Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен каталитическая в производстве

    Пример 10. Составить материальный баланс производства оксида зтилена прямым каталитическим окислением этилена воздухом. Состав исходной газовой смеси [7о (об.)] этилен — 3, воздух — 97. Степень окисления этилена 0,5. Расчет вести на 1 т оксида этилена. [c.12]

    Методом низкотемпературного фракционирования смесь разделяют на этан, этилен, пропан, пропилен и топливный газ. Этан и пропан подвергают дальнейшему крекингу в трубчатых печах в присутствии водяного пара для получения этилена и пропилена. После компрессии и охлаждения газы снова направляют на установку для разделения газов. Ацетилен удаляется путем каталитического гидрирования либо из общего количества нефтезаводского газа, либо только из этиленовой фракции. Разделение пропана и пропилена осуществляется дистилляцией или, если это целесообразно, проведением со смесью ряда реакций. Стоимость установки для производства 90 ООО т этилена и 43 ООО т пропилена из нефтезаводских газов составляет 9,9 млн. долларов, цена 1 фунта этилена и пропилена 0,0241 доллара. [c.9]


    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]

    Олефины, содержащиеся в продуктах крекинга и особенно в крекинг-газах, являются хорошим и легко доступным для производства сырьем. Для увеличения ресурсов олефинового сырья парафины или более тяжелые фракции специально подвергают крекированию (пиролизу). Таким образом, этилен получается в результате крекинга различных газов С2—С4 (этан, пропан, бутан) и жидких фракций (газойль, лигроин и мазут). Пропилен получается при термическом и каталитическом крекинге лигроинов и газойлей, а также из пропана и бутана. [c.577]

    Так, каталитическим крекингом получают дополнительные количества высокооктановых бензинов, посредством каталитического риформинга повышают октановое число бензинов и получают ароматические углеводороды (бензол, толуол, ксилолы и этилбензол). Гидроочистка позволяет производить реактивные и дизельные топлива с малым содержанием серы. Процесс пиролиза дает возможность получить из нефти важнейшее сырье для нефтехимии этилен, пропилен, бутилены и моноциклические ароматические углеводороды, а также сырье для производства высококачественных сажи и электродного кокса. [c.198]


    Реакции гидрирования применяют при доочистке отходящих газов с установки производства серы. В процессе Скот все сероорганические и кислородсодержащие соединения гидрируются с образованием сероводорода и воды. Затем сероводород извлекается из отходящего газа. Обратная реакция дегидрирования получила широкое применение в производстве непредельных углеводородов. Этилен, пропилен, бутилен, дивинил, бутадиен в природе не существуют. Эти углеводороды получают дегидрированием, за счет воздействия высоких температур происходит отделение водорода из предельных углеводородов. Эти процессы называются -гидроочистка, каталитический и термический крекинг. [c.47]

    Одним из первых катализаторов была серная кислота при нагревании крахмала с разбавленной серной кислотой К. С. Кирхгоф (Петербург, 1811) произвел осахаривание крахмала и организовал промышленное производство глюкозы. Подобным же каталитическим действием обладает серная кислота (и некоторые другие кислоты) при реакции дегидратации спиртов до простых эфиров или до олефинов, или при обратной реакции гидратации этих веществ до соответствующего спирта. Так, при приливании этилового спирта к нагретой концентрированной серной кислоте при температуре 140 °С образуется эфир, при 170 °С—этилен При нагревании эфира или этилена с разбавленной серной кислотой происходит обратная реакция гидратации до этилового спирта. Сама же серная кислота при этом не расходуется, и если бы не наличие побочных реакций окисления, могла-бы катализировать превращение неограниченно больших количеств спирта или эфира. Если катализируемое вещество и катализатор находятся в одном и том же агрегатном состоянии и не имеют видимых поверхностей раздела (подобно тому, как это было в описанном примере), катализ называют гомогенным, если же катализатор представляет собой твер- [c.145]

