Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции замещения цепные

    Сложные реакции. Механизмы реакций замещения октаэдрических и плоско-квадратных комплексов металлов. Цепные реакции. Стадия зарождения цепной реакции, стадия развития цепи, ингибирующая стадия и стадия, обрывающая цепь. Стационарное состояние. [c.350]

    Во всех этих процессах протекают побочные реакции замещения водорода в результате образуются высшие хлориды (трихлорэтан из этилена, пентахлорэтан из ацетилена и т. д.). Замещение должно иметь радикально-цепной механизм, причем зарождение цепи осуществляется уже при низкой температуре за счет взаимодействия хлора с олефином  [c.124]


    Свойства карбоний-ионов. Свободные карбоний-ионы являются высокоактивными частицами, вступающими в реакции с очень большой скоростью. Для некоторых реакций, могущих протекать как по радикально-цепному, так и по карбоний-ионному механизму, активность карбоний-ионов может быть сравнена с активностью радикалов. Так, при полимеризации стирола по радикальному механизму при 20°С константа скорости продолжения цепи равна 35 л-моль- -с , энергия активации продолжения цепи 32,7 кДж/моль (7,8 ккал/моль). Полимеризация стирола на свободных катионах проходит с константой скорости продолжения цепи 35-10 л моль- с- при 15°С и энергией активации 8,4 кДж/моль (2 ккал/моль). Константа скорости присоединения карбоний-иона к молекуле стирола на пять порядков больше, чем для радикала. Карбоний-ионы, как и радикалы, подвергаются мономолекулярному распаду и бимолекулярным реакциям замещения и присоединения. Существенным отличием в химических свойствах карбоний-ионов от свойств радикалов является способность первых с большой скоростью изомеризоваться. Изомеризация карбоний-ионов может проходить в результате переноса как гидрид-иона, так и карбоний-ионов. [c.164]

    Для выяснения конкурентных отношений между этими реакциями недостаточно знания скоростей прямых реакций, необходимо также знать положение равновесия в этих реакциях. Располагая величинами констант равновесия реакций соединения радикалов с молекулами алкенов, реакций замещения радикалов с молекулами алканов и алкенов, а также реакций диссоциации молекул на радикалы (мономолекулярным или бимолекулярным путем), можно выяснить, являются ли равновесия при некоторых из этих реакций в условиях крекинга причиной замедления реакций распада алканов, описанного в предыдущей главе. Так, например, реакции присоединения атомов Н к молекулам пропилена или изобутилена могут вызывать торможение цепного распада вследствие меньшей активности вторичных пропильных и третичных изобутильных радикалов в том лишь случае, когда эти радикалы обладают устойчивостью в условиях крекинга алканов, т. е. при значительном размере обратимой реакции образования их. Точно так же и реакции замещения Н и СНз-радикалов с молекулами алкенов, несмотря на возникновение в результате этих реакций менее активных радикалов, не смогут явиться серьезной помехой для развития цепей крекинга, если равновесия в этих реакциях в условиях крекинга сильно смещены в сторону исходных продуктов. [c.246]


    Самотормозящийся характер термического распада алканов, зависимость константы скорости, вычисляемой по уравнению реакций первого порядка, от глубины крекинга, существование ингибиторов термического крекинга потребовали внесения изменений в первоначальные радикально-цепные схемы распада алканов, поскольку эти схемы не отражали торможения некоторыми продуктами и не соответствовали, в частности, наблюдаемым на опыте значениям концентраций радикалов. Кроме того, изучение реакции замещения атомов дейтерия с молекулами метана и этана показало [367, 368], что для энергии активации в первоначальных радикально-цепных схемах Райса и Герцфельда были приняты слишком завышенные значения. Так, в схеме распада этана для реакции Н + [c.217]

    Радикальное замещение и присоединение широко используются в органическом синтезе для получения различных классов органических соединений (галогенопроизводных, кислородсодержащих, металлорганических соединений и др.). Многие радикальные реакции носят цепной характер. Селективность радикальных реакций в значительной степени зависит от строения исходных веществ. Широко распространены радикальные реакции, приводящие к замещению атома водорода. Радикальное присоединение лежит в основе по. учения целого ряда как низкомолекулярных аддуктов, так и высокомолекулярных веществ. [c.147]

