Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энтропия, изменения при равновесии

    В состояниях, не слишком далеких от равновесного, оба эти фактора действуют обычно в противоположных направлениях, и общее течение реакции определяется влиянием преобладающего фактора, пока не будет достигнуто состояние, при котором их влияния становятся равными по величине, что отвечает состоянию равновесия. Тепловой эффект обычно слабее зависит от концентрации веществ, участвующих в реакции, поэтому достижение равновесия определяется преимущественно концентрационной зависимостью энтропии. Изменение энтропии входит в уравнение в виде произведения TAS, поэтому при прочих равных условиях повышение температуры усиливает влияние, оказываемое изменением энтропии. Для стандартного состояния всех веществ, участвующих в реакции, рассматриваемое уравнение принимает вид  [c.267]


    Стандартная молярная энтропия Изменение молярной энтропии Константа равновесия химической реакции Степень диссоциации Коэффициент активности Осмотический коэффициент Активность воды Функция кислотности Поверхностное натяжение Динамическая вязкость (внутренее трение) Коэффициент диффузии [c.11]

    Если химические вещества, формулы которых записаны в левой части уравнения химического равновесия, и вещества, формулы которых записаны в правой части этого уравнения, имеют одинаковую энтропию (вероятность), реакция будет идти в том направлении, при котором происходит выделение тепла, т. е. в направлении протекания экзотермической реакции. Если вещества в левой и правой части уравнения имеют одну и ту же энергию, реакция будет протекать от веществ с меньшей вероятностью (энтропией) в направлении веществ с большей вероятностью (энтропией). При равновесии, когда реакция не обнаруживает преимущественной тенденции протекания ни в прямом, ни в обратном направлении, свободная энергия веществ левой части уравнения точно равна свободной энергии веществ правой части уравнения. При равновесии движущая сила изменения теплосодержания (изменения энтальпии), сопровождающего реакцию, полностью уравновешивается движу-щей силой изменения вероятности (изменения энтропии). [c.525]

    Термодинамическая трактовка энтропии связана с обратимыми процессами, которые практически не могут быть осуществлены (гл. П, 4). Однако мы можем говорить и об энтропии на основе реальных необратимых процессов, так как можно показать, что в необратимых процессах, протекающих в термически изолированных системах, энтропия всегда растет. Таким образом, в реальных изолированных системах будут идти только такие процессы, которые протекают с возрастанием энтропии. Это есть так называемый закон энтропии. Если процессы не могут идти с увеличением энтропии, то есть если в данных условиях энтропия имеет наибольшую величину, то в системе не может происходить никаких изменений система будет находиться в равновесии. Следовательно, максимум энтропии — условие равновесия процессов. [c.125]

    Изменения энтропии в равновесиях с участием трех экранированных фенолов близки. Прочность связи ОН в фенолах легко рассчитать, используя значение энергии связи ОН в гидроксиламине IV в VII прочность связи / он = 329,7 12,5 кДж/моль (78,9 3,0 ккал/моль) в IX Dqh = 316,8 12,5 кДж/моль (75,8 3,0 ккал/моль) в XI /)он = 317,7 12,5 кДж/моль (76,0 3,0 ккал/моль). [c.369]


    Из этого уравнения видно, что Ь.Р может иметь отрицательный знак тогда, когда ДЯ также имеет отрицательный знак, а является положительной или небольшой отрицательной величиной. Такой же знак дf будет иметь, если лЯ положительна, а д5 является большой положительной величиной. Последний случай имеет особое значение для понимания процессов денатурации белков. Выше уже было указано, что денатурация белков представляет собой эндотермическую реакцию, требующую приблизительно 10 кал на I моль белка. С другой стороны, мы знаем, что денатурация происходит очень легко даже при комнатной температуре и может быть вызвана множеством агентов (мочевиной и др.). Поскольку энтропия при денатурации возрастает и член 7д5 положителен (уравнение 3), необходимо принять, что Ь.Р имеет отрицательный знак. Процесс денатурации белков аналогичен, таким образом, процессу таяния льда и представляет собой эндотермическую реакцию, протекающую самопроизвольно в результате возрастания энтропии. Изменение в величине свободной энергии АР может быть вычислено из уравнения (4), если известна постоянная равновесия  [c.160]

