Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан хлористый катализатор полимеризации

    Исследования Циглера и Натта, показавшие, что алюминийорганические соединения в сочетании с галогенидами титана являются превосходными катализаторами полимеризации олефинов при низком давлении, стимулировали изучение возможности использования других металлоорганических соединений в аналогичных каталитических системах. Ряд фирм [662, 589, 276, 804, 67, 854] взяли патенты на применение оловоорганических соединений в качестве катализаторов полимеризации олефинов. Система четыреххлористый титан (0,6 г)—тетрабутилолово (2,6 г) —хлористый алюминий (1,0 г) является одним из примеров такого рода катализаторов [804]. [c.160]


    Тетраэтил- и тетраметилсвинец в комбинации с четыреххлористым титаном использовали для полимеризации винилхлорида, стирола и а-олефинов [210]. При полимеризации винилхлорида в присутствии указанных катализаторов образуется белый твердый полимер, в то время как, согласно патенту [209], в аналогичных условиях каталитическая система триалкилалюминий—четыреххлористый титан разлагает винил-хлорид реакция сопровождается выделением хлористого водорода. Вопросы, касающиеся полимеризации акрилонитрила и других полярных мономеров в присутствии каталитической комбинации тетраэтилсвинец — четыреххлористый титан, обсуждаются в гл. IX. [c.109]

    Для получения компонентов катализатора элементарные металлы — алюминий [304—308], магний [304], марганец [309] и титан [310, 311] обрабатывают катализаторами Фриделя—Крафтса, в том числе галогенидами алюминия, железа и титана. После обработки металлического алюминия хлористым алюминием или хлористым железом к реакционной смеси добавляют галогенид титана и получают эффективный катализатор для полимеризации олефинов [304]. Продукты реакции, образующиеся при обработке элементарных металлов галогенидами титана или ванадия в присутствии или в отсутствие галогенида алюминия, могут служить эффективными катализаторами полимеризации рог se. [c.115]

    В гл. VII (стр. 108) упоминалось о возможности использования тетраэтилсвинца в сочетании с четыреххлористым титаном в качестве эффективного, циглеровского катализатора полимеризации этилена и других а-олефинов. Продуктами обычно являются высококристаллические материалы, характерные для полимеров, получаемых на циглеровских катализаторах. Как уже отмечалось в гл. VII, трехкомпонентный катализатор, состоящий из тетраэтилсвинца, четыреххлористого титана и хлористого алюминия, эффективен и полимеризует этилен и пропилен до кристаллических продуктов, а диены — до каучукоподобных [22]. [c.287]

    В качестве катализаторов для полимеризации окиси этилена, окиси пропилена и окиси стирола были исследованы многочисленные другие галоидные соединения. Найдено, что для случая полимеризации окиси этилена каталитически активными являются следующие галоидные соединения [18] хлористый алюминий, пятихлористая сурьма, хлористый бериллий, треххлористый бор, хлорное олово, четыреххлористый титан, хлористый цинк и смесь бромистого и бромного железа. Не полимеризуют окиси этилена следующие галоидные соединения треххлористый мышьяк, треххлористая сурьма, хлористый кобальт, хлористая и полу-хлористая медь, хлористое железо, хлористый кадмий, хлористая и хлорная ртуть, хлористый и бромистый никель, четыреххлористый цирконий [c.298]


    Показано, что каталитическая активность известных катализаторов Фриделя — Крафтса очень сильно уменьшается в ряду фтористый бор, бромистый алюминий, четыреххлористый титан, четырехбромистый титан, хлористый бор, бромистый бор и хлорное олово [83]. В присутствии фтористого бора при температуре сухого льда изобутилен превращается в твердый полимер за несколько секунд. Время, потребное для полной полимеризации с бромистым алюминием, сводится к нескольким минутам, тогда как для реакции с четыреххлористым титаном время реакции исчисляется часами, а с хлорным оловом — днями. [c.113]

