Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конформация оптическое вращение

    Измерение спектров дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД) получило широкое распространение как метод конформационного анализа оптически активных соединений. Особенно методы ДОВ и КД используются в органической химии, биохимии, энзимологии и молекулярной биологии. Данными методами исследуются белки, аминокислоты, нуклеиновые кислоты, стероиды, углеводы и полисахариды, вирусы, митохондрии, рибосомы, фармакологические средства, синтетические полимеры, координационные соединения, неорганические и редкоземельные комплексы, кристаллы, суопензии и пленки и т. п. и решаются следующие задачи 1) определение по эмпирическим пра вилам конформации и ее изменений под действием различных физико-химических воздействий 2) изучение механизма и кинетики химических реакций (особенно ферментативных) 3) получение стереохимических характеристик 4) измерение концентраций оптически активных веществ 5) определение спиральности макромолекул 6) получение электронных характеристик молекул 7) исследование влияния низких температур на конформацию соединений 8) влияние фазовых переходов типа твердое тело — жидкость — газ на изменение структуры. [c.32]


    Проведенные расчеты показали, что величина вращения должна существенно зависеть от конформации молекулы. Рассмотрим в качестве примера работу Козмана и Эйринга [104], которые исходили из представлений Куна о связи оптического вращения с определенными полосами поглощения и тем самым с определенными функциональными группами (хромофорами). Сама по себе хромофорная группа, например ОН или Вг, изолированная от влияния асимметрического центра, не может вызывать оптического вращения, ее полоса поглощения изотропна. Находящийся вблизи хромофора асимметрический центр делает полосу поглощения анизотропной такое воздействие авторы называют вицинальным влиянием первого порядка, создающим соответствующий инкремент первого порядка, входящий в качестве составной части в общую наблюдаемую величину оптического вращения. Иной тип воздействия — вицинальное влияние второго порядка — заключается в воздействии на хромофор, уже возмущенный другой группой при этом возникают инкременты второго порядка, которые по величине всегда уступают инкрементам первого порядка. [c.300]

    Связь конформации и оптического вращения исследована на примере кетонов типа ЬПТ (Rm и Ra — большой и малый заместители у асимметрического центра) [107]. [c.301]

    В частности, для молочной кислоты ЬХ1 и аланина обе доли оптического вращения — конфигурационная и определяемая закрепленной конформацией — противоположны по знаку, поэтому их сумма, т. е. наблюдаемое вращение, относительно мала и имеет неопределенный знак (меняется в зависимости от растворителя, концентрации). [c.305]

    Комплексообразование обнаруживается по понижению электропроводности раствора (т. е. по повышению его удельного сопротивления), а также по изменению оптического вращения. Оба признака могут меняться независимо друг от друга. Оптическое вращение сильно меняется только тогда, когда комплекс образуется при двугранном угле между ОН-группами около 60° в этом случае комплексообразование деформирует цикл, что и приводит к изменению оптического вращения. Такой угол имеется в том случае, когда в комплексообразовании участвуют соседние ОН-группы, имеющие е,е-или а,е-конформацию. Если же ОН-группы занимают в исходном моносахариде строгое цис- (двугранный угол равен нулю) или 1,3-диаксиальное положение, то комплексообразование не изменяет конформации молекулы соответственно и оптическое вращение меняется незначительно. [c.631]

    Очень чувствительным методом исследования конформаций белков и полипептидов является спектрополяриметрия. В неупорядоченной конформации характер оптического вращения белков определяется прежде всего аминокислотным составом, причем кривые дисперсии оптического вращения имеют плавный характер. Когда белок принимает конформацию а-спирали, то появляется большой дополнительный вклад этой спиральной структуры, дисперсия оптического вращения может стать аномальной, появляется эффект Коттона [c.637]


    Фарадея 5/546 конформеров 3/773. См. также Конформации молекул мера, см. Оптическое вращение, Хироптические методы полимеров 2/674 [c.670]

