Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распадение соединений

    В реактор подаются нагретые до температуры 425° пары нефтепродуктов, подвергаемых очистке. Под воздействием специального катализатора в присутствии циркулирующего газа в реакторе происходит распадение сернистых соединений па сероводород и углеводород. [c.179]

    Разрыхляющие вещества — это соединения, обеспечивающие механическое разрушение (распадение) таблетки в желудке или кишечнике при контакте с пищеварительными соками. От времени и характера распадаемости таблеток зависит действие лекарственных веществ. Так, быстрое по времени распадение таблетки обеспечивает быстрое высвобождение лекарственного вещества и большую скорость его диффузии к поверхности вса- [c.326]


    Выступая в 1934 г. на Первой Всесоюзной конференции по неводным растворам с воспоминаниями о начальном периоде развития учения о неводных растворах. Каблуков 1 сказал по поводу своей работы следующее Многие физики, а за ними и химики увлекались физико-механическими взглядами на раствор. Раз осмотическое давление растворенного тела равно газовому, то невольно можно думать, что оно вызывается тем же, чем вызывается и газовое давление, т. е. ударом о стенки сосуда. Но я помню, что с самого начала меня, ученика Менделеева, знавшего его взгляды на растворы как химическое соединение, находящееся в разложении, такой взгляд не удовлетворял, и я потом в своей диссертации высказал мысль, что при растворении в воде распадение иа ионы происходит вследствие того, что между ионами и растворителями, в данном случае водой, происходит химическое соединение. Вода разлагает на отдельные ионы молекулы растворенного вещества, но при этом ионы могут соединяться с водой в более сложные группы, находящиеся в состоянии диссоциации . [c.60]

    Строение последних определялось, по мнению Клеве, их реакциями распадения при нагревании с раствором иодистого калия производное соли Пейроне дает при этом смешанное соединение  [c.31]

    Как следует из диаграммы состояния системы MgO—РегОз— —РеО (рис. 3), окись магния образует с окисью железа одно химическое соединение — магнезиоферрит MgO РегОз, который образует твердый раствор с MgO. И магнезиоферрит и твердый раствор его высокоогнеупорны, а именно даже когда содержание окиси железа в этом огнеупоре достигает 70%, температура плавления его снижается только до 1900° С, в то время как температура плавления динаса при таком содержании окислов железа снижается уже примерно до 1200°С. MgO может поглотить окись железа в количестве, большем ее собственного веса, без плавления в условиях мартеновской плавки. На рис. 3 кривые I—VII характеризуют собой пространственные трехмерные кривые призмы, соответствующие диаграмме состояния системы MgO—РегОз—РеО в координатах состав — температура. В верхней части рисунка эти кривые являются проекциями трехмерных кривых на горизонтальную плоскость. В нижней части рис. 3 соответствующие кривые являются проекциями трехмерных пространственных кривых на вертикальную плоскость А — твердый раствор окиси магния и магнезиоферрита, содержащий небольшое количество закиси железа (см. кривую /) В — твердый раствор магнезиоферрита и магнетита, включая растворы с избытком и недостатком закиси железа. Кривая У характеризует распадение твердого раствора магнетита и магнезиоферрита на две фазы, одной из которых является гематит. Кривая III характеризует ограниченную растворимость окиси магния в твердом растворе с магнезиоферритом при температурах ниже температуры несмешиваемости, представленной кривой I. Кривые [c.178]