    По химическим свойствам циклопарафины с ненапряженными пятичленными, шестичленными и еще большими циклами подобны цепным предельным углеводородам. Поэтому для циклогексана и циклопентана характерны преимущественно реакции замещения. Соединения же, содержащие напряженные трехчленный и четырехчленный циклы, по многим свойствам подобны непредельным углеводородам и вступают в реакции присоединения. [c.311]

    Хлоратор / представляет собой вертикальным цилиндрически/ стальной аппарат, снабженный механической мешалкой и змеевиками, по которым циркулирует вода для отвода тепла реакции. Сначала хлоратор / полностью загружают дихлорэтаном, а затем в него подают тщательно осушенные реагирующие газы — хлор и этилен. Этилен берут в избытке 5—10% и предварительно смешивают его с 8—10% воздуха. Кислород воздуха используется для обрыва цепной реакции замещения водородов этилена хлором (т. е. для [c.85]

    Для торможения цепной реакции замещения при хлорировании этилена в промышленности используются хлорное железо и кислород, вводимый в реактор вместе с хлором. Указывается также на целесообразность применения с этой целью йода [64]. [c.378]

    В отличие от свободнорадикальных цепных реакций замещения водорода (см. стр. 54), галоидирование в рассматриваемом случае начинается с распада молекулы галоида на ионы  [c.248]

    Так жв кал с хлором, чистый бензол не реагирует и с бромом в отсутствие катализаторов в темноте. Фотохимическое присоединение брома и хлора является цепной радикальной реакцией [133, 134). В реакциях замещения бром активное хлора, но скорость его присоединения к бензолу меньше [185), Свет и добавка перекисей благо- [c.106]

    Термическое хлорирование этилена представляет собой реакцию радикального (цепного) замещения  [c.211]

    Механизм этих реакций — либо цепное радикальное замещение (аутоокисление). либо согласованное еновое [c.111]

    По радикально-цепному неразветвленному механизму протекают реакции замещения галогенами (Fj, lj, Brg) атома водорода при насыщенном атоме углерода, крекинг и пиролиз органических соединений, присоединение галогенов, галогенводородов, спиртов и тиолов к ненасыщенной С=С-связи, а также олигомеризация, полимеризация и теломеризация винильных мономеров. [c.235]

    Цепной характер реакций замещения обнаружен по ингибирующему действию кислорода, фенола, аминов, хлористого нитрозила и др. Можно привести два примера  [c.375]

    Олефины присоединяют хлор при условиях, сходных с условиями, при которых происходят реакции замещения. Реакция присоединения является цепной реакцией, для которой предложен следующий механизм [339]  [c.289]

    Кроме прямого инициирования, следует рассмотреть другие важные источники активных центров процессы с участием самих активных частиц. Проще всего регенерация носителей цепи (один к одному) осуществляется в реакциях замещения с участием одновалентных атомов и радикалов. Эти реакции обеспечивают минимально необходимую скорость регенерации активных частиц, но далеки от максимально возможных. Цепная реакция, в которой возникают, например, два активных центра на один цикл, дает результирующую скорость образования активных частиц, которая представляет собой не что иное, как скорость разветвления цепей. Если такая ситуация реализуется в рассматриваемом интервале скоростей реакции, то вследствие этого реакция разветвления может сравняться или даже превысить по скорости эффективные гомогенные процессы рекомбинации и привести к быстрому развитию цепной реакции. [c.116]


    Легко показать, что нри высоких температурах схема (1), включающая предварительное образование гидроперекиси, не может иметь места. Во-первых, при высоких температурах гидроперекись вообще не образуется во-вторых, если даже предположить, что перекись образуется, по быстро переходит в спирт и формальдегид, то нельзя считать, что реакция в основном идет по этому пути действительно, из перекиси спирт может образоваться цепным путем — отщеплением одного атома водорода в реакции замещения с каким-нибудь радикалом, а образовавшийся нерекисный радикал, реагируя с метаном, дает спирт. В этом случае схема (1) ничем не будет отличаться от схемы (3). [c.136]

    Реакция замещения в пропилене протекает у водорода метильной группы. Реакция идет по цепному — радикальному механизму  [c.414]