    В альбом включены технологические схемы процессов для получения дистиллятных моторных топлив, смазочных материалов, твердых углеводородов — парафинов и церезинов, нефтяного кокса и битума, технического углерода (сажи), водорода на основе каталитической конверсии легких углеводородов, некоторых видов нефтехимического сырья (этилен, жидкие парафины), серы и т. д. В альбом не вошли схемы установок нефтехимических производств вследствие многообразия технологических процессов в данной области, их специфики и зачастую комплексности. Рассмотрены только несколько процессов данного профиля, в основном относящихся к подготовке нефтяного сырья. Число процессов и способов проведения их весьма значительно. Авторы стремились собрать технологические схемы типичных и современных процессов число вариантных схем ограничено. [c.5]

    Пиролиз бензина. Последними исследованиями ряда институтов и лабораторий было показано, что наиболее ценные продукты для химической переработки получаются при пиролизе прямогонных бензиновых фракций, атакже газоконденсатного и газового бензинов. При этом, наряду с этиленом и пропиленом, получается значительное количество бутиленов, дивинила и ароматических углеводородов. Разработан процесс каталитического облагораживания легкого масла из смол пиролиза, позволяющий получить значительные количества ароматических углеводородов, кроме того, смолы пиролиза можно переработать в высококачественные полимерные соединения, находящие применение в производстве облицовочных плит и других строительных материалов. [c.314]

    Значительные успехи были достигнуты б производстве стирола снижение расхода хлористого алюминия ири алкилиро-вании бензола этиленом до 1 %, получение стирола в результате каталитического дегидрирования этилбензола и др. [42]. [c.474]

    Промышленность химической переработки нефти зародилась в США в 1919—1920 гг. своим возникновением она обязана исследовательским работам, проведенным во время первой мировой войны. В двадцатых-тридцатых годах в этой промышленности развивались главным образом методы производства и использования простейших олефинов — этилена, пропилена и бутиленов. Этилен получали прямым крекингом жидких нефтяных фракций или пропана. Пропилен и бутилены получали либо одновременно с этиленом при этих прямых крекинг-процессах, либо выделяли как побочные продукты из газов при переработке нефти, в особенности после того, как внедрение термического риформинга, а позднее каталитического крекинга и каталитического риформинга приблизило химические процессы нефтепереработки к их промышленному осуществлению. [c.19]


Рис. 91. Схема установки производства винилтолуола путем каталитического алкилирования толуола этиленом. Рис. 91. <a href="/info/866027">Схема установки производства</a> винилтолуола <a href="/info/1506994">путем каталитического</a> <a href="/info/27855">алкилирования толуола</a> этиленом.
    Вследствие большой чувствительности серебряного катализатора к действию контактных ядов, в частности сернистых соединений и ацетилена, исходные газы, применяемые в производстве окиси этилена каталитическим методом (воздух, этилен, кислород), должны быть тщательно очищены.  [c.224]

    Эти методы появились в результате необходимости разделения фракций С4 и Сз для производства компонентов бензина или бензина методами алкилирования изобутапа или изобутиленами, каталитической димеризации изобутилена, полимеризацией прони.чена, сополимеризацией пропилена с бутиленами и др. Однако этими методами разделения нельзя получить чистые компоненты (99,8%-ный этилен для получения полиэтилена и стирола, пропилен для полипропилена, бутилены, свободные от изобутиленов, и др.). При фракционировании заводских газов на чистые углеводороды возникают специальные технические вопросы поэтому решение их можно рассматривать как отдельную технологию, связанную с установками переработки чистых углеводородов в химической промышленности. [c.289]

    Каталитическая гидратация олефинов лежит в основе промышленного производства спиртов из олефинов. Например, этилен превращают в этиловый спирт [352], пропилен—в изопропиловый спирт [356], а н- и изобутилены соответственно в 2-бутиловый и треш-бутиловый спирты [357]. В качестве катализаторов используют серную и фосфорную кислоты. [c.153]

    Производство стирола осуществляется путем каталитического дегидрирования этилбензола. Этилбензол получают методом алкилирования бензола этиленом в присутствии катализатора—хлористого алюминия и активатора — хлористого этила. [c.194]

