в жидкой фазе. К таким процессам относятся ускоряющиеся под действием водородных ионов реакции этерификации и гидролиза сложных эфиров, инверсии сахаров, мутаротации глюкозы, а также катализируемый некоторыми анионами и катионами распад перекиси водорода в водных растворах. Кроме того, гомогенно-каталитическими являются реакции полимеризации олефинов в жидкой фазе под действием серной кислоты, полимеризация олефинов в жидкой и паровой фазах в присутствии трехфторнстого бора или фтористого водорода и многие другие. [c.276]

    Отгоняющуюся гетероазеотропную смесь разделяют, растворитель возвращают в процесс. Азеотропный метод этерификации позволяет значительно сократить количество минеральной кислоты, добавляемой в реакционную смесь, часто заменить ее арилсульфокислотой. Это особенно важно в том случае, если продукты реакции чувствительны к кислой среде. Скорость образования сложных эфиров зависит от строения исходного спирта и кислоты. Легче всего этерифицируются первичные спирты, значительно труднее вторичные и третичные. Аналогичная закономерность наблюдается и в реакционной способности кислот нормального и изо-строения. [c.245]

    Ввиду хорошо управляемой обратимости процесса реакции этерификации и гидролиза сложных эфиров, начиная с работ Оствальда в 80 х годах, служили постоянным объектам многочисленных кинетических исследований, которые обогатили важными научными результатами как кинетику, так и учение о катализе, в особенности представления в области гомогенного катализа. Механизм этих реакций тем не менее остается еще недостаточно полно изученным. [c.295]

    Характерной особенностью развития катализа,— подчеркивает Тэйлор,— является тот факт, что успехи этой науки всегда определялись эмпирическими исследованиями. Процессы брожения, происходящие при получении вина и уксуса, производство мыла и процессы этерификации были известны раньше, чем возникли первые представления о механизме каталитического действия, и такое положение сохранилось до настоящего времени. Теория катализа принуждена обычно следовать за этими практическими приложениями — результатом изобретательности научных работников [1]. Это признание сделано тем, кого можно назвать одним из видных теоретиков катализа. [c.113]

    Хотя к исследованию кинетики начальных стадий одной из наиболее важных реакций поликонденсации — этерификации — приступили еще в 1860—1880-х годах [1], до сих пор даже в таких хорошо и давно изучаемых поликонденсационных процессах, как полиэтерификация и полиамидирование, все-таки нет еще общей точки зрения, всесторонне объясняющей кинетические особенности [c.91]

    Реакции по алкил-кислородной связи и прямой синтез эфиров из олефинов. Кроме рассмотренных выше реакций по ацил-кис-лородной связи, типичных для этерификации и превращений сложных эфиров, возможны процессы, идущие с образованием или разрывом алкил-кислородных связей. Они нередко протекают с промежуточным образованием карбокатионов, и им способствует такое строение спиртовой и кислотной компоненты, которое благоприятствует поляризации алкил-кислородной связи или стабилизации карбокатиона. Именно по этой причине некоторые сложные эфиры, особенно эфиры серной и арилсульфокислот, являются известными алкилирующими агентами [c.198]

    Следует также отметить, что прп сравнительно небольших избытках спирта (до 50—100% по сравнению со стехпометрическнм) свойства реакционной среды — полярность, диэлектрическая проницаемость, pH и др. по мере углубления процесса, особенно на его первых стадиях, резко изменяются, что оказывает влияние на реакционную способность реагентов, которая может несколько увеличиться. Это обстоятельство учитывается вводом в кинетическое урагление коэффициента ускорения [125]. Ускорение (индукционный период) этерификации отмечено при изучении взаимодействия фталевого ангидрида с 2-этилгексанолом [125, 126], лаури-ловой и адипиновой кислот с лауриловым спиртом [121], уксусной кислоты с бутанолом [118], а также этанола и метанола с молочной кислотой [117, 123]. [c.35]


    Важная особенность процессов, катализируемых ионитами — сравнительно низкая температура, определяемая термической стойкостью катализатора. Обычно она не превышает 100—150 °С, хотя известны случаи, когда рекомендуются и более жесткие условия. Например, для этерификации стеариновой кислоты миристи-човым спиртом или глицерином рекомендована температура 200— 300 °С (пат. ГДР 8560), для дегидратации бензилового спирта — 277—290° [409], для дегидрохлорирования полихлорциклогекса-нов 180—350°С (англ. пат. 719601). [c.321]