    Кривые дисперсии оптического вращения и спектры кругового дихроизма используют для определения структуры, конфигурации и конформации сложных оптически активных молекул, например стероидов. Другая щироко исследуемая область — белки и синтетические полипептиды. Здесь может быть получена информация о значительных кон-формационных изменениях, так как оптическое вращение очень чувствительно к конфигурациям и конформациям молекул. [c.488]

    Интенсивное изучение пространственного строения синтетических полипептидов продолжалось в течение 1950-х и первой половины 1960-х годов. Были привлечены практически все известные физические и физикохимические методы, позволяющие получать информацию о строении молекул в твердом состоянии и в растворах. Наибольшее количество данных было получено с помощью рентгеноструктурного анализа, методов рассеяния рентгеновских лучей под малыми углами, дисперсии оптического вращения, кругового дихроизма и дейтерообмена, с помощью обычных и поляризованных инфракрасных спектров. Из полученного при исследовании синтетических полипептидов огромного экспериментального материала, однако, не удалось сделать обобщающих заключений о причинах стабильности регулярных структур и сказать что-либо определенное на этой основе о принципах структурной организации белков. И тем не менее, результаты исследования повсеместно были восприняты как подтверждающие ставшее общепринятым представление о том, что пространственное строение белковой глобулы представляет собой ансамбль унифицированных регулярных блоков вторичных структур, прямую информацию о геометрии которых дают высокомолекулярные синтетические пептиды. а-Спиральная концепция Полинга не только не была поставлена под сомнение, но еще более утвердилась. В 1967 г. Г. Фасман писал "Общепризнано, что лишь несколько конформаций, благодаря своей внутренней термодинамической стабильности, будут встречаться наиболее часто и, по-видимому, именно они составляют общую основу белковой структуры" [5. С. 255]. Между тем, в то время уже были известны факты, настораживающие от безусловного принятия а-спиральной концепции Полинга. Но они выпадали из множества других фактов, согласующихся с традиционным представлением, казавшимся логичным и правдоподобным, к тому же не имевшим альтернативы. Поэтому на данные, противоречащие концепции Полинга, долгое время не обращали внимания. [c.72]

    Далее, в силу возрастающего применения физических методов, особенно рентгеноструктурных исследований, ЯМР- и оптической (дисперсия оптического вращения, круговой дихроизм) спектроскопии, акценты были сдвинуты к проблемам топологии этих важных молекул и ее связи с их биологической функцией [114—116]. Другой, в равной мере важной причиной этого сдвига, была высокая степень жесткости циклопептидов по сравнению с их линейными аналогами, что снижало число связанных взаимопревращениями форм и в определенной мере облегчало анализ. Тем не менее эти пептиды все еще в какой-то мере сохраняют гибкость, и часто конформация в кристаллическом состоянии отличается от конформации в растворе. Подробное обсуждение конформаций выходит за рамки этого обзора, но приводятся узловые моменты, касающиеся химических или биологических свойств молекул. [c.313]

    Важной отличительной чертой конформаций, стабилизированных кооперативными взаимодействиями, является то, что переход молекул в неупорядоченное состояние совершается достаточно резко независимо от того, чем он вызван изменением температуры, состава или ионной силы растворителя или другого фактора. Часто такой переход приближается к случаю все или ничего , т. е. сильно отличается от постепенного сдвига конформационного равновесия в малых молекулах. Подобные резкие переходы могут быть обнаружены путем измерения любого физического параметра полисахарида, который зависит от общей конформации его молекулы. Характерные сигмоидные кривые иллюстрируют конформационные переходы ксантана, за которым следили по изменениям вязкости, оптического вращения в монохроматическом свете, площади детектируемого сигнала в спектре ЯМР (рис. 26.4,3) или амплитуды кривой кругового дихроизма при соответствующей длине волны, а также другими методами. [c.294]

    Метод дисперсии оптического вращения пока не нашел значительного применения в химии моносахаридов, но в принципе он может быть использован для установления конфигурации при том или ином атоме, а также для определения конформаций моносахаридов в растворе. О достоинствах или недостатках этого метода по сравнению с другими физикохимическими методами пока еще трудно судить. [c.57]