    Индуцированное хлорирование с замещением атомов водорода. При хлорировании олефина одновременно с реакцией присоединения происходит замещение водорода хлором в продукте присоединения хлора. Поскольку в отсутствии олефина дихлориды не хлорируются с замещением атома водорода хлором, то реакция замещения рассматривается как индуцированная реакция. Индуцированная реакция хлорирования ин-гибитируется кислородом, а следовательно, очевидно, развивается как цепная реакция. При хлорировании смеси парафина и олефина хлор, присоединяется к олефину и одновременно водород замещается хлором у парафина. Реакция изучалась для пропан-пропиленовой и бутан-бутиленовой смесей. Газообразные олефины в темноте при температуре ниже 150° реагируют с хлором лишь медленно или совсем не реагируют, но они взаимодействуют энергично в присутствии какой-либо жидкой фазы. Смеси олефинов и парафинов при этих условиях реагируют быстро с образованием как продуктов присоединения, так и замещения [9]. Энергия, необходимая для реакции замещения, возможно получается за счет сильно экзотермичпой реакции присоединения. [c.63]

    Ранее были рассмотрены реакции радикально-цепного хлорирования ароматических соединений (замещение в боковую цепь н присоединение по С—С-связям ядра). Замещение в ядро происходит в присутствии катализаторов ионных реакций, когда оно ста-новися практически единственным направлением хлорирования ароматических соединений. [c.135]

    Химически алканы очень инертны, хотя низшие из ннх способны гореть в кислороде с образованием диоксида углерода и воды в воде практически не растворимы и не вза1шодс йству]от с химические реакции замещения осуществляются путем разрыва связен С—Н и цепи углеродных атомов. Поскольку эти связи очень мало поляризованы, для них характерны лишь реакции замещения, протекающие по так называемому свободнорадикальному цепному механизму. [c.144]

    Так как связь С—С в образующемся этане на 71 кДж/моль (17 ккал/моль) слабее связи СНз—Н, распад метана идет с само-ускорением в результате увеличения скорости инициирования цепей при накоплении этана. Рассмотрим влияние температуры и давления на результаты термического разложения парафиновых угле водородов. Радикалы, образующиеся в ходе цепного распада парафинов, можно разбить на две группы. К первой группе относятся радикалы, которые могут распадаться только с отщеплением ато- ма водорода СН3СН2, СН3СНСН3, (СНз)зС. Энергия активации их распада 167 кДж/моль (40 ккал/моль) и константа скорости распада имеет порядок ю> е-20 с". Реакции отрыва этими радикалами атома водорода от молекулы исходного парафина имеют константы скорости ю е ( 535 юо5)/г см -моль" -с". Соотношение скоростей реакций распада и стабилизации этих радикалов при реакции замещения составляет  [c.66]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    Реакция замещения протекает по радикальному цепному механизму, т. е. атака электронейтральной молекулы предельного углеводорода происходит радикалом, который гомолити-чески (симметрично) расщепляет ковалентную связь в.метане. [c.297]

    Как легко видеть, начальная стадия — фотохимическое расщепление молекулы хлора — приводит к образованию двух реакционноспособных частиц — свободных атомов хлора, являющихся, в сущности, радикалами. Это подтверждается тем, что скорость реакции оказывается пропорциональной корню квадратному из интенсивности поглощенного света, т. е. каждый квант поглощенной энергии вызывает инициирование двух цепей реакций. Присоединение свободного атома хлора к молекуле ненасыщенного соединения приводит к образованию другого радикала ХП, способного вступать в радикальную реакцию замещения с молекулой хлора, в результате чего образуется конечный продукт присоединения XIII и свободный атом хлора. Этот атом способен инициировать тот же цикл реакций со следующей молекулой ненасыщенного соединения, так что процесс продолжается. Таким образом, каждый атом хлора, образованный а результате фотохимического расщепления, инициирует исключительно быструю цепную реакцию. [c.288]

    Сульфохлорировапие. При освещении ультрафиолетовым светом алканы вступают со смесью сернистого ангидрида и хлора в реакцию замещения. В промышленности эту реакцию используют для сульфохлорирования когазина (высококипящая фракция сиптипа, см. стр. 70). Она протекает по цепному механизму, причем инициирует реакцию атомарный хлор, полученный в результате фотолиза молекулы хлора. Ниже изображен механизм реакции сульфохлорирования  [c.73]