    Рассмотрим в качестве примера ферментативный синтез белков из простых аминокислот. Прежде чем произойдет соединение молекул аминокислот в молекулу белка, каждая из них должна быть точно ориентирована (иногда даже в высшей степени точно). Поэтому скорость образования белка может быть незначительной. Ферментами, или энзимами, называются биологические катализаторы. Некоторые из них катализируют синтез белков. Один из способов их действия может заключаться в удержании аминокислот в нужной взаимной ориентации, что и вызывает ускорение реакции синтеза белка. Таким образом, фермент может снижать энтропию активации. Но он ускоряет также и обратную реакцию — распад белка, причем распад он ускоряет в точно такой же мере, как и синтез. Итак, никаких изменений равновесия не происходит, но скорость реакции увеличивается благодаря тому, что фермент помогает ориентации. [c.106]

    Критерий равновесия изолированной системы можно формулировать еще иначе для равновесия изолированной системы необходимо и достаточно, чтобы при всех возможных изменениях системы, протекающих при постоянной энтропии, изменение энергии равнялось нулю  [c.12]

    Для химических реакций, характеризующихся отрицательным значением изменения энтальпии и положительным значением энтропии, изменение энергии Гиббса всегда отрицательно, поэтому такие реакции протекают самопроизвольно и необратимо. Увеличение температуры повышает вероятность самопроизвольного протекания реакций только при положительном значении AS. При одинаковых знаках изменения энтальпии и энтропии (оба больше нуля или оба меньше нуля) в системе возможно установление равновесия (см. раздел 35.1) между продуктами и реагентами при температуре [c.138]

    Всякое изменение состояния системы молекул (среднестатистическая функция распределения по уровням энергии) сопровождается стремлением к новому состоянию равновесия (релаксация). Поглощение зв)т<а всегда сопровождается релаксационными процессами, которые могут остановиться в состоянии неустойчивого равновесия (метастабильное состояние). Нахождение вещества в этом состоянии делает его весьма чувствительным к разнообразным трансформациям. В работе [443] показано, что в метастабильном состоянии субстанция склонна к быстрым химическим изменениям. В этой же работе приводятся сведения, что существует прямая пропорциональная связь между константой скорости химической реакции, энергией и энтропией активации и временем релаксации. [c.49]

    Соответственно этому, условием равновесия является требование, чтобы при возможном перемещении dX изменение энтропии было равно нулю  [c.127]

    Как физическое равновесие какой-либо системы в любом случае характеризует экстремум соответственно выбранной функции (энтропии, свободной энтальпии), так и здесь можно сказать, что экстремум целевой функции (максимальная прибыль, минимальная себестоимость) является показателем экономического равновесия . Это — не формальная аналогия. Если физическая система не находится в состоянии равновесия, то начинаются самопроизвольные изменения в направлении равновесия. Если элемент процесса не находится в экономическом равновесии, то также возникают изменения, стремящиеся привести его к равновесным условиям. Это доказывает нам закон снижения себестоимости. [c.321]

    Использование квантовомеханической модели расширило детализированную теорию [см. ур. (XI.8.3) и (XI.8.За)] так,что оказалось возможным рассматривать влияние структурных изменений на внутренние частоты. В уравнении (XI.8.3) V представляет собой средневзвешенную величину внутрен них частот частицы, которая имеет конфигурацию переходного комплекса, а представляет собой константу равновесия между этим переходным состоянием и нормальными молекулами. Величины/ , и 8 являются соответственно стандартным изменением свободной энергии, энтальпии и энтропии при образовании переходного комплекса. В уравнении (XI.8.За) выражение для скорости имеет форму, удобную для статистического расчета. [c.225]