    Многочисленными исследованиями показано, что зависимость оптического вращения от длины волны в видимой и ультрафиолетовой областях спектра может дать более ценные сведения, чем величина вращения при одной длине волны. Кривые дисперсии оптического вращения оказались весьма ценными при определении конфигураций и конформаций оптически активных соединений. [c.496]

    Итак, основное применение дисперсии оптического вращения при установлении структуры органических соединений состоит в определении одного из следующих трех параметров, если известны два других 1) положения функциональных групп, 2) конфигурации и 3) конформации молекул. [c.500]

    Как показал П. Пино, оптическая деятельность приготовленных им поли-а-олефинов в растворе намного выше, чем у низкомолекулярных парафинов, сходных по строению с мономерными звеньями полимеров. Это объясняется, по мнению Пино, тем, что макромолекула этих полимеров при переходе их в раствор сохраняет спиральную конформацию (см. с. 175), которая вследствие своей асимметричности вносит дополнительный вклад в величину оптического вращения — конформационная оптическая активность. В пользу этого мнения говорят результаты, полученные при полимеризации олефинов, не содержащих асимм етрических боковых групп, в условиях, благоприятствующих образованию правой или левой спирали. [c.197]

Рис. 188. Переход от а-спирали к беспорядочному статистическому клубку а — предельные конформации прн переходе (/ —идеальная спираль / — одно из промежуточных состояний, 3 — статистический клубок) б — измеиение величины оптического вращения [а] при переходе (поли- .-глутаминовая кислота) Рис. 188. Переход от а-спирали к <a href="/info/1873760">беспорядочному статистическому</a> клубку а — <a href="/info/162308">предельные конформации</a> прн переходе (/ —<a href="/info/1648903">идеальная спираль</a> / — одно из <a href="/info/301626">промежуточных состояний</a>, 3 — <a href="/info/56505">статистический клубок</a>) б — <a href="/info/94021">измеиение</a> <a href="/info/1387489">величины оптического вращения</a> [а] при переходе (поли- .-глутаминовая кислота)
    Простую поляриметрию заменили методы дисперсии оптического вращения (ДОВ) и кругового дихроизма (КД), которые позволили изучать более полно оптические характеристики оптически активных веществ как функции длины волны излучения. Современные методики ДОВ и КД позволяют определять абсолютную конфигурацию молекул (правда, на полузмпирической основе), химическое строение, конформации и некоторые спектральные характеристики молекул. [c.167]

    Конформация цепи определяется степенью ионизации — удаленностью pH от ИЭТ. В ИЭТ раствор полиамфолита показывает минимальные вязкости, степень набухания, растворимость и заряд. Это позволяет использовать зависимость указанных свойств от pH раствора для определения ИЭТ амфолитов. Переход а-спираль— клубок можно наблюдать и по изменению оптического вращения. Удельное вращение [а] раствора складывается из двух членов, одпн из которых соответствует внутреннему вращению, зависящему от асимметричных С-атомов каждого звена, другой — конформа- [c.287]

    Весьма полезными с точки зрения исследований структуры-веществ оказались измерения оптического вращения в зависимости от изменяющейся длины волны плоскополяризованнога света. Из полученных кривых дисперсии оптического вращения в определенных случаях можно делать выводы о конформации и конфигурации исследуемых органических соединений. [c.86]

    Знак КД а-хлор- и а-бромалкилкарбоновых кислот подчиняется правилу квадрантов [116] — одному из вариантов более общего правила октантов , которое мы рассмотрим позднее (см. стр. 408). Предложены также правила, связывающие конфигурацию и конформацию с оптическим вращением нитрозфиров [117], а-дикетонов [118]. [c.310]

    Аналогичные наблюдения были сделаны и относительно других соединений. Так, гранс-2-хлор-5-метилциклогексанон в полярном растворителе, например метаноле, имеет диэква-ториальную конформацию, но в неполярном растворителе (октане) становится диаксиальным. Это явление было открыто Аллинжером и Джерасси в 1958 г. при изучении дисперсии оптического вращения упомянутого вещества кривые ДОВ имеют разные знаки эффектов Коттона в метаноле и октане (рис. 50). [c.355]