    Величина повышения упругости пара спирта, как видно лз опытов с различными солями, существенно зависит от химической функции взятой соли. Почти все перечисленные выше соли характеризуются большей или меньшей способностью вытеснять спирт из его раствора с водой. Способность разделять оба растворителя выражена в меньшей степени, чем в растворах поташа, однако при известных условиях конечный результат действия этих солей вполне уподобляется действию поташа. В самом деле, в смеси метилового спирта и воды разделение жидкости наблюдено в присутствии одного поташа. В водно-этиловом спирте оно достигнуто при действии не только поташа, но и соды, серно--кислых солей калия и натрия, цинка и магния. В водно-пропиловом спирте тот же результат производят кроме перечисленных веществ еще целый ряд сернокислых солей тяжелых металлов и хлористые соли щелочей и щелочных земель. Классификация солей по их способности разделять на два слоя различные водные спирты еще далеко не полна. Из предыдущих опытов мы видим, что величина относительного повышения упругости зависит от температуры. При повышении температуры она уменьшается, — что необходимо поставить в связь с явлением диссоциации соединений соли и воды, — при охлаждении она увеличивается. Поэтому, способствуя распадению раствора понижением температуры, мы несомненно найдем в области спирто-водных растворов еще новые случаи выделения двух слоев с более или менее совершенным разделением обоих растворителей. Все это заставляет признать существование лишь количественного различия в действии указанных солей, и мы вынуждены распространить на растворы всех солей, повышающих упругость пара, те представления, которые получены рассмотрением растворов поташа. Необходимо допустить, что в растворах всех солей, повышающих упругость пара одного из растворителей, существует ряд химических процессов, под- [c.60]

    Когда из слагаемых происходит сложное тело, то или не замечается сжатия, или оно существует объем действующих тел в этом случае или равен объему происходящего тела, или его превышает. При разложениях, когда из одного тела происходит несколько простейших, замечается, конечно, противоположное отношение. Поэтому в дальнейшем изложении мы и станем называть соединениями такие реакции, при которых замечается сжатие, т.-е. уменьшение в объемах пара или газа разложением или распадением будем называть реакции, при которых происходит расширение а те реакции, при которых в парообразном или газовом состоянии не происходит изменения объемов (конечно, если объемы сравниваются при одном давлении и одной температуре), будем называть замещениями, и. и двойными разложениями. Поэтому переход кислорода в озон есть реакция соединения, образование закиси азота из кислорода и азота будет также соединение, а образование из них окиси азота — замещение, действие кислорода на окись азота есть соединение и т. д. [c.217]

    Сера представляет очевидно кислотный характер не только в своих соединениях с водородом и кислородом, но и с другими элементами. В особенности хорошо изучено соединение серы с углеродом, представляющее и по элементарному составу и по химическому характеру большую аналогию с угольным ангидридом. Это вещество есть так называемый сернистый углерод или сероуглерод S — соответствует СО . Первые опыты получения соединений серы с углеродом были неудачны, потому что хотя сера и соединяется прямо с углеродом, но для успешного образования требуются совершенно определенные условия. Если серу смешать с углем и накаливать, то сера просто перегоняется, и не получается ни малейших следов сернистого углерода. Для образования этого соединения требуется первоначальное накаливание угля до краснокалильного жара, но не выше, и тогда должно пропускать пары серы или бросать в массу накаленного угля куски серы, но малыми порциями, чтобы не понизить чрез то температуру угля. Если уголь будет накален до белокалильного жара, то количество образующегося сернистого углерода уменьшается. Это зависит, во-первых, от того, что сернистый углерод при высокой температуре разлагается [550], диссоциирует. Во-вторых, Фавр и Зильберман показали, что при горении 1 г сернистого углерода (продукты будут СО и 250 ) выделяется 3 400 единиц тепла, т.-е. при горении частичного количества сернистого углерода выделяется 258400 единиц тепла (по Вертело 246 000). Из частицы S можно получить 12 ч. угля, отделяющих при горении 96 000 единиц тепла, и 64 вес. ч. серы, отделяющей при горении (в 50 ) 140 800 единиц тепла. Отсюда видно, что составные начала выделяют менее тепла (237 ОСЮ единиц тепла), чем S, т.-е. при его распадении должно выделяться (при обыкновенной температуре), а не поглощаться, теплота, т.-е. образование S из угля и серы сопровождается, по всей вероятности, поглощением тепла. Оттого немудрено, что сернистый углерод, подобно другим телам, происшедшим с поглощением тепла (О №0, НЮ и т. п.), есть тело непрочное, легко превращающееся в первоначальные вещества, из которых может быть получено. И действительно, пары сернистого углерода, пропущенные чрез накаленную трубку, разлагаются, т.-е. подвергаются диссоциации, образуя серу и уголь. Это разложение совершается при той температуре, при которой S образуется, подобно тому как при температуре [c.224]