    Возможно, одной из самых поразительных черт бимолекулярных реакций присоединения, приведенных в табл. XII.8, является крайне резкое изменение их стерических множителей, приблизительно от 0,5 для реакции рекомбинации радикалов СНз До 10 для димеризации циклонентадиенов и других реакций присоединения (типа Дильса — Альдера). Согласно простейшим теориям равновесия, мы должны были бы ожидать малые стерические множители для реакций больших молекул. Удивительным является то, что стерические множители для реакций N02, СНз, СаР/, и бутадиена (с цианогенными соединениями) должны быть действительно большими (больше 10 ). Эти большие величины должны быть отнесены за счет квантовых эффектов (т. е. они не могут быть объяснены на основе классических осцилляторов), которые способствуют аномальному увеличению энтропии активированного комплекса или комплекса переходного состояния. [c.267]

    Для сравнения в табл. XV.8 перечислены изменения энтропии для ряда ионных равновесий в воде при 25°. Несмотря на то, что в таблицу включены частицы с ковалентными связями, для которых возможность применения электростатической модели весьма сомнительна, общее изменение энтропии симбатно изменению, соответствующему уравнению (XV.12.2). Величины АР° и АЯ° дают гораздо худшее совпадение. [c.464]

    Константы равновесия реакций изомеризации парафинов С4—Се, энтальпия изомеризации и изменение энтропии изомеризации, вычисленные на основании спектроскопических данных и данных о свободных энергиях, приведены в табл. 1.3, а равновесные составы смесей изомеров — в табл. 1.4. При расчетах констант равновесия реакции изомеризации используется разница в свободных энергиях изомеров ЛС°=Д//°-Л5 7- [c.13]

    В изолированной системе процессы прекратятся, очевидно, тогда, когда энтропия системы достигнет максимального значения, возможного для данной системы при постоянстве некоторых ее параметров, а именно при постоянстве внутренней энергии U и объема v (условия изолированности системы). Дальнейшее изменение состояния системы должно было бы вызвать уменьшение энтропии, что в изолированной системе невозможно. Таким образом, признаком равновесия изолированной системы является максимальное значение энтропии при постоянных внутренней энергии и объеме системы (если нет других видов работы, кроме работы расширения). Следовательно, при равновесии должны соблюдаться условия  [c.90]

    Фазовые переходы, характеризующиеся равенством изобарных потенциалов двух сосуществующих в равновесии фаз и скачкообразным изменением энтропии и объема при переходе вещества из одной фазы в другую, называются фазовыми переходами первого рода. К иим относятся агрегатные превращения—плавление, испарение, возгонка и др. [c.140]

    Кроме фазовых переходов первого рода, существуют также фазовые переходы второго рода. Для них характерно не только равенство изобарных потенциалов, но и равенство энтропий и объемов сосуществующих в равновесии фаз, т. е. отсутствие теплового эффекта процесса и изменения объема при температуре превращения  [c.143]

    Пользуясь принципом подвижного равновесия (см. стр. 155), нетрудно установить качественное правило смещения химического равновесня с изменением температуры. В соответствии с этим принципом при повышении температуры ЬТ смещение равновесия должно сопровождаться увеличением энтропии так как (8Т)р(А5)т.>0, т. е. химическое равновесие при повышении температуры должно сместиться в сторону эндотермической реакции (в том направлении, в котором протекает эндотермическая реакция), а при понижении температур ы—в том направлении, в котором протекает экзотермическая реакция. [c.304]

    Наличие спина ядра с квантовым числом момента вращения 3 ядра увеличивает число микросостояний молекулы в любом ее энергетическом состоянии в 11(25+1) раз [произведение (2я+1) для всех ядер молекулы]. Энтропия молекулы увеличивается на соответствующее слагаемое, которое, однако, для расчетов изменения энтропии и химических равновесий не имеет значения, так как при любых перемещениях ядер и их сочетаниях в новые молекулы в процессе химической реакции это слагаемое не изменяется. В табличные, так называемые практические величины энтропии, это слагаемое не включается. [c.340]

    В состоянии равновесия общее изменение энтропии системы при постоянных массе и энергии равно нулю, т. е. [c.90]