    Полярность молекулы изобутилена обусловливает большую склонность его к реакциям полимеризации под влиянием катализаторов даже при очень низких температурах. Катализаторами полимеризации изобутилена является хлористый алюминий (А С1з), фтористый бор (ВРз) и четыреххлористый титан (ТЮи). [c.88]

    Широкую известность и практическое применение в качестве химически стойкого обкладочного материала получили полимеры изобутилена с высоким молекулярным весом (до 200000),. изготовляемые действием на изобутилен, при низких температурах таких катализаторов, как хлористый алюминий, хла-ристый титан, фтористый бор и другие, а также продукты совместной полимеризации изобутилена с изопреном—бутил-каучуки. [c.21]

    Катализаторы, наиболее часто используемые при катионной полимеризации, являются типичными катализаторами Фриделя — Крафтса. У потребляются также сильные кислоты и кислотные поверхности (аналогичные применяющимся в реакциях крекинга нефти). Пеппер [4] систематизировал данные приблизительно по двадцати галоидным солям металлов, исследованным в качестве катализаторов, и обнаружил, что чаще всего применялись трехфтористый бор, хлористый алюминий, бромистый алюминий, четыреххлористый титан и хлорное олово. Порядок активности этих катализаторов несколько меняется в зависимости от условий опыта, и теперь обычно считают, что такие катализаторы требуют активации сокатализатором, который, по-видимому, реагирует с катализатором, давая истинный инициатор. В некоторых системах катализатором, вероятно, является вода или какое-то другое содержащее протон вещество [c.430]

    Выбор экспериментальных условий проведения катализируемой диеновой конденсации определяется природой применяемых компонентов и сводится главным образом к подбору катализатора. Наиболее подходящим и изученным катализатором является хлористый алюминий, который обычно легко образует гомогенный раствор с диенофилом в инертном растворителе, например бензоле. Иногда для переведения суспензии хлористого алюминия в раствор рекомендуется прибавить к ней 1 моль-экв эфира, этилового спирта или метанола. Однако прибавление 3 моль-экв указанных веществ полностью дезактивирует катализатор Хлористый алюминий неприменим для а р-ненасыщенных кетонов и особенно альдегидов, так как вызывает их быстрое осмоление . Значительно лучшими катализаторами оказываются комплексы трех фтор истого бора, хлорное олово или его пентагидрат. Однако пентагидратом нельзя пользоваться при повышенных температурах, чтобы не вызвать его гидролиза, поскольку появление в реакционной среде протона приводит к катионной полимеризации аддукта или исходных соединений . Четыреххлористый титан и эфират треххлористого бора относительно малоактивны, но вместе с тем применение последнего дало возможность провести частичный асимметрический синтез с наиболее высоким оптическим выходом, какой только удалось достигнуть . Употребление других катализаторов описано лишь в единичных случаях, и их свойства пока не известны. Катализаторы Циглера, по-видимому, заметно уступают в активности катализаторам Фриделя — Крафтса. [c.47]

    Таким образом, катализатором процесса полимеризации пропилена в полипропилен является комплексное соединение алкилалюминия с хлористым титаном, находящимся в среде углеводородного растворителя в виде тонкодисперсной суспензии. [c.60]

    Изобутилен. Было установлено, что между хлористым алюминием и четыреххлористым титаном существует принципиальное различие, которое проявляется как в электропроводности систем катализатор — сокатализатор, так и в механизме катализа полимеризации. Эти различия показаны на рис. 1 и 2. [c.262]

    Чтобы выяснить, является ли активация катализатора хлористым титаном мгновенной реакцией, были проведены опыты, при которых мы сравнивали начальные скорости полимеризации изобутилена и молекулярные веса в одинаковых условиях, причем изменяли лишь последовательность, в которой вводили отдельные компоненты реакции  [c.323]