    Вероятным следствием механической теории химизма является также то, что при нагревании должно происходить распадение соединений, особенно тогда, когда величины атомов различны (ср. 90а). Одинаковая теплоемкость атомов означает, что в них, при сообщении им равных количеств тепла, количество работы возрастает на одинаковую величину. Так как масса атомов хотя не одинакова, но всегда неизменна, то, при увеличении в них количества работы, возрастает быстрота движения, а именно тем сильнее, чем легче атом. Разница в скорости движения может быть малой при низкой температуре, но при повышенной температуре очень значительной и противодействуюш,ей взаимной химической зависимости (Бекетов) . [c.484]

    Органические остатки подвергаются разлагающему действию анаэробных бактерий. В первую очередь разрушаются белковые вещества с образованием сероводорода и аммиака и других продуктов глубокого распада белковой частицы и распада каких-то устойчивых азотистых соединений. Получается, по словам акад. В. Л. Омеляпского, как бы выгнпвший , или, как его неудачно называет Г. Потонье, минерализованный сапропель, который не изменяется очень долго даже при свободном доступе воздуха. Во вторую очередь подвергается распадению клетчатка, или целлюлоза, и лигнин и другие органические соединения с высоким содержанием кислорода. Роль анаэробных бактерий состоит в извлечении кислорода и в образовании устойчивых соединений. Первая стадия бактериального разложения заканчивается образованием жиров и других устойчивых соединений. Этим вообще заканчивается стадия биохимических процессов, и органическое вещество обращается в тот кероген, о котором мы уже говорили. По мнению других исследователей, роль анаэробных бактерий на этом не заканчивается. Мэррэй Ст-юарт и другие английские геологи считают, что бактериальное разложение совершается до конца, до превращения органического вещества в нефть. Жиры, разложенные в жирные кислоты, а эти [c.338]

    Таково влияние на характер нефтей динамометаморфизма . Теоретически говоря, более древние нефти подверглись и большему его влиянию. В общем, это подтверждается примером нефтей Соединенных Штатов, где палеозойские нефти, вообще говоря, легче мезозойских, мезозойские же — легче третичных. Но из этого правила много исключений, объясняемых особенностями исходного материала и геологической обстановкой того или иного месторождения. Из заводской практики нам хорошо известно, что если нефть будет перегрета, то начинается распадение ее тяжелых молекул на более легкие (на этом основан крекинг нефти). Если применить очень высокую температуру, то мы можем всю нефть превратить в газ, в составе которого главную роль будет играть метан. Вероятно, п в природе, если нефтяные залежи попадали в условия чрезвычайно высокого давления или очень больших температур, начиналось разложение нефти, которое заканчивалось разрушением углеводородов с выделением водорода и углерода. Это — крайняя степень метаморфизма органического вещества. Так, вероятно, образовался графпт — один пз крайних членов ряда битумов, а водород вследствие его малого атомного веса и крайней подвижности, вероятно, улетучился из литосферы в-атмосферу. [c.348]

    В случае катализа, по Д. И. Менделееву, ...атомы одного из тел, например А, приходят в такое состояние движения, что между ними в точке касания начинается новообразование или реакция. Если тело А однородно, то оно может разлагаться или подвергаться изомерным превращениям. Если тело А есть смесь двух или нескольких веществ, между ними в точках касания к телу В может происходить реакция или распадения, или соединения, или замещения, или тот и другой вид реакций, т. е. наступает так называемое химическое равнсвзсие . Вещество В при этом не подвергается видимому химическому превращению. [c.123]

    По мнению А. М. Бутлерова, молекулы некоторых веществ вследствие постоянного распадения и воссоединения продуктов в новом порядке постоянно изомеризуются, переходя из одного видоизменения в другое и обратно, в результате этого получается два ряда производных, соответствуюгцих двум различным изомерным структурам. Две изомерные формы (два различных соединения) могут находиться в подвижном равновесии, которое зависит от условий (среда, температура). [c.199]