    Итак, движущая сила реакции, проводимой при постоянных давлении и температуре, измеряется изменением свободной энергии продуктов по сравнению с реагентами. Если изменение свободной энергии отрицательно, реакция протекает самопроизвольно если изменение свободной энергии положительно, реакция протекает самопроизвольно в противоположном направлении если же изменение свободной энергии равно нулю, реагенты и продукты находятся в равновесии. Изменение свободной энергии складывается из двух составляющих AG = АН — TAS. Значительное уменьшение энтальпии, означающее выделение теплоты, благоприятствует протеканию реакции. Но следует учитывать и другой фактор. Значительное возрастание энтропии при образовании продуктов из реагентов также благоприятствует реакции. При обычных температурах энтропийный фактор, как правило, невелик, и поэтому AG и АН имеют одинаковые знаки. В таких случаях самопроизвольные реакции оказываются экзотермическими. Но возможны и другие варианты, когда энтальпийный и энтропийный факторы действуют в противоположных направлениях, и может случиться, что энтропийный член оказывается преобладающим. Это относится главным образом к реакциям, в которых происходит превращение твердого или жидкого вешества в газы или растворы. [c.75]

    Принцип Ле Шателье указывает, как должна протекать реакция, но не дает этому объяснения, оставаясь просто догадкой. Но по какой же причине положение равновесия изменяется в зависимости от температуры По какой причине движущая сила реакции диссоциации 80з столь резко возрастает с температурой Чтобы ответить на эти вопросы, следует выяснить, как ведут себя свободная энергия, энтальпия и энтропия реакции при изменении температуры. [c.109]

    В табл. 17-4 приведены значения стандартной свободной энергии для реакции диссоциации SO3 при различных температурах, вычисленные по экспериментальным данным о константе диссоциации. По мере повышения температуры стандартное изменение свободной энергии для рассматриваемой реакции становится все более отрицательным, а константа равновесия возрастает, и для установления равновесия реакция должна все более смешаться вправо. Приведенные в этой таблице данные позволяют определить теплоту и энтропию реакции. Для того чтобы понять, как это делается, разделим левую и правую части уравнения (17-13) на Т, при этом получится соотношение AG°/T = АН°/Т — AS°, называемое уравнением Гиббса-Гельмгольца. Если воспользоваться этим уравнением и построить график зависимости величины AG°/T от 1/7 то тангенс угла наклона графика к оси абсцисс в каждой точке графика дает значение АН° при соответствуюшей температуре. [c.110]

    В отличие от АЯ п и AS . , которые мало зависят от температуры, AG° очень сильно зависит от температуры, Т, которая явно входит в соотношение (18-1). Если ради простоты предположить, что изменения энтальпии и энтропии постоянны, то можно графически представить зависимость AG от ДЯ и AS, как это сделано на рис. 18-3 на примере Н2О. При высоких температурах произведение 7AS° больше, чем АЯ°, свободная энергия испарения отрицательна и испарение воды при парциальном давлении водяных паров 1 атм должно происходить самопроизвольно. При низких температурах АЯ° больше, чем TAS°, так что AG° положительно, и самопроизвольно осуществляется конденсация водяных паров. При некоторой промежуточной температуре энтальпийный и энтропийный эффекты в точности компенсируют друг друга, AG° становится равным нулю и жидкая вода находится в равновесии с парами воды при парциальном давлении 1 атм. Такое состояние отвечает нормальной температуре кипения жидкости, (температура кипения на уровне моря). Для воды эта температура равна 100°С, или 373,15 К. При более низком атмосферном давлении (на большой высоте над поверхностью моря) вода кипит при температуре ниже 100°С. [c.124]

    Для систем, удаленных от равновесия, полное производство энтропии определяется соотношением (1.9). Скорость изменения производства энтропии можно разделить на две части  [c.28]

    Скорость движения системы в фазовом пространстве по направлению к состоянию равновесия определяется суммированием скоростей движения по каждой из п координат. При этом основное соотношение термодинамики необратимых процессов применительно к замкнутой адиабатической системе определяет суммарную скорость изменения состояния системы (скорость возникновения энтропии) как сумму произведений термодинамических движущих сил на соответствующие коэффициенты, определяющие скорость движения системы вдоль одной из координатных осей и )  [c.16]