    На рис. 43 показана одна из схем производства окиси этилена каталитическим окислением этилена. Очищенные от примесей воздух и этилен смешиваются с рециркулирующим газом и поступают в основной реактор 1 (реактор первой ступени). Выходящие горячие газы, пройдя теплообменник 5,нагревают рециркулирующие газы, сжимаются компрессором 8 и поступают в основной абсорбер 2 (абсорбер первой ступени), в котором окись этилена и образующиеся в качестве побочных продуктов незначительные количества ацетальдегида и часть двуокиси углерода поглощаются водой. После абсорбера 2 большая часть газов возвращается в цикл на смешение со свежим этиленом и воздухом, а остальные газы после нагревания в теплообменнике смешиваются с добавочным количеством воздуха и поступают в дополнительный реактор 3 (реактор второй ступени). Добавочное количество воздуха вводится для более полного окисления этилена в реакторе 3. Отвод образующегося тепла из обоих реактаров Производится циркулирующим теплоносителем, который, в свою очередь, отдает тепло кипящей воде. Таким образом, теплота реакции используется для получения водяного пара. [c.227]

    В настоящее время методы Лебедева и Остромысленского играют второстепенную роль по сравнению с методами каталитической дегидрогенизации бутана и бутиленов, преимущество которых заключается в использовании дешевого сырья, имеющегося в больших количествах. Из природных и заводских газов можно получить 4000 —8000 т нормальных углеводородов Сл па каждый миллион тонн переработанной нефти. Однако, если из заводских газов можно получить этилен в виде фракции Сх + Сг и если его очистка в случае использования для получения полиэтилена неэкономична, то лучше его применять в производстве бутадиена, подучаемого через этиловый спирт. [c.366]

    Промышленное применение процесса в значительной степени ограничивается каталитическим алкилированием изобутана пропиленом, бутилепами или амиленами или смесью этих олефиновых углеводородов в присутствии серной кислоты или фтористого водорода в качестве катализаторов. В ограниченном- объеме для производства неогексана (2,2-диметилбутапа) и диизопропила (2,3-диметилбутана) применялось также алкилирование изобутана этиленом. В производстве компонеита авиационного бензина в качестве олефинового сырья при процессах алкилирования исиользовались также полимеры бутиленов. [c.173]

    Индивидуальные газообразные углеводороды, которые получаются либо непосредственно из сырой нефти или природного газа, либо путем крекинга более тяжелых нефтепродуктов, используются для производства химических продуктов, пластмасс и синтетического каучука (см. гл. XIII) или как сырье процессов каталитического превращения — полимеризации и алкилирования, ведущих к получению жидких углеводородов (см. гл. II). Большинство процессов каталитического превращения базируется на использовании реакционной способности олефинов и диолефинов, которые содержатся в газе. Часто ненасыщенные соединения получают дегидрированием пли деметанизацией насыщенных углеводородов приблизительно такого же молекулярного веса. Так, этан моншо дегидрировать в этилен, а пропан либо дегидрировать в пропилен, либо разложить па этилен и метан. Эти и подобные реакции [1 —10]1 имеют место в термических процессах, протекающих при 550—750° С. Термическое разложение Taiioro типа легко объясняется радикальным механизмом. По существу аналогичный характер имеют реакции разложения жидких углеводородов. Тел не менее дегидрирование H-oj xana и к-бутиленов, которое [c.296]

    Отходом каталитического гидрирования и полимеризации япэля-етоя этилен, который нри желании небольшим изменением условий протекания процесса может быть сделал и главным про-,иук том. Роль этилена как важнейшего исходного сырья разнообразных и многочисленных производств промышленности органического синтеза уже весьма подробно была охарактеризована выше. Для того, чтобы подчеркнуть возможность и целесообразность пр нромышлен-,ной эксплоатации данного процесса комплексного построения производств на основе ацетилена и этилена, затрону некоторые новые дериваты этилена, начинающие играть крупную роль в современной нромышленности органического синтеза. К числу таких дериватов этилена следует отнестй 1) щ)лигликоли и их эфиры, 2) окись этилена и 3) триэтаноламин. [c.435]