    Если к раствору соли меди добавить соединение XVII, то удельное сопротивление сильно увеличивается, что свидетельствует о значительном комплексообразовании. Комплекс образуется за счет гидроксильных групп при С-3 и С-4 угол между ними в нормальной конформации 60°, а в комплексе обе ОН-группы должны быть уложены в одну плоскость. Это приводит к искажению конформации и сильному изменению оптического вращения. Правовращающий комплекс [c.631]

    Спектрополяриметрический метод был использован для изучения изменений конформации, вызываемых введением дополнительных пептидных цепей в молекулу инсулина по трем его свободным аминогруппам [15]. Исходный инсулин спирален на 25%, модифицированный лизином — на 32—33%, модифицированный глутаминовой кислотой — на 3—16%. Если к растворам синтетической полиглутаминовой кислоты добавить некоторые красители (акридин оранжевый, псевдоизоцианин) и измерить дисперсию оптического вращения в области 560—360 нм, то при pH 5,5 кривая ДОВ имеет плавный характер (полимер в неупорядоченной конформации) при pH ниже 5,1, когда полимер приобретает спиральную конформацию, дисперсия оптического вращения становится аномальной, причем величина вращения резко возрастает. Это связано с адсорбцией красителя на спиральной полипептидной цепи, в результате чего полоса поглощения красителя становится оптически активной [16]. Дальнейшее развитие спектрополяриметрического метода позволило перейти к прямому измерению эффекта Коттона в области 185—240 нм, непосредственно связанного со спиральностью молекул белков и полипептидов (обзор см. [17]). [c.638]

    Характерные кривые ДОВ имеют и стероидные кетоны с иными положениями кетонной функции. Изучив дисперсию оптического вращения очень большого числа стероидных соединений, Джерасси смог сформулировать правило, что форма кривой ДОВ существенно не меняется при введении в кето-стероид заместителей, имеющих характер оптически слабых хромофоров, если при этом остается неизменным непосредственное стереохимическое окружение — конфигурация и конформация вблизи стерического центра, ответственного за создание карбонильной аномалии. По существу здесь имеется более частный случай общего правила положения Чугаева. [c.650]

    Обе эти формы легко различимы по характерным значениям оптического вращения. Как и в случае нативных и денатурированных белков, беспорядочно ориентированные синтетические полипептиды имеют очень малое вращение, и то время как спирализованные полипептиды обладают большой вращательной способностью. Различие между спиральной конформацией и клубком особенно заметно при рассмотрении кривых дисперсии оптического вращения в далекой ультрафиолетовой области. Блу (1961) сообщил о вращении, измеряемом десятками тысяч градусов. Для этой цели был успешно применен новый прибор для определения спектров кругового дихроизма (Руссель — Улаф, 1961). [c.712]

    К. д. наблюдается на кривых дисперсии оптического вращения в виде Коттона эффекта в области полос поглощения оптически активных хромофоров, имеющихся в молекуле. На кривой К. д. имеется экстремум, к-рый в зависимости От соотношения Ел и Ецр м. б. положительным или отрицательным и в случае изолиров. полосы поглощения совпадает с максимумом в УФ спектре, Кривые К. д, использ. для установления хим, строения, конфигурации и конформации хиральных соед., расчета конформац. состава кон-формационно-нодвижных систем. [c.289]

    Такие сахараты меди имеют циклическое строение и образуются лишь Б том случае, когда два соседних гидроксила расположены в одной плоскости или близки к такому расположению. Если наблюдать свойства сахара в растворе, например его оптическое вращение, то можно отметить, когда образуется такое медное производное. Контролируя изменение оптического вращения отдельных моносахаридов при добавлении к ним медных солей, удалось установить, в каких случаях образуются медные -сахараты, т. е. сделать заключение об отнбсительном расположении в пространстве соседних гидроксильных групп в этих моносахаридах и, следовательно, установить конформации всех моносахаридов Ривз). [c.455]