    С помощью данных, представленных в табл. 8.1—8.3, можно рассчитать 1) теплоемкость вещества при любой температуре в интервале 298,15—1000 К (для На504 при 298,15—700 К) 2) теплоту образования соединения в конденсированном состоянии 3) низшую и высшую теплоты сгорания вещества 4) иа менение энтальпии соединения при его нагревании или охлаждении 5) термодинамические параметры химической реакции при любой температуре от 298,15 до 1000 К (тепловой эффект, изменение энтропии, изменение энергии Гиббса,, термодинамическую константу равновесия, степени превращения компонентов). [c.423]

    Таким образом, в уравнении (5.8) выражение / А1пР,-представляет собой алгебраическую сумму энтропий участников равновесия (5.1), которую называют изменением энтропии и обозначают символом Д5°, т. е. [c.57]

    Огромным достижением конца прошлого столетия было установление того положения, что каждому веществу можно приписать некоторое количество энергии, называемой энергией Гиббса (или гиббсовой энергией), причем реакция в системе при постоянной температуре может протекать в том случае, если сопровождается уменьшением энергии Гиббса, т. е. если энергия Гиббса исходных реагирующих веществ больше энергии Гиббса продуктов реакции. Энергия Гиббса вещества является свойством, выражающим одновременно как энтальпию данного вещества, так и присущую ему вероятность (энтропию). Если химические вещества, формулы которых записаны в левой части уравнения химического равновесия, и вещества, формулы которых записаны в правой части этого уравнения, имеют одинаковую энтропию (вероятность), реакция будет идти в том направлении, при котором происходит выделение теплоты, т. е. в направлении протекания экзотермической реакции. Если вещества в левой и правой части уравнения имеют одну и ту же энтальпию, реакция будет протекать в направлении от веществ с меньшей вероятностью (энтропией) в направлении веществ с большей вероятностью (энтропией). При равновесии, когда реакция не обнаруживает преимущественной тенденции протекания ни в прямом, ни в обратном направлении, энергия Гиббса веществ левой части уравнения точно равна энергии Гиббса веществ правой части уравнения. При равновесии движущая сила изменения энтальпии, сопровождающего реакцию, полностью уравновешивается движущей силой изменения вероятности (изменения энтропии). [c.300]

    Каждая таблица термодинамических свойств газов содержит значения приведенного термодинамического потенциала Фт, энтропии изменения энтальпии Нт — Яо и полной энтальпии /г> а также lg Кр и Кр, где Кр — константа равновесия реакции диссоциации или ионизации (последние отсутствуют в таблицах термодинамических свойств одноатомиых незаряженных газов). Значения указанных термодинамических свойств приводятся для температур 293,15° 298,15 400 и далее через 100° до 6000° К. Таблицы 22 газов содержат, кроме того, данные для температур выше 6000° К через 200° до 10 000° К и далее через 500° до 20 000° К. Все термодинамические функции идеальных газов приводятся для давления в [c.22]

    Вопрос о характере электронных влияний заместителей у фосфора в производных кислот фосфора на константу ассоциации с фенолом, а также на изменение энтальпии и энтропии реакции равновесия подробно исследовался в работах Акснеса [28] и Ларссона [303]. Было показано, что константа ассоциации фосфорсодержащих соединений с фенолом зависит от степени полярности фосфорильной группы, при оценке которой, помимо индуктивного эс екта заместителей, следует учитывать и — ( -сопряжение заместителей с З -орбитами фосфора [28]. Интересно отметить, что, несмотря на то что водородная связь образуется с участием фосфорильного кислорода, в ассоциированном комплексе наблюдается сдвиг частот связи Р — Р. Причем, как показал Ларссон, отмечается довольно четко выраженная зависимость между изменением констант ассоциации и Аур р [303]. Интересно также отметить следующее. Показано,, что в некоторых случаях в образовании водородных связей с одной молекулой фосфорсодержащего соединения могут участвовать две молекулы фенола 43Ш]. Эти факт нозвояяют- [c.561]