    В одном из патентов [257] указывается, что при добавлении алкилов свинца или олова к четыреххлористому титану происходит мгновенная реакция, в результате которой образуется окрашенный осадок. Этот осадок является катализатором полимеризации стирола, однако он не особенно активен в случае этилена и других а-олефинов. Добавление галогенидов металлов типа хлористого алюхминия или трехфтористого бора повышает каталитическую активность. Для полимеризации этилена и других а-олефинов посредством так называемых раствортгах катализаторов было предложено использовать алкилы олова в сочетании с хлористым алюминием и четыреххлористым титаном [262]. [c.109]


    Продукт реакции тетралкил олова с четыреххлористым титаном недостаточно активен в качестве катализатора полимеризации, однако нри смешении с диалкилгалогенидом алюминия получается активный катализатор, не содержащий осадка. Используя хлористый алюминий в комбинации с тетрабутилоловом и четыреххлористым титаном, также получают прозрачный раствор, проявляющий очень высокую каталитическую активность при полимеризации этилена. [c.122]

    Добавление продуктов взаимодействия алюминийтриэтила с окисью пропилена (молярное отношение 1 3) к хлорному железу (отношение A1( 2Hj)3 РеС1з=2) с последующим добавлением окиси пропилена приводит к образованию твердого полимера с выходом 689 о [т]]=1,03. Попытки получить твердый полимер при замене хлорного железа хлористым цинком и четыреххлористым титаном имели мало успеха [16]. Активными катализаторами полимеризации окиси пропилена, согласно данным Прайса [17], являются этилат и бутилат железа, а также изопропилат алюминия и метилат магния. Ацетилацетонат железа не активен, вероятно, потому, что этот комплекс слишком устойчив и не происходит вытеснения его компонентов окисью пропилена. [c.301]

    Диэтил-, дипропил-, дибутил- или дифенилртуть совместно с солями элементов переходной группы, например хлористым кобальтом, хлористым никелем или треххлористым титаном, при полимеризации диенов при низком давлении способствуют образованию с высокими скоростями превращения полимеров 1,4-структуры, практически свободных от катализатора. Полимеризация ускоряется при облучении ртутной дуговой лампой. Наибольшие скорости конверсии достигаются в случае низших сопряженных диенов, таких как бутадиен и изопрен с высшими гомологами скорость ниже, реакция обычно проводится в несколько стадий в инертной углеводородной суспензии при 0—50° С и давлении выше 35 ат. В сочетании с другими сокатализаторами алкильные соединения ртути полимеризуют олефиныз , виниловые углеводороды , хлористый винил 2 , а также сополимеризуют этилен и а-олефины [c.61]

    Степень полимеризации зависит от природы катализатора. Так называемые мягкие катализаторы полимеризации, как например хлорид цинка, серная кислота, фосфорная кислота, некоторые земли и силикаты, при низких температурах не вызывают почти никакого эффекта, а при температурах от О до +200° С катализируют полимеризацию изобутилена в простейшие полимеры ди-, три-, тетрамеры изобутилена. Энергично действующие катализаторы фридель-крафтского типа , как например фтористый бор, хлористый алюминий, четыреххлористый титан, дают при низкотемпературной полимеризации (температура от О до —164° С) полиизобутилены с самыми высокилш степенями поли- [c.101]

    Катализаторами полимеризации и кополимеризации изобутилена 8 растворителях при низких температурах являются хлористый алюминий, фтористый бор и четыреххлористый титан. Для [c.384]

    Каталитическая макрополимеризация изобутилена. Полимеризация изобутилена при температурах ниже —70° С в присутствии катализаторов Фриделя-Крафтса, таких как хлористый алюминий, фтористый бор и четыреххлористый титан, приводит к образованию высокомолекулярных полимеров, обладающих эластическими свойствами [63]. Внесение, например, фтористого бора в жидкий изобутилен при —80° С вызывает мгновенную, почти взрывную реакцию в противоположность этому полимеризация при температуре кипения изобутилена (—6° С) требует индукционного периода и продуктом такой полимеризации являются лшдкие масла. Увеличение температуры от —90 до —10° С вызывает уменьшение молекулярного веса полимера от 200 ООО до 10 ООО. [c.227]