    Периодические методы осуществления жидкофазных гетерогеннокаталитических реакций используют в промышленности достаточно широко при производстве относительно малотоннажных продуктов фармацевтических.препаратов, душистых веществ и т. п. Аппараты для периодического проведения гетерогенно-каталитических реакций не отличаются от реакторов периодического действия для проведения пекаталитических реакций. Реакторы должны оснащаться устройствами, обеспечивающими хорошее перемешивание реакционной смеси, — мешалками или выносными циркуляционными контурами. Это особенно важно при проведении газо-жидкостных реакций. Если реакция проводится при кипении жидкости, как, например, этерификация с твердыми катализаторами, то перемешивание осуществляется за счет кипения и специальной мешалки не требуется. Естественно, что реакционные аппараты должны быть снабжены устройствами для подвода или отвода тепла к реакционной массе в виде теплообменников или рубашки. Если процесс проводится под давлением, аппараты представляют собой автоклавы, конструкция которых зависит от величины давления. Для высоких давлений особенно удачны бессальниковые автоклавы с экранированным двигателем и принудительной внутренней циркуляцией, обеспечиваемой винтовым насосом, помещенным внутри аппарата. [c.274]

    Характерные особенности процесса ннтревания целлюлозы. Кроме общих закономерностей процессов этерификации целлюлозы, нитрование целлюлозы характеризуется следующими особенностями. [c.261]

    Во многих случаях возможности кинетического изотопного метода оказываются поистине уникальными. Около полутора десятилетий назад, рассматривая перспективы применения метода, М. Б. Нейман писал Наибольших результатов, как нам кажется, можно ожидать от применения кинетического метода для изучения механизма реакций окисления, крекинга, полимеризации, изомеризации, гетерогенных реакций гидрирования, гидратации, этерификации и т. д. Несомненна также перспективность применения кинетического метода для изучения биохимических процессов, в особенности процесса обмена веществ, влияния на него физических и химических воздействий, а также проницаемости гемато-энце-фалического и других барьеров  [c.5]

    Реакция во многом сходна с этернфикацией. Она также обратима, но, по сравнению с этернфикацией, ее равновесие сильнее смещено вправо. Строение кислоты оказывает такое же влияние на термодинамику и скорость амидирования, как при этерификации (разветвление и удлинение углеродной цепи кислоты повышает константу равновесия, но снижает скорость процесса). Аммиак и особенно амины являются более сильными нуклеофильными реагентами, чем спирты, поэтому амидирование может протекать в отсутс вие катализаторов путем нагревания реагентов при 200— 300 °С в жидкой фазе. Удаление воды при использовании избытка аммиа<а (или амина) способствует достижению высокой степени конверсии. В отдельных случаях рекомендовано применять катализаторы кислотного типа, например AI2O3. [c.221]

    По словам Б, Нернста, справедливость этого уравнения была подтверждена В. А. Кистяковским па большом числе опытов, причем, что особенно нал по, оказалось, что сумма к + кя имеет одно и то же значение, исследуется ли образование сложного эфира или же его распадение Таким путем В. А. Кистяковский пришел к выводу закона о пезавпсимости каждой химической реакции в сложном химическом превращении. Этот закон служил ему основой для классификации различных химических процессов, состоящих из одповрелгеино протекающих отдельных реакций или противоположного направления (случай этерификации), или параллельного (действие одного вещества па несколько веществ), или последовательного (действие одного вещества, последовательно заменяющего атомы другого вепдества, папример хлорирование углеводородов, последовательное образование первичных, вторичных и третичных аминов — реакция Гофмана и др.). [c.345]

    Диэтиленгликольдинитрат получают этерификацией диэтнленгликоля серно-азотной смесью иа установках той же конструкции, что и для получения нитроглицерина [7]. но технологический процесс имеет некоторые особенности. Более жесткие требования предъявляются к исходному сырью, в частности к диэтиленгликолю. Последний, так же как и глицерин, помимо обычных испытаний, резко ограничивающих содержание в нем прнмесей, подвергают пробной этерификации. [c.330]

    Для этерификации диэтиленгликоля использовалась кислотная смссь состава 33—35% Н Юз -64—65% H2SO4 и 0—2% Н2О. Особенности ведения процесса следующие в змеевики нитратора подается охлаждающий рассол с температурой —15 , и весь процесс ведется прн 15—20 , [c.330]