    Ацетилен является иримесью, загрязняющей пропан, этан и бутан, которые подвергают крекингу с целью получения этилена для производства полиэтилена или этиленгликоля. Ацетилен мешает протеканию двух последних процессов, п его удаляют каталитически или промывкой. Каталитическое удаление ацетилена гидрированием в этилен представляет собой одни из лучших примеров селективного катализа. Эту реакцию осуществляют в промышленности нри температуре 200—250°С на никелевом катализаторе, сульфидироваппом в строго определенной степени. В силу того что в ходе процесса происходит частичное гидрирование серы и она удаляется с катализатора, в реактор следует постоянно вводить некоторое количество серы для компенсации ее потерь и поддержания определенного уровня селективности катализатора. Гидрирование можно вести при давлениях 200—1000 фупт/дюпм . В качестве катализатора обычно используют никель на оксиде алюминия, содержащий иногда небольшие добавки кобальта и в некоторых случаях хром. Ценность добавок хрома проблематична, так как он повышает устойчивость катализатора к сульфидированию, увеличивает подвижность серы, что ведет к быстрой потере селективности. [c.126]

    На примере переработки легкой канадской и тяжелых сернистых (1,2—2,6% 8) нефтей по этому комбинированному нефтехимическому процессу переработки нефти были получены следующие результаты, характеризующие матернальный баланс олефины 47,2—52,0%, ароматические углеводороды 9,8—10,9%, топочный газ 5,9—9,5%, дистиллят 9,0—10,4%, котельное топливо 4,7— 6,1%, кокс 9,0—12,5%. Выход ароматических углеводородов можно значительно увеличить, если ввести в комплекс технологических установок установку каталитического риформинга. Соотноше-нпе этилен/пропилен равно 1,9—2,0. Среди ароматических углеводородов Сб—Са на долю бензола приходится 44%. Производство бензола можно значительно увеличить за счет процесса деметилирования толуола и ксилолов. [c.252]

    Как показали Т. Б. Гонсовская и С. В. Завгородний [55, 130], при алкилировании бензола этилен-пропиленовой смесью газов после скрубберов, образуюш ихся в производстве дивинила, катализатор АЮЬ Н804 по своей активности, хотя немного и уступает соединению АЮЬ-Н2Р04, но обладает высокой каталитической активностью. При оптимальных условиях (молярные отношения бензола, олефинов и катализатора, равные 2,5 1 0,3, температура 50° С и скорость пропускания этилен-пропиленовой смеси около [c.150]

    Процесс алкилирования был внедрен в иромышленность фирмой Филлипс петролеум компани с целью производстпа неогексана (2,2-диметилбутана) из этилена и изобутана [65]. Однако в реакцию алкилирования этиленом можно ввести также, например, пропан. Термическое алкилирование изобутана этиленом является в настоящее время единственным крупным промышленным методом производства неогексана. При каталитическом алкилировании изобутана этиленом, которое несколько легч протекает в присутствии хлористого алюминия, почти исключительно получается [c.315]

    Несмотря на все это, промышленность не потеряла интереса к получению акрилонитрила из этилепа, поскольку в большинстпс случаев этилен все еще дешевле ацетилена, а производство окисп этплепа каталитическим окислением этилена не требует хлора. [c.422]

    Кроме термического крекинга, источником олефинов является также каталитический крекинг, при котором они получаются в больших количествах. Каталитический крекинг получил быстрое и широкое распространение под влиянием потребностей военного времени, поскольку он давал хорошие выходы высокооктанового бензина, являющегося основньш компонентом авиационного топлива с октановым числом 100. Каталитический крекинг заключается в нагревании паров нефтепродукта при умеренной температуре (450°) и низком давлении (1—15 ama) в присутствии естественного или синтетического алюмосиликатного катализатора. Существуют три способа проведения этого процесса. По одному из них пары углеводородов пропускают через неподвижный слой катализатора (процесс Гудри). При втором способе очень тонко измельченный катализатор, будучи взвешен в горячих парах углеводородов, увлекается ими в направлении их движения (процесс с текучим катализатором). По третьему способу катализатор в виде гранул механически передвигается в реакционной зоне противотоком к движению паров углеводородов (процесс термофор). Во всех случаях на катализаторе отлагается кокс, который приходится удалять выжиганием в токе газа, содержащего кислород в процессе Гудри выжигание проводят периодически, в процессах с псевдоожиженным слоем катализатора или с движущимся слоем (процесс термофор) — непрерывно. Полученный крекинг-бензин содержит большое количество сильно разветвленных парафинов, благодаря чему он и обладает высоким октановым числом. Как и следовало ожидать, принимая во внимание мягкие условия крекинга,, этилен присутствует в газах в очень небольшом количестве в основном крекинг-газы состоят из С3- и С4-углеводородов. Бутан-бутиленовую фракцию крекинг-газов в США используют для производства дивинила, необходимого для промышленности синтеаического каучука, а также для получения изооктана (гл. 12, стр. 208 и сл.). [c.110]