    Ионная полимеризация осуществляется с помощью катализаторов, в качестве которых применяют кислоты, основания, щелочные металлы, трехфтористый бор, хлористый алюминий, четыреххлористый титан и др. Катализаторы активизируют отдельную молекулу полимеризующегося соединения, превращая ее в ион благодаря образованию нестойкого соединения между катализатором и молекулой мономера. После стабилизации растущей цепи катализатор от полимера отщепляется. [c.36]

    Для спстемы алкиллитий и четыреххлористый титан положение оказывается значительно более сложным, так как реакция протекает неполностью. Восстановление четыреххлористого титана и активность в реакции полимеризации этилена достигают максимума при молярном соотношении бу-тиллития и четыреххлористого титана в пределах 1—2. Однако, если осажденный катализатор приготовляют в присутствии этилена, то выход полимера достигает второго максимума при соотношении приблизительно 4 г-мол алкиллития на 1 г-мол четыреххлористого титана. При этом соотношении степень восстановления четыреххлористого титана невелика, но, по-видимому, алкиллитий и хлористый титан образуют комплекс или происходит образование алкилтитана. [c.289]

    Полимеры простых виниловых эфиров. Процесс полимеризации простых виниловых афиров протекает при температуре, близкой к температуре кипения взятого эфира. В качестве катализатора используют раствор хлорного железа в бутиловом спирте. Могут применяться н катализаторы типа Фриделя-Крафтса хлористый алюминий, хлористый титан, фтористый бор и др. Реакция ироте- [c.285]

    В конце 40-х годов полагали, что сами кислоты Льюиса, так называемые катализаторы Фриделя—Крафтса (соединения общей формулы ЕХ , где Е — бор, алюминий, титан, олово и др., а X — галоген), являются катализаторами катионной полимеризации. Однако после того как Эванс и Мидоус [14] обнаружили (1950 г.), что полимеризация в системе изобутилен—хлористый алюминий имеет место лишь в присутствии каталитического количества воды, стала ясной ошибочность этого представления. Дальнейшие исследования показали необходимость участия дополнительного агента, сокатализатора, в большинстве случаев полимеризации в системах мономер—кислота Льюиса. Как теперь хорошо известно, активные возбудители катионной полимеризации на основе кислот Льюиса образуются только при участии оснований Льюиса. Взаимодействие соединений такого рода приводит к координационным комплексам, способным в определенных условиях (полярная среда, присутствие акцептора положительных ионов) к отщеплению протона или карбкатиопа. К первому типу относятся комплексы с участием таких оснований Льюиса, как вода, спирты, органические кислоты и др., например [c.302]

    Полимеризация газообразных олефииовых углевофродов с образованием димеров, тримеров и полимеров более высоких молекулярных весов особенно интенсивно изучалась с конца двадцатых годов XX века. В большинстве первоначальных работ затрагивались вопросы термической полимеризации, а в работах последних лет рассматриваются в основном каталитические методы. Кислотные катализаторы преобладают среди катализаторов, используемых в процессах полимеризации. Наиболее часто используются серная и фосфорная кислоты и фосфаты [14]. Значительно реже применяются катализаторы Фриделя-Крафтса (хло- ристый алюминий, хлорисгый цинк, хлористый титан, фтористый бор — фтористый водород), активированные глины и синтетические алюмосиликаты. [c.351]

    Катализаторами катионной полимеризации являются хлористый алюминий, четыреххлористое олово, четыреххлористый титан, фтористый бор и др. Карбониевый ион может возникнуть также под влиянием улучей. Катионная полимеризация может проходить в присутствии сокатализато-ров, содержаш их протон. Катализатор с сокатализатором образует комплекс, от которого легко отщепляется протон, присоединяющийся к поляризованной двойной связи мономера, в результате чего получается ион карбония. [c.50]