    Соединения щелочных металлов, особенно алкоголяты, являются хорошими катализаторами реакций этерификации и переэтерификации. В процессах переэтерификации они действуют активнее кислот и находят промышленное применение. Так, натрийкалиевый сплав используется при переэтерификации свиного жира [199, 200], а метилат натрия представляет собой лучший из щелочных катализаторов переэтерификации триглицеридов [201]. [c.16]

    Дигликольтерефталат или низшие линейные олигомеры, полученные способом прямой этерификации терефталевой кислоты этиленгликолем (этерификат) отличаются от продукта переэтерификации диметилтерефталата. В отсутствие метоксигрупп обеспечивается возможность получения полимера более высокой молекулярной массы, чем из переэтерификата. Но в этерификате, как правило, содержится заметное количество свободных неэтерифицированных карбоксильных групп. Это обусловливает некоторые особенности кинетики процесса поликонденсации. [c.70]

    В значительно меньшей степепи те же побочные процессы имеют место при проведеиии этерификации высших спиртов в присутствии безводных арилсульфокислот [2—4], но работа с последними, особенно в больших масштабах, осложняется нх высокой гигроскопичностью. [c.21]

    Наиболее сложные проблемы с улучшением цвета возникают ири исиользовании в качестве катализатора этерификации минеральных кислот, особенно серной кислоты. Эта кислота характеризуется отличным каталитическим действием и поэтому широко применяется иа практике. Одиако она в значительной степени катализирует и дегидратацию спиртов с образованием непредельных соединений, олефинов и др., образует окрашенные побочные продукты реакции, взаимодействует с фталевым ангидридом, эте-рифицируется с образованием сульфоэфиров. Для снижения окисляющего действия целесообразно серную кислоту ири вводе в процесс быстро диспергировать или применять ее в виде 50—65%-но-го водного раствора [155]. [c.64]

    При применении пластификатора очень важное значение имеет сохранение его цвета в процессе переработки пластифицированного полимера и при эксплуатации готового изделия. В этой связи большое влияние на цвет пластифйкатора оказывает технология его получения. Особенно это относится к способу очистки сложного эфира от примесей катализатора этерификации (серной кислоты, арилсульфокислот, алкилатов металлов) и продуктов его этерификации. Так, при взаимодействии арилсульфокислот со спиртами образуются термостойкие диалкилсульфаты, разлагающиеся с образованием радикала сильной кислоты, которая вызывает ос-моление органических соединений. Смолообразные продукты способствуют изменению первоначального цвета пластификаторов. Для сохранения цвета пластификатор-сырец осветляют различными способами [59, 65—76]. Так, эфир-сырец обрабатывают озоном при 10—100 °С с последующим восстановлением (водородом А присутствии никеля Ренея, сульфитами щелочных металлов и пр.) и дополнительной промывкой водными растворами гидроок- сидов щелочных металлов [65, 68]. Сообщается об осветлении сложного эфира воздухом или кислородом [66]. Чаще всего эфир-сырец подвергают действию сухой кальцинированной соды [68, 69] или ее 10%-ным водным раствором [70], 0,1—5%-ным водным раствором гидроксида, карбоната или бикарбоната аммония, натрия, калия [71]. Применяется также обработка сложного эфира оксидами, гидрооксидами щелочно-земельных металлов [72], активированным оксидом алюминия или оксидом алюминия с примесью оксида кремния [73]. Готовый пластификатор дополнительно обрабатывают сорбентами в индивидуальном виде или в виде смеси с оксидами натрия, магния, алюминия, кремния, железа, взятыми в количестве до 10% от массы эфира в токе инертного газа при 100—150°С в течение 0,1—3 ч [74]. Для тех же целей может применяться щелочной активированный уголь [75] или ионообменные смолы [76]. [c.105]

    При осуществлении процессов этерификации в промышленных масштабах большое значение имеет реакционная способность кислот и спиртов, которая определяет технологические параметры и производительность основного реакционного аппарата. Строение спирта влияет на скорость реакции так же, как и на ее равновесие, т. е. с удлинением и разветвлением алкильной группы скорость реакции снижается. Влияние строения карбоновых кислот на скорость этерификации противоположно их влиянию на равновесие. Так, удлинение и разветвление угд зод-ной цепи карбоновой кислоты ведет к увеличению константы равновесия, но к снижению скорости химической реакции. Особенно медленно реагируют ароматические кислоты скорость их этерификации в 40—100 раз меньше, чем для уксусной кислоты. [c.166]