    В 1869 г. А. Н. Поиов сформулировал правило окисления кетонов Во всех тех случаях, когда алкогольные радикалы кето-па различны но составу, то ири распадении таких кстопов группа СО всегда остается соединенною с более простым первичным радпка [ом  [c.202]

    Разложения и соединения, которые происходят таким образом, встречаются очень часто мы будем, — писал Э. Митчерлих, — называть их разложением и соединением через контакт... Прекрасным примером служит окисленная вода (перекись водорода) малейшие количества перекиси марганца, золота, серебра и других веществ разлагают это соединение иа воду и кислород — газ, который выделяется, причем эти вещества не претерпевают пи малейшего изменения. Сюда же нрипадлея ит распадение сахаристых Benie TB на алкоголь и углекислоту, окисление алкоголя при его превращении в уксусную кислоту, распадение мочевины и воды на угольную кислоту и аммиак. Сами по себе эти вещества не претерпевают никакого изменения, но после прибавления малых количеств фермента, который прп этом является контактным веществом, нри известной температуре, это (т. е. препра1цение) происходит тотчас я е. Превращение крахмала в крахмальный сахар при [c.349]

    В 1877 г. аналогичное явление Бутлеров заметил при изучении октилена, который вступал в реакции в соответствии с двумя разными формами строения. Это дало Бутлерову повод прийти к общему заключению о возможности существования таких веществ, молекулы которых вследствие постоянного распадения и воссоединения продуктов в новом порядке, постоянно изо-меризуются, переходя от одного видоизменения в другое — и обратно [24]. Впоследствии явление обратимой изомеризации стало предметом изучения Байера, Цинке, Вислиценуса, Клайзена, Кнорра, Фаворского, Шорыгина, Ингольда и многих других химиков, наблюдавших двойственную реакционную способность различных органических соединений. [c.374]

    Ход определения. Навеску в 0,5000 г высушенной пробы сплавляют с 5 г карбоната натрия, выщелачивают охлажденный плав горячей водой я, после полного распадения плава, фильтруют. Полученный фильтрат (фильтрат А) сохраняют. Нерастворимый остаток смывают струей воды обратно в чашку, прибавляют 50 мл 2%-ного раствора карбоната натрия, кипятят несколько минут, фильтруют и тщательно промывают остаток остаток Б) горячей водой . Остаток Б сохраняют для определения кремнекислоты, а фильтрат ( оединяют с ранее полученным фильтратом А. К соединенным фильтратам, которые должны иметь объем приблизительно 300 мл, прибавляют раствор 1 г окиси цинка ъ 20 мл разбавленной (1 9) азотной кислоты. Раствор кипятят 1 мин, фильтруют и тщательно промывают осадок (осадок В) горячей водой. Осадок В сохраняют для определения кремнекислоты. К фильтрату прибавляют несколько капель метилового красного, почти нейтрализуют его азотной кислотой и выпаривают до объема 200 мл, следя за тем, чтобы раствор оставался щелочным в течение всего процесса выпаривания. Немного охлаждают и прибавляют по каплям разбавленную (1 1) азотную кислоту до появления слаборозовой окраски. Затем прибавляют 1,0 г окиси цинка, растворенной в аммиаке при добавлении небольшого количества карбоната аммония, п кипятят в покрытой чашке (лучше всего платиновой) до исчезновения запаха аммиака. Обычно при этом раствор упаривается приблизительно до 50 мл. После удаления аммиака прибавляют около 50 мл горячей воды, перемешивают, дают осадку (осадок Г) осесть в течение нескольких минут и фильтруют (фильтрат Д). Осадок Г промывают холодной водой. Фильтрат Д сохраняют. [c.1024]

    Нельзя не сознаться, что такое объяснение представляется искусственным и маловероятным (особенно для реакции распадения). По моему мнению, результаты, полученные Иёргенсеном, решительно говорят против цепеобразного расположения частиц аммиака в платиновых солях. Так как порядок вступления аминов ке оказывает влияния на свойства соединений одинакового ряда (например, а или Р), то мы должны заключить, что в соединениях типа Р1С12-4А все частицы аммиака и аминов находятся в одинаковом положении по отношению к группе Р1С1г, причем, вероятно, каждая из них вступает в непосредственную связь с платиной и хлором. [c.32]