    Использование свободных металлов в качестве восстановительных агентов для получения соединений титана и циркония рекомендуют при приготовлении ряда каталитических систем, причем компоненты нагревают при повышенных температурах (найример, 200—300°) с целью получения активных продуктов, т. е. продуктов, способных, по всей вероятности, образовывать комплексы с олефинами и инициировать полимеризацию при обычной температуре. Так, галогениды или алкоголяты титана и циркония нагревают с металлическими натрием, алюминием и даже титаном [215] и получают катализаторы для полимеризации этилена. При нагревании металлического титана с хлористым алюминием также образуется эффективный катализатор. Добавление кислорода или органических и неорганических перекисей дает возможность получить активный катализатор из титана и галогенида алюминия в более мягких условиях [238]. Кроме этилена в присутствии каталитической системы, состоящей из галогенидов алюминия и титана, иолимеризуются также пропилен, бутадиен и изопрен [239]. [c.114]

    Интересный вариант полимеризационного процесса основан на использовании инертных носителей для катализаторо в Циглера [79]. В этом случае реакцию между триэтилалюминием и четыреххлористым титаном проводят в присутствии растворителя и инертного твердого вещества типа диатомита, хлористого натрия или полистирола. Полученную суспензию тщательно перемешивают и после достижения полного смешения испаряют растворитель. Газообразный этилен пропускают через слой твердых частиц катализатора, и полимеризация проходит почти при полном отсутствии растворителя. Если твердый носитель растворим в воде, как, например, хлорид или сульфат натрия, то он может быть удален из полимера путем экстракции водой. Носители, нерастворимые в воде, типа карбоната кальция или окиси кальция экстрагируют разбавленными 1Шнеральными кислотами. Эффективными носителями могут служить также материалы, присутствие которых в полимере даже желательно, так как они одновременно являются наполнителями или пигментами, например силикагель и двуокись титана. [c.170]

    При полимеризации пропилена [22] и этилена [214] в качестве катализатора можно использовать сплав магния с алюминием MgjAlj в сочетании с четыреххлористым титаном [22]. Сплав алюминия с титаном в сочетании с галоидалкилами и галоидалкиларилами также можно использовать как катализатор для полимеризации этилена и других а-олефинов [50]. Этот сплав может содержать от 1,5 до 10 частей алюминия на одну часть титана, хотя наилучшие результаты получаются при соотношении алюминия к титану, равном 3 1. Тонко измельченный сплав обрабатывают, например, хлористым этилом при температуре около 50°. Непрореагировавший галоидалкил удаляют в вакууме, а катализатор суспендируют в инертном растворителе типа гептана и декантацией отделяют от непрореагировавшего сплава. Отделенную суспензию можно использовать как катализатор для получения высокомолекулярных и высококристаллических полимеров этилена и высших а-олефинов. Интересно отметить, что в данном случае в процессе приготовления катализатора не происходит восстановления соединений титана высшей валентности, как обычно, а, наоборот, металлический титан переходит в высшее валентное состояние. [c.176]

    Хотя один или большее число из рассмотренных механизмов реакции обрыва цепей может быть приписано большинству реакций полимеризации на катализаторах Циглера, различие в микроструктуре полимеров, получаемых при использовании разнообразных каталитических систем, указывает, что различные механизмы реакции, по-видимому, действительно существуют. Наприхмер, полиэтилен, полученный в присутствии каталитической системы четыреххлористый титан — тетрабутилолово — хлористый алюминий, содержит 80—90% концевых винильных групп и практически не содержит винилиденовых ответвлений. Остальные двойные связи являются внутренними в т/ анс-конфигурации [257]. Такая структура, позволяющая допустить катионный механизм полимеризации, аналогична микроструктуре полиэтилена, синтезированного на катализаторах, состоящих из окислов шестивалентного хрома на носителе, и отличается от структуры полиэтилена, полученного на каталитической системе четыреххлористый титан — триалкилалюминий. [c.196]