    Для производства мономеров, полимеризуемых затем в полимеры — синтетический каучук, используют, например, каталитическое дегидрирование и-бутиленов или к-бутанов в дивинил дегидрирование изобутана в изобутилен алкилированце бензола этиленом с целью получения этилбензола, а после его дегидрирования — стирола и т. п. [c.35]

    Получение полиэтилена при давлениях 1000 —2000 кг1см (способ I. С. I. и германский способ). Принципиальная схема производства по способу I. С. I. приведена на рис. XII. 7 [29]. Этилен, получаемый путем каталитической дегидратации этанола или из крекинг-газов, весьма тщательно очищенный от примесей [1—3], под давлением 1200—3000 кг/см (в современных установках 1500 кг/см ) нагнетается компрессором 4 в реактор 5, где поддерживается постоянная температура 190—200°. В качестве катализатора служит кислород, вводимый в реактор вместе с этиленом в очень малых количествах, по указаниям патентов 0,05—0,1%. Реакция полимеризации весьма экзотермична, и отвод тепла осуществляется при помощи специальных устройств. Из реакторов полиэтилен и непрореагиро- [c.773]

    Такая схема отвечает экологическим требованиям вся используемая в производстве вода зациклована, сточная вода отсутствует. К основным преимуществам этой схемы относятся также непрерывность всех стадий процесса интенсификация стадии полимеризации [47] снижение расходных норм по катализатору и этилену за счет использования каталитической системы повышенной активности [17, 79, 80] интенсифицированный режнм водной обработки с применением аппаратов малых габаритов [80] сокращение числа единиц оборудования и их металлоемкости по сравнению с первыми промышленными производствами. [c.73]

    После успешного пуска завода один за другим вступают в строй новые цехи и производства. Большинство из выпускаемых продуктов были впервые освоены в масштабе Советского Союза. К ним относятся чешуированный каустик, сти-ромаль, винилхлорид, полученный методом каталитического дегидрохлорирования дихлорэтана, поливинилхлорид, двухосновная соль гинохлорита кальция, металлилхлорид, ацетилен и этилен, получаемые методом пиролиза легких газовых фракций. [c.9]

    При взаимодействии нитрилов с этилен гликолем и водой соответствующие оксиалкиловые эфиры образуются и 1 отсутствие сильных неорганических кислот . Если исходным продуктом в этой реакции является терефталонитрил, можно с высокими выходами получить ди-(р-оксиэтил)-терефталат, являющийся полупродуктом в производстве полиэтилёнтерефталата. Реакция с тере-фталонитрилом осуществляется при нагревании до 180—200 С в присутствии 0,01—1% солей, окисей и гидроокисей различных металлов Катализаторами этой реакции являются соли металлов, относящихся к 1а (Li, а. К), (Сц), Па (Mg, Са, Sr, Ва), Ш (Zn, d), nia (Al, TI), ШЬ (Мп), УПГ (Fe Со, Ni), IVa (Pb) подгруппам, периодической системы элементов. Наиболее эффективными катализаторами являются соли меди, кадмия, кобальта, свинца, никеля. Каталитическая активность солей, этих металлов коррелируется с показателями их кислотности (рКа). При р а>7 каталитический эффект наблюдается, при р/Са<С 7 —от- [c.81]

    В производстве каучуков, получаемых каталитической полимеризацией, используются бутадиен, изопрен, этилен, пропилен, этилиденнорборнен и дициклопентадиен. [c.5]