    Последние соединения образуются при действии галоидных алкилов на тиоамиды одноосновных жирных кислот N142—СЗ—К и их натриевые производные. Алкильная группа в изотиоамидах является точно так же соединенной с серой и при различных распадениях может быть выделена в виде меркаптана и других веществ. Так, например, этилизо-тиоацетанилид, получающийся при действии иодистого этила на тиоаце-танилид, реагирует с анилином по следующему уравнению  [c.69]

    И, наконец, в 1877 г. Бутлеров в связи с исследованием изодибутилена указывает и на механизм превращения изомеров друг в друга по его мнению, частицы некоторых веществ, вследствие постоянного распадения и воссоединения продуктов в новом порядке, постоянно изомеризуются, переходя от одного видоизменения в другое— и обратно . — В некоторых случаях можно встретить и такие тела, масса которых постоянно заключает в заметном количестве изомерные частицы различного химического строения,—частицы, постоянно соперничествующие между собою, перегруппировывающиеся взаимно из одного строения в другое [3]. В качестве примера таких соединений Бутлеров привел также цианистоводородную кислоту, являющуюся смесью взаимнопревращающихся молекул цианистого водорода H N и карбиламина NH. [c.498]

    Процесс распадения ПСЮ ва НС1 и О,, протекающпй под действием света, носит название фотолиза. Фотолиз задерживается прибавкой сильно диссоциирующих хлористых солей наоборот, слабо диссоциирующие хлориды, например Hg K. могут содействовать фотолизу, так. как связывают НС1 в комилексные соединения вероятно, состага (Hg k) н,. [c.25]

    Для химической механики весьма важно отличить обратимые реакции от необратимых. Вещества, могущие реагировать друг на друга при данной температуре, дают такие тела, которые при той же температуре или могут, или не могут давать первоначальные вещества. Так, напр., соль растворяется в воде при обыкновенной температуре, но получающийся раствор может распадаться при той же температуре, оставляя соль и выделяя воду испарением. Сернистый углерод происходит из серы и угля при такой температуре, при которой может и обратно давать серу и уголь. Железо выделяет при некоторой температуре водород из воды, образуя окись железа, но она при той же температуре с водородом может давать железо и воду. Очевидно, что если тела А и В дают С и В реакция обратима (т.-е. С и 13 дают А и В), то, взяв определенную массу А и В, или им соответственную массу С и В, мы получим в обоих случаях все четыре тела, т.-е. наступит между реагирующими веществами химическое равновесие (или распределение). Увеличивая массу одного из веществ, получим новые условия равновесия, так что обратимые реакции доставляют возможность изучать влиявие массы на ход химических превращений. Примерами необратимых химических реакций могут служить многие из тех, которые происходят с очень сложными соединениями и смесями. Так, многие сложные вещества организмов (растений и животных) в жару распадаются, но ни при этой температуре, ни при других продукты распадения не дают сами по себе первоначального вещества. Порох, как смесь селитры, серы и угля, сгорая, дает газы и пороховой дым, которые ни при какой температуре обратно не дают начальных веществ. Чтобы их получить, необходим обходный путь — соединения по остаткам. Если А прямо ни при каких условиях не соединяется с В, то это еще не значит, что не может быть по.лучено соединение АВ. Часто А можно соеди- [c.45]

    Сверх того, считаю неизлишним указать на то, что, по всей видимости, природа растворов очень сложна и есть повод допускать в них часть веществ в состоянии соединения, а часть — в состоянии распадения, т.-е. в состоянии диссоциации, ничего общего с неясным еще электричеством не имеющей. Считая, что существование диссоциации и ассоциации необходимо будет признать для понимания растворов, я думаю, что современное представление об электролитической диссоциации, с одной стороны, тормозит теорию растворения, хотя, с другой стороны, полезно потому, что дает повод к накоплению опытного материала, который должна охватить будущая- теория растворов. [c.402]