    Перенапряжение скелетных связей при деформации макромолекул, сопровождаемое искажением орбиталей межатомных связей боковых групп, вызывает их активацию. Активирующий эффект проявляется наряду с эффектом вскрытия новых, адсорбционно ненасыщенных поверхностей при механодиспергировании жестких полимеров. Например, при механодиспергировании волокон поли-акрилонитрила (ПАН) в вибромельнице в присутствии омыляю-щего агента 0,35%-ным ЫаОН и при омылении тем же раствором предварительно диспергированного волокна обнаружено проявление [124, 125] собственно механоактивации и постэффекта (см. рис. 13). Особенно существенен эффект собственно механоактивации, позволяющий в 6 раз ускорить процесс и увеличить степень омыления до 50%. Несомненно, что подобная механоактивация будет происходить и при других полимераналогичных превращениях любых полимеров, например этерификации или омылении эфиров целлюлозы, омылении поливинилацетата, полиакрилатов и т. д. [c.47]

    При использовании в процессе этерификации лесохимической уксусной кислоты, в особенности бутанола СК, получа ется черный эфир сырец, загрязненный смолистыми вещест вами Он содержит 89—91 % эфира, общая кислотность 0,5— 0,8%, коэффициенты использования уксусной кислоты до 97,8 и бутанола 98,9 % Возвратный бутанол содержит 34—40 % эфира, 50—56 спирта, 6—9 воды и до 0,2 % ускусной кислоты На описанном двухколонном НДА можно переработать 60— [c.135]

    Водные растворы феиолоспиртов и олигомерных резольных смол обладают невысокой стабильностью, особенно в кислой среде и при повышенной температуре Это обусловлено дальнейшим протеканием процесса поликонденсации и образованием нерастворимых продуктов Наибольшей стабильностью обладают водные растворы при pH 7,3—7,6 При этерификации метилольных групп феиолоспиртов многоатомными спиртами стабильность их водных растворов повышается [c.225]

    Оксиэтилированные эфиры целлюлозы совместимы с электролитами. Эти эфиры находят все более широкое применение в составе зубных паст, это позволяет снизить содержание в них мела. МЕТИЛЦЕЛЛЮЛОЗА (МЦ) в зубных пастах находит более ограниченное применение. Это простой метиловый эфир целлюлозы. Его получают при взаимодействии щелочной целлюлозы с хлористым метилом. Характерной особенностью этого эфира является способность образовывать коллоидные растворы только в холодной воде. При повышении температуры воды метилцеллюлоза коагулирует. Вязкость растворов МЦ увеличивается в зависимости от степени этерификации. Наибольшую вязкость имеют растворы МЦ со степенью этерификации 100. Метиловый эфир целлюлозы может быть использован только при получении зубных паст, не содержащих глицерин. При их приготовлении необходимо строго контролировать температуру, так как при температуре выше 40° С однородность структуры пасты нарушается. Срок хранения таких паст не более 6 месяцев из-за малой гигроскопичности МЦ. В составе отечественных паст не применяется, АЛЬГИНАТ НАТРИЯ выделяют из бурых водорослей семейства ламинария. Хорошо совместим с основными компонентами зубных паст. В воде растворяется очень легко, а при определенных концентрациях дает вязкие структурированные растворы. В присутствии свободных ионов кальция переходит в альгинат кальция, вызывающий затвердевание зубных паст. Для предотвращения этого процесса в пасты вводят специальные комплексообразующие вещества — сукцинат натрия, триполифос-фат и др. В составе отечественных зубных паст не применяется. [c.148]


Смотреть страницы где упоминается термин Этерификация особенности процессов: [c.292]    [c.365]    [c.317]    [c.183]    [c.166]    [c.229]    [c.183]    [c.35]    [c.36]    [c.311]    [c.17]    [c.88]    [c.179]    [c.40]   
Химия целлюлозы и ее спутников (1953) -- [ c.335 ]




ПОИСК





Смотрите так же термины и статьи:

Особенности процесса

Этерификация



© 2025 chem21.info Реклама на сайте