    Оценка ожидаемого изменения энтропии, соответствующего взаимному сближению реагирующих молекул, также не приводит к однозначному результату. В качестве модели процесса сближения молекулы воды с ацильным или карбонильным реагентом в переходном состоянии реакции можно рассмотреть равновесную гидратацию альдегидов. Энтропия данного равновесия равна приблизительно —18 энтр, ед. [23]. Найденное значение является более отрицательным, чем можно было бы ожидать. Это указывает на то, что в молекуле гидрата альдегида и в его сольватной оболочке свободное движение больше ограничено, чем в исходных соединениях. Брюс и Бенкович показали, что энтропия активации ряда нуклеофильных реакций с участием фениловых эфиров весьма просто зависит от кинетического порядка реакции, а именно увеличение порядка реакции на единицу приводит к уменьшению члена ТА8 приблизительно на 5 ккал/моль (20,9 кДж/моль) [28]. Среди примеров, рассмотренных этими авторами, имеется сравнение внутри-и межмолекулярной реакций аминолиза фениловых эфиров глутаровой кислоты, а также сравнение реакций, включающих общеосновной или кислотный катализ, с некатализируемыми реакциями. Эти результаты, однако, трудно интерпретировать детально. Так, значение АН для гидразинолиза фенилацетата, катализируемого ионом гидразония (реакция третьего порядка), составляет приблизительно 1 кв ал/моль (4,2 кДж/моль). Это меньше, чем величина АН= для диффузии в воде, равная 3—4 ккал/моль (12,5— 16,7 кДж/моль). Поэтому можно предположить, что существует некоторый компенсирующий процесс, искажающий собственную энтальпию активации вторичным эффектом (например, сольватационным), который приводит к компенсации энтальпийного и энтропийного изменений. [c.26]

    Результаты, приведенные в табл. 5.7 и 5.8, показывают, что неполярные боковые группы аминокислот предпочитают находиться в неполярном, неводном окружении, т.е. имеют тенденцию собираться вместе и образовывать кластеры неполярных групп. Силы, стабилизирующие такие кластеры, называют гидрофобными. Результаты рентгеноструктурного анализа многих белков подтверждают, что неполярные боковые группы действительно группируются в неводных, маслянистых внутренних областях белка (см. например, рис. 2.32). Отметим, что движущей силой гидрофобных взаимодействий является изменение энтропии изменение же энтальпии, напротив, им противодействует. Следовательно, когда две или большее число первоначально сольватированных гидрофобных групп собираются вместе во внутренней области белка, ДЯ > 0. Это означает, что повышение температуры будет смещать равновесие не в сторону диссоциации, а в сторону гидрофобного связывания при условии что диапазон рассматриваемых температур достаточно мал, чтобы величина ДЯ оставалась положительной. (Теория гидрофобных эффектов изложена в работе Pratt, handler, 1977.) [c.267]

    Рассмотрим систему, состоящую из химических веществ Aj, между которыми могут происходить реакции типа oi.jAj = 0. Пусть температура и давление поддерживаются постоянными. Состояние системы будет самопроизвольно изменяться в сторону общего увеличения энтропии до тех пор, пока не будет достигнуто равновесие и дальнейший прирост энтропии станет невозможным. Если при бесконечно малом изотермическом изменении состояния системы должно быть поглощено количество тепла dq, а прирост энтропии в системе равен dS, то общее изменение энтропии системы и термостата составляет dS — dqlT. Однако [c.47]

    Соотношение (111,7), так же как уравнения (111,3) и (111,4), справедливо для любого состояния системы будем использовать это соотношение для нахождения законов, характеризующих состояния равновесия, когда 5 и принимаюг максимальные значения. Рассмотрим все возможные изменения энтропии, связанные с изменениями чисел Ni, т. е. [c.90]


Смотреть страницы где упоминается термин Энтропия, изменения при равновесии: [c.171]    [c.778]    [c.15]    [c.31]    [c.319]    [c.275]    [c.582]    [c.287]    [c.252]    [c.252]   
Учебник физической химии (0) -- [ c.154 ]




ПОИСК





Смотрите так же термины и статьи:

Изменение энтропии



© 2025 chem21.info Реклама на сайте