    Вследствие неполного постоянства — при переменном давлении — постоянно кипящих растворов, многие отрицают существование определенных гидратов, образуемых летучими веществами, напр., хлористым водо-дородом (или соляною кислотою) и водою. Говорят обыкновенно так если бы постоянство состава существовало, то оно не менялось бы при перемене дэвлення. Но перегонка постоянно кипящих гидратов, весомневно (судя по плотности паров, определенной Бино) сопровождаетчгя, подобно перегонке нашатыря, серной кислоты и т. п., полным разложением бывшего соединения. т.-е. тела эти не существуют в парах, а продукты распадения (НС1 и Н-О) при температуре перегонки суть газы, растворяющиеся в перегоняемой и сгущаемой жидкостях, растворимость же газов в жидкостях зависит от давления, а потому состав постоянно перегоняющихся растворов может я даже должен отчасти меняться с переменою давления и притом чем меяее давление и чем ниже температура испарения, тем вернее получение истинного соединения. Серная кислота H SO составляет один из примеров несомненно определенных химических соединений, а между тем, как увидим в главе 20, она при нагревании выделяет серный ангидрид и, перегоняясь, разлагается. В исследованиях Роско и Дитмара (1859) оказалось, что при давлении в 3 атм. постоянно кипящий раствор содержит 18% H I, при 1 атм. 20 /о> Vio ТМ. 23%. Пропуская же воздух чрез растворы до неизменности их состава (т.-е. заставляя удаляться избыток водяного пара или H l вместе с воздухом) при 100° получается кислота с содержанием около 20 /о, при 50° около 23%, а при 0° около 25%. Из этого видно, что, уменьшая давление и понижая температуру испарения, доходят до одного и того же предела, за который следует принять состав НС1 6Н-0, требующий 25,26% хлористого водорода. Дымящая соляная кислота содержит более этого. [c.406]

    Если возможны скопления разнородных частиц в состоянии газовом, когда частицы значительно удалены друг от друга, то в жидком состпянии, когда частицы уже сближены, такое скопление становится возможным только при том виде взаимодействия частиц, который проявляется при химическом их притяжении, особенно же при способности разнородных частиц к взаимному соединению. Такими должно представлять растворы и другие так называемые неопределенные химические соединения. В них по представлению, развиваемому в атом сочинении, должно предполагать как самые соединения разнородных частиц, так и продукты их распадения, как в азотноватом ангидриде N 0 н N0 . [c.534]

    Сернистый углерод вступает во многие соединения, часто чрезвычайно сходные с соединениями угольного ангидрида. В этом отношении сернистый углерод есть тно-ангидрид, т.-е. имеет свойства кислотных ангидридов, как и С0 с тою разницею, что кислород этого последнего заменен серою. Тио-соединениями вообще называются такие соединения серы, которые отвечают кислотным с заменою кислорода серою. Так, серноватистая кислота есть монотиосерная, т.-е. серная, в которой один атом S замещает один атом кислорода. С сернистыми металлами щелочей и щелочных земель сернистый углерод образует солеобразные вещества, отвечающие углекислым солям, и эти тела можно называть тиоуголь-ными солями. Напр., соль натрия имеет состав Na- S совершенно, как сода. Образуются они прямым растворением сернистого углерода в водном растворе сернистых металлов но они трудно получаются в кристаллическом виде, потому что легко разложимы. Однако поташная соль может быть получена в кристаллах, содержащих кристаллизационную воду. При значительном сгущении раствора таких солей начинается уже распадение, сопровождающееся выделением сернистого водорода и образованием углекислой соли, причем вступает в действие вода, напр., K S- ЗНЮ = К СО - -3№S. [c.226]

    Хлористый тионил 50СГ есть как бы окисленная двухлористая сера он соответствует в которой один пай 5 заменен кислородом. В то же время это есть окись хлора (хлорноватистый ангидрид С1Ю), соединенная с серою, а также — хлорангидрид сернистой кислоты, т.-е. 50(Н0У , в которой два водных остатка заменены хлором, или 80 , в котором один кислород заменен двумя [атомами] хлора. Все эти представления подтверждаются реакциями образования или распадения и все согласны с понятием о других соединениях 5, О и С1. В первый раз хлористый тионил был получен Шиффом при действии сухого сернистого газа на пятихлористый фосфор при перегонке полученной жидкости сперва до 80° от- [c.228]