    Если простая перегонка нефти дает не более 20% бензина, в случае применения каталитического крекинга его количе-во может достигать 80%. Первоначально процесс крекинга врабатывался и осуществлялся для получения ароматиче-их углеводородов бензола, толуола, ксилола, необходимых ля производства разнообразных химических продуктов. Одно 3 важнейших назначений крекинга помимо получения высо-ооктанового бензина — получение газообразного непредельного сырья (этилен, пропилен, бутилены) для химической пе- >еработки. Сырьем для крекинга теперь служат не только неф- жяные фракции, но и природные газы, так как в условиях крекинга может происходить не только разрыв связей С—С, но и образование новых. [c.163]

    Этилбензол может также получаться при алкилировании бензола как чистым этиленом, так и газами, содержащими не менее 10 % этилена, в паровой фазе в присутствии кристаллического алюмоси-ликатного цеолита (фирма Mobil-Badger США). Такой катализатор не вызывает сильную коррозию и позволяет использовать обычные конструкционные материалы. В частности, применение цеолитного катализатора 75М-5 позволяет проводить реакцию с разбавленным этиленом при концентрациях 15—20 % (мае.). При этом можно использовать отходящий газ многих нефтехимических производств (например, каталитический крекинг в псевдоожиженном слое). Обычно эти газы используют в качестве топлива. [c.293]

    Большие успехи в области каталитического алкилирования изопарафинов олефинами (особенно изобутана этиленом, пропиленом и изобутиленсм) дсстиг-нуты в последние годы. Наиболее подходящими катализаторами для этой реакции оказались фтористый водород, моногидрат фтористого бора и некоторые другие комплексные соедийения фтористого бора. Алкилирование с жидким фтористым водородом получило промышленное применение в производстве высокооктановых компонентов авиатоплив (неог ксан, изооктан). Прим. перев.)]. [c.629]

    При этом получались а-олефины со средним мол. весом 1000—5000, но высокомолекулярный продукт со свойствами технического полиэтилена не образовывался. При изучении этой реакции случайно была обнаружена роль хлористого никеля, в присутствии которого реакция полимеризации этилена с А1(С2Н5)з заканчивается образованием бутена-1. При систематическом изучении различных галогенидов в качестве добавок к триэтилалюмипию при полимеризации этилена было обнаружено, что добавление четыреххлористого титана приводит к образованию твердого полиэтилена [17]. Реакция протекает как при повышенном, так и при атмосферном давлении. Открытие этой реакции произвело настоянную сенсацию, так как раньше считалось, что полимеризация этилена в полиэтилен возможна только при очень высоком давлении, 1000—2000 ат. Этилен из всех олефинов считался наименее реакционноспособным и не подвергался полимеризации при атмосферном давлении с любыми ранее известными катализаторами или инициаторами. Это открытие, опубликованное в 1955 г., послужило стимулом к многочисленным исследованиям. Но уже в 1955 г. в Германии, в Мюльгейме, был пущен первый завод по производству полиэтилена ио этому методу [17]. Реакция полимеризации этилена проводилась в углеводородном растворителе, в котором находился катализатор — смесь триалкила алюминия и четыреххлористого титана, из которых образуется каталитический комплекс. Такой катализатор получил название катализатора Циглера. Реакция проходила с большой скоростью как при атмосферном давлении, так и под небольшим давлением. [c.74]

    Среди полиолефинов наилучший комплекс свойств проявляют олигомеры альфа-олефинов С0-С д, полученные в присутствии катализаторов стереоспецифической полимеризации. Однако вопрос об оптимальной каталитической системе и условиях олигомеризации окончательно не решен. Известные трудности вызывает и обеспеченность исходным сырьем крупномасштабного, производства полиолефиновых масел. В связи с зт15м представляется перспективным синтез соолигоме-ров различных олефинов, например альфа-олефинов со стиролом, этилена с пропиленом и т.д. Необходимо отметить актуальность работ по крекингу этилен-пропиленовых каучуков с последующим гидрированием крекинг-дистиллятов, в результате чего получены масляные основы, превосходящие по термической стабильности, индексу вязкости и температуре застывания минеральные масла. [c.40]


Смотреть страницы где упоминается термин Этилен каталитическая в производстве: [c.287]    [c.581]    [c.133]    [c.49]    [c.130]    [c.138]    [c.71]    [c.452]    [c.478]    [c.409]    [c.421]    [c.375]   
Массопередача (1982) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Производство этилена



© 2025 chem21.info Реклама на сайте