    При исследовании конформации нуклеозидов неизбежно использовался метод диффракции рентгеновских лучей. Большая работа в этой области проделана и обобщена Арноттом с сотр. [41] и Сандаралингамом с сотр. [12, 19, 42]. Для выяснения предпочтительной конформации нуклеозидов в растворе использованы также методы ЯМР [43], кругового дихроизма [44] и дисперсии оптического вращения [12]. [c.76]

    Конформации моно- и олигонуклеотидов в растворе и в твердом состоянии были исследованы различными методами [17]. Например, исследование дисперсии оптического вращения и кругового дихроизма показали, что олигонуклеотиды существуют в растворе предпочтительнее в анги-конформации (17), (18), чем в с н-ко формацни (19), (20). Исследования методом дифракции [c.138]

    Оптическое вращение есть функция длины волны, которая в диапазоне 350—600 нм выражается однотермовым уравнением Друде (1). Для поли (аминокислоты), находящейся в растворе в неупорядоченной конформации, =1, тогда как для полипептида, существующего в виде а-спирали, уравнение является двухтермо-вым (t==2). Когда длина волны Ло для определенной поли (аминокислоты) равна 212 им, константа Ъо имеет значение —630 [34]. Используя эти величины, можно подсчитать, какая часть полипептида находится в виде правой спирали, найдя это математическим путем по данным оптического вращения в видимой части спектра Положительное значение Ьо соответствует тем редким случаям когда поли (аминокислоты) принимают конформацию левой а-спи рали в том случае, когда эта величина составляет около 630, од нако меньшие ее значения между -f200 и —200 соответствуют кон формации -формы. [c.436]

    Термин конформация был первоначально введен Хеуорсом [3] для обозначения трехмерной структуры молекулы он предсказал преимущественную конформацию кресла для пиранозных циклов. Первое экспериментальное подтверждение того, что пира-нозные формы моносахаридов существуют в растворе только в виде конформации кресла, было получено Ривзом [17] при изучении образования комплексов пираноидных производных с ионом тетраамминмеди(II) [Си(ЫНз)4] +. Было показано, что такие ионы образуют комплексы только с вицинальными диолами, расстояние между атомами кислорода которых равно или меньше 286 пм. Следовательно, только вицинальные диолы с торсионным углом 60° или менее вступают в комплексообразование. Для подтверждения образования комплекса используют два параметра увеличение удельной электропроводности раствора и изменение удельного вращения хиральных соединений. Первый параметр характеризует устойчивость комплекса, второй относится к пространственному расположению диольной группировки [17]. Например, если торсионный угол между двумя гидроксигруппами положительный (поворот против часовой стрелки), наблюдается положительный вклад в значение оптического вращения, в случае отрицательного торсионного угла этот вклад отрицательный. [c.133]

    Для получения информации о стереохимических особенностях молекул могут быть также применены хироптические методы. Например, сильное нарушение я->-я -перехода для карбоксилатного хромофора при кооперативном связывании ионов кальция поли-гулуронатом и полигалактуронатом согласуется с существованием такой области связывания, в которой катион расположен в непосредственной близости от орбиталей, не участвующих в связывании (что действительно можно предположить по аналогии с известными конформациями цепей) [32]. Широкое применение имеет эмпирическое соотношение [33] между значением оптического вращения и значениями основных конформационных переменных полисахаридной цепи, а именно диэдральных углов ср и ij) [см. формулы (1) и (2)]. Величину, известную как связевое вращение [Л]о, определяют, вычитая из значения молекулярного вращения углеводного остатка в цепи значение молекулярного вращения соответствующего метилгликозида. Для гликозидной связи, в образовании которой участвуют вторичные гидроксигруппы [как в (1)], ее определяют по уравнению (2). [c.296]