    При нагревании с кислородными кислотами хромовая кислота выделяет кислород, напр., с серною 2СгО - - 3№50 = = Сг (50 ) - -0 + ЗНЮ. Понятно, вследствие этого, что смесь хромовой кислоты или ее солей с серною кислотою составляет отличное окисляющее средство, которое употребляется часто в химической практике и в технике, для некоторых случаев окисления. Так, №5 и 50 переводится этим путем в Н ЗО . Действуя как сильно окисляющее вещество, СЮ переходит в окись Сг Оотдавая половину содержащегося в нем кислорода 2СЮ = Сг-О О 558]. Действуя на раствор иодистого калия, СгО, как многие окислители, выделяет иод, причем реакция идет пропорционально содержанию СгО , и количество освобождающегося иода может служить для определения количества СгО (количество иода может быть с точностью определяемо иодометрически, гл. 20, доп. 535). Накаливая хромовый ангидрид в струе аммиачного газа, получают тоже окись хрома, воду и азот. Во всех случаях, когда хромовая кислота действует окислительно при нагревании и в присутствии кислот, продукт ее раскисления составляет соль СгХ окиси хрома зеленого цвета, так что красный или желтый раствор соли хромовой кислоты переходит при этом в зеленый раствор соли окиси хрома СгЮ . Окись эта сходна с А1ЮЗ, РеЮ и тому подобными основаниями состава кЮ . Это сходство видно в трудной растворимости безводной окиси в кислотах, в студенистом виде коллоидального гидрата, в образовании квасцов [и] летучего безводного хлорного хрома r l . в применении гидрата для протравы при крашении и т. п. Окись хрома, r O редко в малых количествах встречается в хромовой охре, образуется окислением хрома и низших его окислов, раскислением и разложением солей хромовой кислоты (напр., прокаливанием аммиачной и ртутной солей) и распадением солеобразных соединений самой окиси СгХ или Сг Х , подобно глинозему, с которым окись хрома разделяет и то свойство, что образует слабое основание, легко дающее, кроме средних СгХ , двойные и основные соли. Здесь особо примечательно, что соли окиси хрома обладают или фиолетовым, или зеленым цветом даже при совершенно том же составе, так что нагревание или другие условия переводят [c.237]

    Происходит фосфоресценция от возбуждения светом на поверхности тел особого состояния движения и определяется теми самыми лучами света, которые оказывают химическое действие. Поэтому свет дневной, или от горящего магния, действует сильнее, чем свет лампы. По наблюдениям Беккереля, подмесь соединений Мп, Bl и Na S (но не К 3) и т, п., хотя бы в ничтожно малых количествах, совершенно необходима, что дает повод думать, что образование и распадение двойных солей составляет, быть может, химическую причину явления. Соединения стронция и бария обладают этой способностью едва ли не в большей мере чем соединения кальция. Масса для этого приготовляется, напр., чрез смесь серноватистонатровой соли с хлористым стронцием, причем от двойного разложения, по прибавлении спирта, осаждается серноватистостронциевая соль ЗгЗ О которая при прокаливании оставляет сернистый стронций, светящийся (в сухом состоянии) зеленовато-желтым светом. В полученной массе заключается смесь сернистого стронция, серностронциановой соли, Na S и серы. При разных температурах прокаливания и способах приготовления получается масса, светящаяся различными оттенками. Сернистый цинк обладает также силь- [c.518]


Смотреть страницы где упоминается термин Распадение соединений: [c.520]    [c.297]    [c.334]    [c.114]    [c.114]    [c.60]    [c.49]    [c.79]    [c.288]    [c.401]    [c.538]    [c.49]    [c.58]    [c.203]    [c.221]    [c.283]    [c.396]    [c.409]    [c.412]    [c.492]   
Сочинения Введение к полному изучению органической химии Том 2 (1953) -- [ c.484 ]




ПОИСК







© 2025 chem21.info Реклама на сайте