    Свободные радикалы являются важнейщими интермедиатами свободнорадикальных цепных реакций замещения Н-атома в насыщенных углеводородах и их производных (8к-реакции), в реакциях свободнорадикальной полимеризации алкенов и сопряженных диенов, в реакциях окисления алканов и циклоалканов кислородом воздуха. В этом случае К" выступают как инициаторы химических реакций и активные реагенты. [c.399]

    Реакция Зандмейера не является цепной реакцией, так как в стадии, где расходуется свободный радикал, нового радикала не возникает. Эта реакция имеет очень большое препаративное значение, так как позволяет, исходя из ароматических аминов, получать самые разнообразные соединения. Эти соединения могут содержать такие группы, которые либо вообще не удается ввести в ароматическое ядро непосредственной реакцией замещения, либо такие, которые под влиянием уже содержащихся в ядре заместителей при прямом замещении вступили бы в другое положение. Например, л-хлорбензальдегид может быть получен с препаративным выходом при разложении солянокислой соли м-формилдиазония [c.157]

    Продуктообразующие стадии развития цепных процессов можно часто рассматривать как реакции замещения. [c.18]

    В условиях гидропиролиза кинетические цепи развиваются не только с участием, например, метильных радикалов, но и более активных атомов водорода. Реакция метильного радикала с водородом конкурирует с реакциями метильного радикала с молекулами углеводородов. При соизмеримых концентрациях водорода и з глеводорода метильный радикал вступает в реакцию замещения в основном с водородом. Реакции атома водорода с углеводородами протекают с константами скорости примерно иа два-три порядка большивш, чем с метильным радикалом. Поэтому в присутствии водорода растет скорость цепного процесса. [c.285]

    В органической химии вносится качественно новый материал и в понятия о механизмах реакций [26, 28]. Впервые дается представление о свободнорадикальном механизме реакций замещения и полимеризации и ионном механизме реакций присоединения. Свободнорадикальный механизм рассматривают на примере реакций замещения (галогенирова-ние алканов), присоединения (полимеризация), отщепления (крекинг углеводородов). В неорганической химии этот механизм не разбирают (цепные реакции исключены из программы). Расширяется понятие о ионном механизме химической реакции приводятся примеры присоединения неорганических веществ к алкенам (симметричным и несимметричным), реакций замещения при гидролизе галогеналкилов. [c.279]

    Реакции замещения протекают по цепному механизму. Они могут быть иллюстрированы на примере фотохими ческого галоиди-ровапия парафинов а)  [c.116]

    Без цепей замешения непонятно образование на ранних стадиях гомогенного и гетерогенного дейтерирования углеводородов в сверхрав-новесных концент15ациях полидейтерированных продуктов и ряд других особенностей процесса [1]. Для обычных реакций замещения имеются очень косвенные указания на цепной механизм рассматриваемого типа для каталитического хлорирования углеводородов [13]. Сколько-нибудь прямых данных для реакций присоединения нет, если не считать отсутствия промежуточных продуктов гидрирования бензола, для чего возможны и другие объяснения. [c.379]

    Это стимулирует и другие реакции, которые могут совмещаться с данным процессом, например цепные реакции замещения с образованием ноли-хл орпроизво дных  [c.369]

    Ингибиторы цепных реакций. Чем меньше запас энергии у свободного радикала, тем больше энергия активации, необходимая для реакций замещения типа (4). Поэтому чем меньше скорость исчезновения радикала в результате столкновений с молекулами, тем больше продолжительность его жизни. Вследствие этого можно сказать, что чем стабильнее радикал, тем меньшее число реакций он может инициировать. Так, например, атомарный хлор (стр. 110) реагирует со всеми органическими молекулами без ограничений, а свежеполученный атомарный иод обычно сохраняется до тех пор, пока он не встретит другой такой же атом и образует молекулу иода, Ь. Такие свобо дные радикалы, как СНд, очень быстро реагируют со всеми органическими растворителями, но в то же время можно легко приготовить устойчивые растворы, содержащие трифенилметил. Цепные процессы могут распространяться только в том случае, если все реакции замещения участвующих радикалов происходят легко. Из этого следует, что любая реакция замещения [c.27]