    Это соотношение было проверено на модельных соединениях и показано, что его можно успешно применить для корреляции конформаций в растворе и (или) геле каррагинана [34], агара [35], некоторых арабиноксиланов [36] и полимера 3-0-метил- )-глю-козы из My oba terium smegmatum [37] с учетом конформаций для твердого состояния. К сожалению, этот метод анализа усложняется, если в молекуле имеются хромофоры, поглощающие в доступной УФ-области спектра, которые оптически активны и чувствительны к общей конформации молекулы, так как такие хромофоры могут искажать истинное значение оптического вращения. [c.296]

    Все обсуждавшиеся выше работы основаны на измерении удельного вращения при 589 ммк (желтая линия натрия). В последнее время сделаны первые шаги по изучению конфигураций и конформаций моносаха-р идов методом дисперсии оптического вращения (основы метода [c.56]

    В отдельных случаях для определения конформации моносахаридных звеньев в полимерной цепи может быть применена дисперсия оптического вращения. Так, на основании сходства кривых дисперсии оптического вращения хондроитинсульфата В и получаемых из него олигосахаридов, а также простейших производных L-идуроновой кислоты для остатка L-идуроновой кислоты в составе этого полисахарида была установлена конформация кресла F . [c.516]

    Исследования влияния углеводородов на конформационное состояние макромолекул глобулярных белков проводились методами оптического вращения и его дисперсии, вискозиметрически, спектрофотометрически и по изучению кинетических параметров ферментативной активности, Вращение плоскости поляризации чрезвычайно чувствительно к изменению конформации белковых молекул. Правда, между оптической активностью и структурой белка нет простой и ясной зависимости, но значение оптической активности как характеристики степени конформационного изменения белков общеизвестно и играет большую роль при изучении процессов денатурации. [c.29]

    На основании результатов исследования тепловой денатурации 7-глобулина по изменению удельного оптического вращения и оптической плотности при разных температурах [161] были определены изменения энтальпии конформационных переходов (АЯ). Полученные величины АН показывают, что связывание углеводородов белками приводит к увеличению теплоты денатурации или, что то же самое, к повышению устойчивости нативной глобулярной конформации белка по отношению к денатурации теплом. При этом связывание 7-глобулином гептана увеличивает теплоту денатурации на 10 ккал/моль (от 55 до 65 ккал1молъ), связывание декана и тетрадекана — от 55 до 57 ккал1моль. Этот факт очень хорошо объясняется особенностями заполнения глобул белка этими углеводородами, что будет рассмотрено ниже. Спектрофотометрическое исследование тепловой денатурации 7-глобулина также показало повышение устойчивости молекулы белка в ре- [c.31]

    Такие агрегаты и ранее рассматривались как микрогели и предполагалось, что стабилизированы они так же, как гели желатины. Для выяснения особенностей перехода спираль — клубок в гелеобразующих системах желатины были проведены исследования при концентрациях желатины больше 2 г/100 мл, т. е. в условиях гелеобразования [92]. На рис. 2 представлены кривые зависимости температурных коэффициентов удельного оптического вращения растворов и гелей желатины от температуры. Видно, что при 36° С и выше температурный коэффициент удельного оптического вращения равен нулю. В этой области существуют лишь молекулы желатины в конформации статистического клубка. При охлан дении до 20° скорость образования спиралей увеличивается, при 17—20° С температурный коэффициент удельного оптического вращения наибольший и постоянный, а затем он уменьшается. По-видимому, это связано с уменьшением подвижности молекул и их сегментов при снижении температуры, что затрудняет образование спиральных конформаций и с тем, что наибольшая доля молекул желатины из конформаций статистического клубка уже перешла в спиральную конформацию. [c.68]


Смотреть страницы где упоминается термин Конформация оптическое вращение: [c.131]    [c.177]    [c.361]    [c.710]    [c.180]    [c.544]    [c.166]    [c.587]    [c.169]    [c.134]    [c.136]    [c.29]   
Новейшие методы исследования полимеров (1966) -- [ c.115 ]




ПОИСК







© 2025 chem21.info Реклама на сайте