    В недавнем патенте описывается получение высокомолекулярных, высококристаллических полиуглеводородов нутем полимеризации этилена или пропилена с системами катализаторов, содержащих соединение переходного металла IV—VIII групп и гидрид- или алкилбора [27]. Из бор-гидридов чаще всего применяют диборан, хотя в качестве компонентов катализатора упоминают также пентабораны и высшие бораны. Эффективными сокатализаторами являются триалкилбор, например трибутилбор, или комплексные соединения, например натрийтетрафенилбор. В качестве соединений переходного металла могут быть применены соли минеральных кислот, например четыреххлористый титан или хлористый кобальт, алко-ксиды, например тетрабутилтитанат, или комплексное соединение, например ацетилацетонат титана. Предпочтительное молярное соотношение гидрида или алкила бора и соединения металла обычно составляет от 1 1 до 8 1. [c.281]

    Изобутилен изо-С Нц занимает среди олефинов особое место благодаря его выдающейся склонности к полимеризации, изобутилен является важным сырьем для образования различных полимеров, имеющих большое практическое значение. Так, под влиянием фосфорной кислоты изобутилен легко превращается в полимеры из них диизобутилен GgH4J путем присоединения водорода (гидрирования) превращается в жзооктан СдН й, который получают ныне в промышленном масштабе, как один из лучших высокооктановых компонентов моторного топлива. Широкую известность и практическое нрименение получили также некоторые полимеры изобутилена с высоким молекулярным весом (до 200 ООО), изготовляемые действием на изобутилен нри низких температурах таких катализаторов, как хлористый алюминий, хлористый титан, фтористый бор и др. Такова, нанример, известная присадка наратон или суперол , добавляемая к смазочным маслам для улучшения их вязкостных свойств  [c.753]

    Катионная, или карбониевая, полимеризация протекает с образованием иона карбония — полярного соединения с трехвалентным атомом углерода, несущим положительный заряд. При карбониевой полимеризации катализаторами служат соединения, являющиеся сильными акцепторами электронов (хлористый алюминий, четыреххлористое олово, четыреххлористый титан, фтористый бор и т. д.), а полимеризующийся мономер является донором электронов (например, стирол в присутствии ЗпСЦ). [c.44]

    Методы получения и свойства основных компонентов катализаторов детально рассмотрены в литературе [419]. В процессах промышленного производства полиолефинов наиболее широко применяются катализаторы на основе соединений титана. Четы-реххлори-стый титан, являющийся компонентом или исходным полупродуктом при синтезе ряда катализаторов, получают при хлорировании титансодержащих шлаков, Без дополнительной очистки он содержит значительное количество примесей [в % (масс.)] четыреххлористый кремний — 2 оксихлорид титана — 0,01- 0,05 оксихлорид ванадия —0,05- 0,2 хлористый водород — 0,01- 0,2 фосген —0,01-ьО,09 хлористый магний — 0,03-h0,l хлористый марганец — 0,02 0,07, а также хлориды алюминия и железа. Эти примеси, несмотря на небольшое содержание их в Ti U, могут оказывать значительное влияние на процесс полимеризации. В первую очередь это касается таких соединений как фосген, оксихлорид ванадия, хлориды железа. Перед использованием Ti U их желательно удалять. [c.367]


Смотреть страницы где упоминается термин Титан хлористый катализатор полимеризации: [c.91]    [c.338]    [c.301]    [c.43]    [c.114]    [c.145]    [c.92]    [c.268]    [c.269]   
Химия мономеров Том 1 (1960) -- [ c.138 ]




ПОИСК





Смотрите так же термины и статьи:

Катализаторы полимеризации



© 2025 chem21.info Реклама на сайте