    Как было показано на стр. 95, два атома в газовой фазе не могут при столкновении соединиться друг с другом без участия третьего тела. Точно так же мало вероятно соединение атома или радикала с каким-либо другим атомом или радикалом с образованием одного устойчивого продукта, если тепло, выделяющееся при химической реакции, не может быть удалено каким-либо способом, так как и в этом случае должен соблюдаться закон сохранения момента и квантование внутренней энергии. Поэтому такие газовые реакции, как Нг-f-СЬ = 2H , которые инициируются электрическими разрядами, идут через свободные атомы и являются не простыми процессами соединения, а в основном реакциями замещения в газовой фазе, а также более сложными процессами, включающими тройные сго-лкновения или реакции на поверхности. Действительно, почти все газовые реакции представляют сложные цепные процессы с последовательными замещениями атомов. Данные о кинетике этих цепных реакций можно найти в других книгах . Мы коснемся только вопроса о доказательстве их атомного механизма. [c.98]

    Замещение на галоген. Газовые реакции замещения и присоединения, инициируемые атомами галогенов, были описаны на стр. 110-113. Гнм было указано, что атомарный хлор и атомарный бром (но не атомарный иод) способны к цепным реакциям с результирующим замещением в связи С — Н или присоединением к связи С = С. Сходство между хлорированием метана в газовой фазе и хлорированием больщинства жидких парафинов на солнечном свету очень велико , и можно с уверенностью предположить, что оба процесса имеют один и тот же атомный цепной механизм. Кроме того, хлорирование жидких парафинов катализируется веществами, способными образовывать свободные радикалы, например тетраэтилсвинцом или гексафенилэтаном 2. Кинетика реакций замещения при применении жидкого брома часто имеет более сложный характер, поскольку одновременно могут происходить и атомная и ионная реакции. Броми-рование алифатических соединений обычно идет по атохмному механизму, за исключением тех случаев, когда оно ведется в полярных растворителях с большой диэлектрической постоянной (стр. 23) или ка полярных катализаторах. В ароматическом ряду замещение обычно является ионным процессом, которому благоприятствуют солео бразные катализаторы. Примером молекулы, в которой в зависимости от условий опыта может иметь место любой тип процесса, является толуол. Предполагается, что гало-гепированне боковой цепи толуола, которому благоприятствуют высокие температуры, происходит по атомному механизму и инициируется фотохимически [c.192]

    Реакции присоединения других азотсодержащих соединений также редки. Нит-рилхлорид [68] и тетраокись азота [69] вступают в реакции радикального цепного присоединения к олефинам, особенно тетраокись азота, так как связь N—N слабая. Атака в обоих случаях начинается радикалом -N02, но природа последующей стадии замещения не ясна  [c.355]

    Радикальные процессы обычно протекают по цепному механизму. Они начинаются с воздействия на молекулу атомов или частиц, имеющих неспаренные электроны, в большинстве случаев возникающих за счет термической или фотохимической диссоциации лабильных в этом отношении молекул при реакциях замещения в результате воздействия такой активной частицы от реагирующей молекулы отрывается один из атомов, чаще всего водород, и образуется новый свободный радикал. Благодаря высокой активности свободных радикалов они вступают в реакцию с молекулами реагента, также отрывая от них один из атомов, причем вновь образуются частицы, имеющие нечетное количество электронов. Такое поочередное образование из реагирующей молекулы и из реагента частиц с неспаренньш электроном создает длинную цепь актов превращения [1, 2]. Обрыв цепи происходит либо в результате соединения друг с другом двух частиц, имеющих нечетное количество электронов с образованием валентнонасыщенной молекулы, либо вследствие диспропорционирования (стр. 822) [3]. В качестве примера рассмотрим возможное течение реакции между иодистым метилом и иодистым водородом, в результате которой образуются метан и иод [1]. Процесс протекает по следующей схеме  [c.863]


Смотреть страницы где упоминается термин Реакции замещения цепные: [c.188]    [c.31]    [c.32]    [c.13]    [c.57]    [c.240]    [c.2262]    [c.227]    [c.98]    [c.326]   
Химия Издание 2 (1988) -- [ c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции замещения

Цепные реакции

Цепные реакции Реакции цепные



© 2024 chem21.info Реклама на сайте